• Keine Ergebnisse gefunden

Übungen zu Theorie und Numerik partieller Differentialgleichungen

N/A
N/A
Protected

Academic year: 2021

Aktie "Übungen zu Theorie und Numerik partieller Differentialgleichungen"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universität Konstanz WS 10/11 Fachbereich Mathematik und Statistik

S. Volkwein, O. Lass, R. Mancini

Übungen zu Theorie und Numerik partieller Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 3 Submission: 10.01.2011, 10:30 o’clock, Box 18

Exercise 7 (4 Points)

Let A ∈ R(M−1)2×(M−1)2 be the matrix obtained by the classical finite difference method for solving the boundary value problem−∆u=g in Ω = (0,1)×(0,1)and u=γ on∂Ω.

Show that the vectors ukl ∈R(M−1)

2 with stepsize h= 1/M, (ukl)ij = sin

ikπ M

sin

jlπ M

, 1≤i, j ≤M −1

are the eigenvectors of A. What are the corresponding eigenvalues λkl?

Exercise 8 (4 Points)

Given the problem

−∆v = λv in Ω, (1)

v|∂Ω = 0,

Ω⊂R2 a bounded domain with piecewise smooth boundary ∂Ω. A solution v ∈C2(Ω)∩ C( ¯Ω), v 6= 0 is called an eigenfunction to the eigenvalue λ.

a) Show that all eigenvalues λ of (1) are positive.

b) Letv1, v2 be eigenfunctions to the corresponding eigenvaluesλ1andλ2 withλ1 6=λ2. Show that v1, v2 are orthogonal in the associated inner product

hu, wi= Z

u(x)w(x)dx.

c) Compute the eigenvalues and eigenfunctions of (1) in the case Ω = (0,1)×(0,1) and compare them with the results of Exercise 7.

Exercise 9 (4 Points)

Given the problem

−∆u = 1 in Ω = (0,1)×(0,1), u = 0 on∂Ω. (2) Make a Ritz-Ansatz with the Ansatzfunctions

ukl(x, y) = sin(kπx) sin(lπy), (x, y)∈Ω, l= 1, . . . ,ˆl, k= 1, . . . ,ˆk.

What solution do you obtain for u?

Referenzen

ÄHNLICHE DOKUMENTE

Hint : They can be “compensated” by reformulating the information obtained by the finite differences scheme with respect to the grid points.... Show that solutions to the problem

Remark: In this exercise, it is not necessary to calculate the L 2 -scalar products arising in the weak formulation explicitely.. Exercise 12 (FEM for the 1D heat equation) (4