• Keine Ergebnisse gefunden

Übungen zu Theorie und Numerik partieller Differentialgleichungen

N/A
N/A
Protected

Academic year: 2021

Aktie "Übungen zu Theorie und Numerik partieller Differentialgleichungen"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Universität Konstanz WS 10/11 Fachbereich Mathematik und Statistik

S. Volkwein, O. Lass, R. Mancini

Übungen zu Theorie und Numerik partieller Differentialgleichungen

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 2 Submission: 20.12.2010, 11:00 o’clock, Box 18

Exercise 4 (4 Points)

We consider the discretization of the partial differential equation

(Lu)(x, y) = f (x, y) for all (x, y) ∈ Ω = (0, 1) × (0, 1), (1a) where

(Lu)(x, y) = −∆u(x, y) + a(x, y)u x (x, y) + b(x, y)u y (x, y) + c(x, y)u(x, y )

for all (x, y) on the unit square Ω = (0, 1) × (0, 1) with homogeneous Dirichlet boundary conditions

u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0 for x, y ∈ [0, 1]. (1b) For general coefficients a, b, c, f ∈ C( ¯ Ω) and c ≥ 0 in Ω the operator L is not self-adjoint and its discretization is not symmetric.

Discretize (1a) by a five-point centered difference scheme with n 2 points and mesh width h = 1/(n + 1). Moreover, the partial derivatives u x and u y are also discretized by utilizing centered difference schemes. The unknowns are denoted by

u ij ≈ u(x i , y j ),

where x i = ih for i = 1, . . . , n. Compute the coefficient matrix A ∈ R n

2

×n

2

and the right- hand side b ∈ R n

2

so that the discretization of (1) can be formulated as a linear system of the form

Au = b. (2)

When is the matrix A a L 0 -matrix?

Hint: For needed definitions see the lecture notes on Numerik gewöhnlicher Differential- gleichungen by Prof. S. Volkwein.

Exercise 5 (4 Points)

In (2) the computation of Au can be done matrix-free. Write a pseudo code that realizes

the product Au.

(2)

Exercise 6 (4 Points) Let A be a block-tridiagonal matrix of the form

A =

A 1 C 1 0 . . . 0

B 2 A 2 C 2

. .. . .. . ..

B n−1 A n−1 C n−1

0 . . . 0 B n A n

, (3)

where the A l ’s (1 ≤ l ≤ n) are quadratic matrices of the size m l . Further B l ∈ R m

l

×m

l−1

for l = 2, . . . , n and C l ∈ R m

l

×m

l+1

for l = 1, . . . , n − 1 hold.

• Derive an algorithm, which realizes the factorization

A =

D 1 0 0 . . . 0

B 2 D 2 . .. . ..

B n−1 D n−1 0 0 . . . 0 B n D n

E 1 F 1 0 . . . 0 0 E 2 F 2

. .. . ..

E n−1 F n−1

0 . . . 0 0 E n

=: LU, (4)

where E l ∈ R m

l

×m

l

denote identity matrices.

Hint: If it is necessary, suppose the invertibility of certain matrices.

• Assume that the matrices

A (l) =

A 1 C 1 0 . . . 0 B 2 A 2 C 2

. .. . .. . ..

B l−1 A l−1 C l−1

0 . . . 0 B l A l

, l = 1, . . . , n − 1, (5)

are non-singular. Show that D −1 l exist for l = 1, . . . , n − 1.

Hint: Prove the assertion by induction and use det(AB) = det(A)det(B).

Referenzen

ÄHNLICHE DOKUMENTE

Universität Konstanz WS 10/11 Fachbereich Mathematik und StatistikS. ,

Using piecewise linear and globally continuous nodal basis functions on a uniform mesh of size h = 1/N , N ≥ 2, write down the finite element approximation to this problem if p and

Universität Konstanz WS 10/11 Fachbereich Mathematik und

Solve (1) by using the Partial Differential Equation Toolbox in Matlab using the graphical user interface pdetool.. Follow the steps Draw, Boundary, PDE, Mesh

Don’t forget to lable the plots (title, xlabel, ylabel, zlabel, .... Document your code well and write a report including

For the discretization of the Laplace operator use the classical finite difference scheme (i.e. Use the lexicographical ordering of the grid points in Ω. As a stopping criteria for

Hint: For the implementation the commands initmesh, refinemesh, assempde, assema, pdesurf together with the provided geometry and boundary files circle11_geom.m and circle11_bdry.m

Test the stability of the solution to (2) with respect to changes in the initial conditi- ons by changing x 0 = 80, y 0 = 30 by a unit amount in each direction (four different