• Keine Ergebnisse gefunden

5.1 (3 points) If X = (X t , t ≥ 0) is a right-continuous positive supermartin- gale, prove that

N/A
N/A
Protected

Academic year: 2021

Aktie "5.1 (3 points) If X = (X t , t ≥ 0) is a right-continuous positive supermartin- gale, prove that"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Stochastic Processes II Summer term 2008 (Stochastische Analysis)

Prof. Dr. Uwe K¨ uchler Dr. Irina Penner

Exercises, 14th May

5.1 (3 points) If X = (X t , t ≥ 0) is a right-continuous positive supermartin- gale, prove that

P [sup

t

X t > λ] ≤ 1

λ E[X 0 ], λ > 0.

5.2 (3 points) Let (A t , t ≥ 0) be a filtration on some probability space (Ω, A, P ), let A ∞ := W

t≥0 A t and let N :=

N ⊆ Ω

∃ N 0 ∈ A ∞ with P [N 0 ] = 0, N ⊆ N 0 . We denote by

A P t := σ(A t ∪ N ), t ≥ 0 the augmented filtration. Show that

A P t =

A ⊆ Ω

∃ A 0 ∈ A t : A4A 0 ∈ N , where A4A 0 := (A\A 0 ) ∪ (A 0 \A).

5.3 (2+2+2 points) Let (A n , n ∈ N ) be a filtration on (Ω, A, P ) and let Q be a probability measure on (Ω, A) such that Q is locally absolutely continuous with respect to P , i.e.

Q n := Q| A

n

P | A

n

=: P n for all n ∈ N . We denote by L n := dQ dP

n

n

the Radon-Nykodim-derivative of Q n w.r.t. P n , (n ∈ N ).

a) Show that (L n , A n , n ∈ N ) is a nonnegative martingale.

b) Prove that Q is globally absolutely continuous with respect to P , i.e.

Q| A

P | A

, if and only if (L n , n ∈ N ) is uniformly integrable

w.r.t. P .

(2)

c) The relative entropy of Q w.r.t. P is defined as

H(Q|P ) :=

(R log dQ dP

dQ if Q P,

+∞ otherwise.

Show that Q is globally absolutely continuous with respect to P if sup

n

H(Q n |P n ) < ∞.

5.4 (2+1+2+2 points) Let (A t ) t≥0 be a right-continuous filtration. Show that

a) For any stopping time T A T :=

A ∈ A

A ∩ {T ≤ t} ∈ A t for all t ≥ 0 is a σ-algebra, and T is A T -measurable.

b) If S ≤ T is another stopping time, then A S ⊆ A T .

c) If S, T are stopping times, then also T ∧ S is a stopping time, and we have A T ∧S = A T ∩ A S .

d) If T n (n = 1, 2, . . .) is a decreasing sequence of stopping times and T = lim

n→∞ T n , then T is a stopping time and we have A T = T

n≥1

A T

n

.

The problems 5.1 -5.4 should be solved at home and delivered at Wednesday,

the 21st May, before the beginning of the tutorial.

Referenzen

ÄHNLICHE DOKUMENTE

5 In der untenstehenden Abbildung zeigt die Abbildung 1 den unvollständigen Graphen einer ge- brochenrationalen Funktion f, Abbildung 2 den der Ableitungsfunktion f’.. 5.1

Figure 4: Peak in coincident sea ice retreat and Arc)c SAT warming (indicated by purple ‘x’ in le` panel). Color-filled circles depict year-to-year changes of

It will be discussed that this method is indepen- dent of the beam diameter and depends only slightly on pulse duration, temporal pulse shape and spatial beam

Prove the following generalization of

Betrachten wir die folgende rote Funktion bezüglich der schwarzen durch den Ursprung des Koordinatensystems O(0;0) verlaufenden Funktion. Abstand der Punkte mit

Throughout, R denotes a ring, and, unless otherwise stated, all rings are assumed to be associative rings with 1, and modules are assumed to be left

Erweitern Sie ihre Darstellung aus 2., indem Sie die exakten L¨ osung zusammen mit der nume- rischen L¨ osung

unter Verwendung des Euler’schen Verfahrens mit h =