• Keine Ergebnisse gefunden

TU Darmstadt Fachbereich Mathematik Jakob Creutzig WS 2006/07 03.11.06 3. Aufgabenblatt zur Vorlesung ”‘Probability Theory”’ 1. Let T > 0 and consider the product space (R

N/A
N/A
Protected

Academic year: 2022

Aktie "TU Darmstadt Fachbereich Mathematik Jakob Creutzig WS 2006/07 03.11.06 3. Aufgabenblatt zur Vorlesung ”‘Probability Theory”’ 1. Let T > 0 and consider the product space (R"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

TU Darmstadt Fachbereich Mathematik

Jakob Creutzig

WS 2006/07 03.11.06

3. Aufgabenblatt zur Vorlesung

”‘Probability Theory”’

1. Let T > 0 and consider the product space (R[0,T],N

t∈[0,T]B). Let C denote the set of real-valued continuous functions on [0, T]. Show that A ∈ N

t∈[0,T]BandA⊂C implies thatA=∅. Thus, in particularC 6∈N

t∈[0,T]B.

Show, on the other hand, that A ∈N

t∈[0,T]B and C ⊂A do not imply that A=R[0,T].

2. a) Find a contentµon an algebraAwhich isσ–continuous from above, but not from below.

Hint: It is most convenient to use a content which attains only the values 0,∞.

b) Find a measure space (Ω,A, µ) and A1, A2, . . .∈ A such that An ↓ ∅, but limn→∞µ(An)6= 0.

3. Let the probability space (Ω,A, P) benonatomic, i.e.,P(A)>0, A∈ A, implies that there exists aB∈ A such thatB⊂Aand 0< P(B)< P(A).

a) Show thatP(A)>0, A∈ A,andε >0 imply that there exists aB ∈ A such thatB ⊂Aand 0< P(B)< ε.

Hint: Indirect proof, assume the assumption to be wrong. Define a descending sequence Bn ⊆ Bn−1 ⊆ A with P(Bn) ,almost minimal’ in Bn−1. Show that B=T

nBn is an atom.

b) Show that there exists anA∈ A such thatP(A) = 12 (In fact, for each x∈[0,1] there exists anA∈ A such thatP(A) =x).

Hint: Show first, in a slight variation of part a), that each subsetAof measure P(A) >1/2 contains measurable subsets Bε with 1/2 ≤ P(B) < 1/2 +ε for anyε∈(0, P(A)−1/2). Using this, find then a descending sequenceBn of sets with 1/2≤P(Bn)≤1/2 + 1/n.

c) Show for nonatomic measuresP1 andP2on (Ω,A) that there exists an A∈ Asuch thatP1(A)≥ 12 andP2(Ac)≥12

Hint: This is exactly the classical problem of dividing a piece of cake ’fairly’

between two children.

Remark: The nonatomicity of the measures asserts e.g. that there is no single candy on top of the cake. Then the problem is impossible to solve, as will any parent tell you, hence the assumption is necessary.

1

Referenzen

ÄHNLICHE DOKUMENTE

Denn diese σ–Algebren sind nach Voraussetzung unabh¨ angig, und der Schnitt zweier unabh¨ angiger σ–Algebren besteht stets nur aus Mengen des Maßes 0 oder 1 (da diese Mengen ja

[r]

Geben Sie ein Beispiel f¨ ur zwei Prozesse X,Y auf [0, 1] an, welche die gleiche Verteilung im Pfadraum haben, aber keine Modifikationen

Aufgabe 1: Gegeben sei eine Filtration F

Hierzu berechnen wir die charakte-

[r]

(Hinweis: Machen Sie sich erst einmal klar, was zu zeigen ist.)

Aufgabenblatt zur Vorlesung.