• Keine Ergebnisse gefunden

Theoretical Physics V – Quantum Mechanics II

N/A
N/A
Protected

Academic year: 2022

Aktie "Theoretical Physics V – Quantum Mechanics II"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Theoretical Physics V – Quantum Mechanics II

Winter Semester 2019/20

Carsten Henkel / Timo Felbinger

Problem Set #2 Hand Out: 21 October 2019

Hand In: 05 November 2019

Problem 2.1– Create/destroy particles (10 points)

In the lecture, we have introduced operators ak and ak that destroy and create a particle in the “one-particle mode” uk(x). If one deals with bosonic particles, their commutators are given by

[ak, ak0] =δkk0 (2.1) where[A, B] =AB−BAis the standard commutator.

(i) Write down, fork 6=k0, the action of the operator productakak0 =ak⊗ak0 on the many-body state of the “Bose condensate”|BECi=|0 :N,vaciwhereN particles occupy the modeu0(x). (In the lecture, we used the notation|N0,vaciwhich may be misleading.) Justify why fork 6=k0, the two operatorsak andak0 commute.

(ii) The total particle number is given by the expressionNˆ = Pkakak. Prove the commutator

[ ˆN , ak] =−ak (2.2)

and give a physical interpretation in terms of particle annihilation.

(iii) The same construction also works for fermions where Eq.(2.1) must be re- placed by theanti-commutators

{ak, ak0}=δkk0, {ak, ak0}= 0 (2.3) with the anti-commutator{A, B}=AB+BA. Prove that Eq.(2.2) still holds true.

Hint. You probably know the “product rule” for commutators [A, BC] = B[A, C] + [A, B]C.

With a similar idea, its “fermionic cousin” can be proved: [A, BC] =B{A, C} − {A, B}C.

(iv) Coming back to bosons, consider the field operators ψ(x) = X

k

akuk(x), ψ(x) =X

k

akuk(x) (2.4)

and show that[ψ(x), ψ(x0)] =δ(x−x0)provided that . . .

1

(2)

(v) The full beauty of this construction is contained in the formulas

[B, C] = (ϕ|χ), (2.5)

where

B =

Z

dV ϕ(x)ψ(x) C =

Z

dV χ(x)ψ(x)

and(ϕ|χ) =. . .is the “standard scalar product” on the space of complex wave func- tions.

Problem 2.2– First and Second Quantisation (5 points) A one-particle state can be written in the form

|χ(t)i=

Z

dx χ(x, t)ψ(x)|0i,

and solves the equation of motion i¯h∂

∂t|χ(t)i=H|χ(t)i, with the Hamiltonian

H =

Z

dx ¯h2 2m

∂ψ

∂x

∂ψ

∂x +

Z

dx V(x)ψ(x)ψ(x).

Show that the “wave function”χ(x, t)satisfies the Schr¨odinger equation i¯h∂

∂tχ(x, t) = −¯h2 2m

2

∂x2χ(x, t) +V(x)χ(x, t).

Hint.For this particular set of states, the wave function can be computed from the matrix element χ(x, t) =h0|ψ(x)|χ(t)i.

Problem 2.3– Interactions (5 points)

In the lecture, we tried to compute the interaction energy for a Bose condensate

|BECi = |0 : N,vaci, and had to stop in the middle. Using the particle density operatorn(x), compute the expectation valuesˆ

hˆn(x)i = N|u0(x)|2 (2.6)

hˆn(x) ˆn(x0)i = N2|u0(x)|2|u0(x0)|2+N|u0(x)|2δ(x−x0) (2.7) where all expectation values are to be understood with respect to the many-body state: h. . .i=hBEC|. . .|BECi.

2

Referenzen

ÄHNLICHE DOKUMENTE

Die Konturenlinien des Querschnitts vieler Zwiebeln können im ersten Quadranten eines Koordinatensystems mithilfe der Funktionsgleichung. durch unterschiedliche Werte des Parameters t

Problem 3.4 Waiting times (9 pts.) The average number of cars and buses passing by an observer on a one-way road are equal:.. Each hour there are 12 buses and 12 cars passing by

All atoms are of mass m, and atoms of the same color are indistinguishable, while atoms of different colors are distinguishable (different color may correspond to e.g. different

Karlsruher Institut f¨ ur Technologie Institut f¨ ur Theoretische Festk¨ orperphysik Ubungen zur Modernen Theoretischen Physik I (SS 14) ¨.. - English

• Die Matrix mit den erwarteten H¨ aufigkeiten wird sp¨ ater vom TI-84+ automatisch bestimmt und muss nicht berechnet und eingegeben werden. Offne mit ¨ stat das Statistik-Men¨ u,

I Die Matrix mit den erwarteten H¨ aufigkeiten wird sp¨ ater vom TI-84+ automatisch bestimmt und muss nicht berechnet und eingegeben werden... Offne mit stat das Statistik-Men¨ ¨

This is the third time we have found that the familiar world re-emerges through quantum interference between states in which some observable has well-defined values: in § 2.3.3 we