• Keine Ergebnisse gefunden

10.ProblemsforCMCSurfaces A

N/A
N/A
Protected

Academic year: 2022

Aktie "10.ProblemsforCMCSurfaces A"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Fachbereich Mathematik Prof. K. Große-Brauckmann

TECHNISCHE UNIVERSIT¨ AT DARMSTADT

A

8.7.2010

10. Problems for CMC Surfaces

Problem 35 – Properness:

a) Prove that the composition of proper maps is proper.

b) What does it mean for a continuous functionf: R→Rto be proper?

c) Show that for a compact domainA, a continuous map f: A→Rn is always proper.

d) Give an example for a homeomorphism ϕ: Bn → Rn; it is useful to construct a homeomorphism ψ: (0,1) → (0,∞) first. Prove that if f: Rn →Rn is proper, then f ◦ϕ: Bn → Rn is proper. That is, it makes no difference if we define a properly embedded plane as the image of D or R2.

e) More advanced: Prove that the following two characterizations of the properness of a map F: S ⊂Rm →Rn for an arbitray domain S are equivalent.

• Compact setsK ⊂Rn have compact preimageF−1(K)⊂S,

•For all pathsγ which leave any compact subset the image pathc=F◦γ also leaves any compact subset.

Problem 36 – Stereographic projection:

Letf±be projection ofSnfrom the north or south pole onto the equatorial plane. Under the assumption that this map is differentiable, check geometrically (no computation!) that the transition mapτ(x) := (f+−1◦f)(x) =x/|x|

a) is conformal.

b) Isτ orientation preserving?

Problem 37 – Totally umbilic surfaces are spheres:

We want to prove that a surface Σ for which each point is umbilic is a subset of the sphereS2 or the plane. (We do not assume constant mean curvature.)

a) Consider a parameterization (f(x, y), ν(x, y)) and differentiate the equation for a principal curvature direction to derive the equationν+κf ≡C whereκ(x, y) and C are constant.

b) Why is Σ contained in a plane whenκ≡0? Otherwise, take the equation from part a) and show that f has constant distance 1/|κ| to some point.

Problem 38 – Laplace-Beltrami and mean curvature of a graph:

a) Write down the Laplace-Beltrami operator for polar coordinates f: (0,∞) × R, f(r, ϕ) = (rcosϕ, rsinϕ).

b) Let u ∈ C(Ωn,R) and consider the graph M = {(x, u(x)) : x ∈ Ω}. Check the equation ∆M(x, u(x)) = −nH(x, u(x)), where ∆M is the Laplace-Beltrami operator for the graph.

Referenzen

ÄHNLICHE DOKUMENTE

Simon: Functional Analysis (Methods of Modern Mathematical Physics I).. Springer Lehrbuch,

Am 26.1.1942 entzog er sich mit seiner Frau und seiner Schw¨ agerin der Deportation in ein Konzentrationslager durch Freitod.. Axiomatisierung

d) There is no graph over the entire plane R 2 with mean curvature H >. Here, deter- mine the assumption on you need to make this true. You can assume convergence of the

It is sufficient to consider a hexagon

a) Consider an island with no lakes. Show that # peaks −# passes +# sinks = 1, provided all these numbers are finite. Here, peaks are local maxima of height, sinks local minima,

Fachbereich

Insbesondere ist also die Klasse der rekursiv aufz¨ahlbaren Sprachen nicht unter.

Es feh- len nur ein paar konvergente Reihen, aber bei den Funktionen in zwei Variablen ist vieles durcheinander geraten.. K¨onnen Sie helfen und die Graphen und