• Keine Ergebnisse gefunden

Length scales

N/A
N/A
Protected

Academic year: 2022

Aktie "Length scales"

Copied!
45
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

HRTEM, PICO

SEM+EBSD, ESMA

Large Chamber SEM

Length scales

Micro sc opic Details

Å µm

mm

Structur, Defects

Microstructure, Phase Changes, Internal Strain

Full size parts, Technological

Behaviour

ELECTRON MICROSCOPY: SCALE BRIDGING ANALYSIS

(2)

Contributions of characterisation experiments

Conclusions on damage mechanisms

Structure/property relationships

Materials

modifications

Degradation, failure

Ion irradiation and energy dissipation

Diffusion and defect agglo- meration

High resolution

microstructure analysis

In situ experiments

(3)

Outline

Degradation analysis of divertor elements

In situ-TEM observations

Aberration corrected TEM (Ernst Ruska-Centre)

Applications to defect analysis

2.46 Å

(4)

Plasma facing components in ITER

J. Linke, A. Schmidt, FZ Jülich

(5)

?

(6)

VISITEC LC – SEM at RWTH Aachen University

• Variable pressure

• Peltier-cooled EDX (Noran)

• EBSD (HKL)

(7)

Monoblock

Heat flux up to 20 MW/m2

Flat tile

Heat flux < 5 MW/m2

Flat tile or monoblock

Heat flux < 5 MW/m2

W monoblocks

CFC monoblocks

VT Full-Scale Prototype

Plasma facing components in ITER: the divertor

(8)

Electron beam simulation of ITER relevant thermal loads

1 electron beam gun 2 vacuum chamber 3 cooling circuit 4 test component 5. diagnostics

Electron beam test facility JUDITH 2

P = 200 kW (30...60 keV) P/a  10 GWm-2

fast scanning: 1.4° µs-1

e-beam

fatigue testing: up to 20 MWm-2 10 s on / 10 s off

typical beam mode for thermal fatigue test

(9)

Plasma facing components under cyclic thermal loads

critical area

flat tile design monoblock

W CFC

Thermal load during ELMS:  2 GWm

-2

, t = 500 µs

 high cycle thermal fatigue

(10)

W- tiles

(11)

High Cycle Thermal Fatique

(12)

3-D carbon fiber composite

PAN-fibers

pitch-fibers needled PAN-fibers

Z

Y

X

high thermal conductivity

(13)

CFC-Tiles

W-deposits interlaminar

cracks

(14)

Surface Erosion

(15)

Contributions of characterisation experiments

Conclusions on damage mechanisms

Structure/property relationships

Materials

modifications

Degradation, failure

Ion irradiation and energy dissipation

Diffusion and defect agglo- meration

High resolution

microstructure analysis

In situ experiments

(16)

In situ-experiments (Robin Schäublin)

In situ-Transmission electron microscopy: study of radiation induced damage in real time, direct imaging of induced microstructural features, down to the atomic level.

In addition, TEM in situ irradiation experiments allow to see damage creation dynamically, as in the JANNuS facility in Orsay, France, with dual beam:

IRRADIATION FACILITY FOR IN SITU: JANNUS ORSAY

IRMA

ARAMIS

e-

• In situ dual beam allows the study of the impact of damage + gases

(17)

Irradiation induced damage in Tungsten

Irradiation conditions

JANNuS facility of CSNSM, University Paris Sud, Orsay, France Ion irradiation in situ in a TEM FEI Tecnai G2 200 kV

Ion accelerator used : ARAMIS Energy and ion: 1.2 MeV W+ ions

Total dose : 1.8·1012 ions, corresponding to 0.017 dpa Irradiation time : 10 minutes

Temperature : 700°C

First minute:

(movie, real time)

• Impact from single cascades is visible from the start

• Limited mobility of defects (Contrary to Fe)

R. Schäublin, M. Sidibe, B. Décamps, M.-F. Barthe 2014

(18)

Irradiation induced damage in Tungsten

1.2 MeV W+ ions, 700°C, 0.017 dpa, using bright field TEM imaging, 200 kV, g{200}

• Irradiation induced damage consists mainly in dislocation loops

• Dislocation loops agglomerate in rafts elongated along <100>

• Scattered individual loops • Difficult to image thick areas for W has high Z ! R. Schäublin, B. Décamps, M.-F. Barthe 2014

(19)

Irradiation induced damage in Tungsten

• BF STEM imaging, to avoid inelastic electrons blurring the image;

allows thicker areas to be investigated

• Tilt series, from -35 ° to +35 °

3D reconstruction of the dislocation loops distribution

1.2 MeV W+ W 700°C 0.017 dpa

W+

S. Hasanzadeh, E. Oveisi, C. Hébert, B. Décamps, M.-F. Barthe, R. Schäublin 2015 (movie)

(20)

Irradiation induced defects in Fe(Cr) alloys

JANNuS experiment

Single beam Fe 300 KeV, from 0.12 to 1 dpa, RT, on UHP Fe Movie accelerated 50x

TEM observation condition 200 kV WBDF g(4g) g(110)

• ½ a0<111> loops, highly mobile

B. Décamps, O. Kaïtasov, E. Oliviero, C. Baumier, C. Bachelet, CNRS Orsay

Experiments performed on ultra high purity ferritic materials in view of validating modelling of radiation damage

A. Prokhodtseva a, B. Décamps and R. Schäublin, Journal of Nuclear Materials 442 (2013) S786–S789

(21)

effect of He on irradiated UHP Fe(Cr) at RT using JANNuS dual beam

0.5 dpa RT 0.5 dpa + 1000 appm He RT

Thickness: 100 nm

Defect density: 2.8·1022 m-3

Burgers vector: a0<100> 96%

½ a0<111> 4%

Thickness: 120 nm

Defect density: 5.0·1022 m-3

Burgers vector: a0<100> <1%

½ a0<111> 99%

g =110 g =110

Irradiation induced defects in Fe(Cr) alloys

• Stat. method allows telling with confidence that black dots are mainly a0<100> loops

• When He is co-implanted: more black dots, mainly ½ a0<111> loops He pins loops

• Primary damage is made of ½ a0<111> loops, a0<100> come from their interaction

A. Prokhodtseva, B. Décamps and R. Schäublin, Journal of Nuclear Materials 442 (2013) S786–S789

(22)

effect of He on irradiated UHP Fe(Cr) at 500°C using JANNuS dual beam

Irradiation induced defects in Fe(Cr) alloys

• a0<100> dislocation loops, mobile along <100>

• He reduces mobility of <100> loops, nucleation of cavities on dislocation cores

D. Brimbal, E. Meslin, J. Henry, B. Décamps, A. Barbu, Acta Materialia 61 (2013) 4757–4764

Bright field, g=(110) (s>>0), underfoc.:-5,9µm Bright field, g=(110) (s>>0), overfoc.:+5,9µm

(23)

Ernst Ruska-Centre for

Microscopy and Spectroscopy

with Electrons

(24)

m

mm

nm µm

Å Hair

Light Transistor

Atom

Comparison of

Resolution Limits of Optical Instruments

Electron wavelength pm

100 x

100 x

(25)

Spherical Aberration

Magnetic Lens

Gaussian Image Plane Phase-Shift

500 correctors for

spherical aberration

installed worldwide

(26)

Chromatic Aberration

two correctors for

chromatic aberration

(HRTEM) installed

worldwide

(27)

FEI TITAN 80 – 300 (2006)

PICO (2011)

Cs-corrected protoype

Cs-corrected

Cs/Cc-corr.

Rose, Haider, Urban (1998)

Three generations of

aberration corrected HRTEMs

(28)
(29)

Chromatic Aberration

E

C dE d c c

2

 1

Biggest impact of Cc-correction expected for:

large energy spread dE (EFTEM)

low accelerating voltages (low E)

(30)

PICO resolution

Fourier transform of C

C

and C

S

correct

Sub-Ångstrøm resolution at 80 kV

Resolution improvement to 0.8 Å due to C

C

-correction

0.5 nm

L. Houben

Few- layer hexagon

al boron nitride viewed along c-

axis Haider et al, Ultramicroscopy

108 (2008) 167

(31)

PICO: atomic resolution at 50 kV

Graphene:Pd

inverted positive phase contrast

2 nm

2.46 Å

Pd

9.37 nm-1

sample courtesy of U.Bangert, University of Manchester

9.8 nm-1

Au/C

1 Å

Lothar Houben (ER-C)

(32)

Catalytic Rh-Nanoparticles in Ionic Liquid on Graphene

J. Barthel (ER-C), M. Marquardt (Univ. Düsseldorf) Case study

PICO,

U = 80 kV

(33)

V or I R

Resistive switching

Metal Insulator Metal

Phase I: 2011––2015 Phase II: 2015––2019

Non-Volatile Memories

DFG - Deutsche Forschungsgemeinschaft

(34)

interface substrate

film

a) b)

Overview of the Fe-doped SrTiO 3 films

SrTi0.95Fe0.05O3 films grown on <001>-oriented 1.0% Nb-doped SrTiO3 substrates (Crystec. Berlin) by pulsed laser deposition (PLD)

cross-section [100] plan view [001]

BF-TEM by Titan-T@300kV 100nm

(35)

Defect Loops: Plan View [001]

1

2 3

a) b)

x O

y

z

( 0k0 ) h 0

0 ) (

t

type 2:

y p t e 1

:

Translation vector t is a/2[011]

Two types of APBs lie on {100}

planes depending whether they parallel t (APB1) or not (APB2)

(36)

Type 1 APB a)

anatase

Sr Ti O

APB1

b)

(37)

Atomic Structure of APBs

b) a)

Sr Ti O

Type 2 APB Type 3 APB

Du H, Jia C-L, Mayer J, Barthel J, Lenser C, Dittmann R. Adv. Funct.

Mater. 2015, DOI:10.1002/adfm.201500852

(38)

Atomically resolved EDX spectrum imaging

a

f c

d e

b

Sr Ti Fe

O Sr+Ti+Fe Sr+Ti+Fe + HAADF

Fe shows enrichment at APBs.

(39)

Dislocations at SrTiO

3

low-angle tilt bicrystals grain boundary

b (Burgers vector)

Frank’s Formula

grain boundary

• Controllable type and density of dislocations.

• Model system for in-depth

study of the relationship

between structure and

property.

(40)

Core Structure

PICO@80kV

a) b)

e) f)

y x Sr Ti O

x z y

c) d)

3 1 2

1 nm HAADF PICO@80 kV

a0.42 nm

a0.39 nm

FCC TiO

(41)

EDX spectrum imaging @200 kV

a)! b)! c)! d)! e)! f)!

1 nm!

Sr Ti Sr+Ti HAADF (51) HAADF+Sr+Ti

(42)

Extra Peaks @ tensional strain side

SrTiO

3

a=0.39nm

TiO

a=0.42nm

Sr Ti O

compression

tension

ε

xx

(43)

Energy loss near edge fine structure

δ estimated by the free carrier density (Hall effect) ––––Ref. D. A Muller et al. Nature v430,p657.

Ti L2,3 (2p–>3d) O K (1s–>2p)

SrTiO3–δ

δ=0.25 δ=0 Core Bulk t2g eg

eg

t2g C

A B

(44)

Valence/Bonding state mapping

Reduction of Ti-valency state makes dislocation

core electrically active!

(45)

Summary: dislocations in SrTiO 3

• Edge-sharing TiO

6

octahedra associated with the FCC TiO phase at the tensional side of the dislocation cores.

• Result of strain energy (lattice constant of FCC TiO: 0.42 nm, SrTiO

3

: 0.39 nm).

• Reduction of Ti-valency state makes dislocation core electrically active.

SrTiO3 a=0.39nm

FCC TiO a=0.42nm

Sr Ti O

x y

compression

tension εxx

H. Du, C.-L. Jia, L. Houben, V. Metlenko, R.A. De Souza, R. Waser, J. Mayer, Acta Materialia. 89 (2015) 344–351. doi:10.1016/j.actamat.2015.02.016.

Ti

4-δ

Referenzen

ÄHNLICHE DOKUMENTE

Vitamin B1 (thiamine) can essentially effect the activity of mitomycin C (MMC), added individually or in combination with antioxidant vitamins (C, E-acetate, β -carotene) as found

Der Grund dafür ist, dass man gerade diese motivierte Belegschaft schon lange nicht mehr über mehr Gehalt an das Unternehmen binden kann, sondern nur über die

normal stress acting in small and large bending specimens To rationalize the change in material behavior from brittle to ductile for the present experiments by mere dimensional

The results in this manuscript indicate that introduction of point defects in excess as a result of atomic collisions with the austenitic stainless steel destabilises the γ-Fe

To counteract the low cohesion of mineral powders such as large grain size fractions of diopside, ~0.02g of fine- grained wollastonite was pressed in the holder as a base,

Figure Annex H-6 Comparing of response functions of mean (lower) and maximum (upper) cutting forces

BOPlish provides programmers with the needed infrastructure to resolve content names (URIs) to actual lo- cations within a user network (Resolver API) and to acquire content from

In Analogie zum Einkaufswagen für das Heftthema Einkauf, für die Glühbirne zum Thema Innovationsmanagement, wollten wir einen schlichten Be- sen für Facility Management wählen..