• Keine Ergebnisse gefunden

Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

N/A
N/A
Protected

Academic year: 2022

Aktie "Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

C. Adolph

h

, R. Akhunzyanov

g

, M.G. Alexeev

aa

, G.D. Alexeev

g

, A. Amoroso

aa,ac

, V. Andrieux

v

, V. Anosov

g

, A. Austregesilo

j,q

, B. Badełek

ae

, F. Balestra

aa,ac

, J. Barth

d

, G. Baum

a

, R. Beck

c

, Y. Bedfer

v

, A. Berlin

b

, J. Bernhard

m

, K. Bicker

j,q

, E.R. Bielert

j

, J. Bieling

d

, R. Birsa

y

, J. Bisplinghoff

c

, M. Bodlak

s

, M. Boer

v

, P. Bordalo

l,1

,

F. Bradamante

x,y

, C. Braun

h

, A. Bressan

x,y,∗

, M. Büchele

i

, E. Burtin

v

, L. Capozza

v

, M. Chiosso

aa,ac

, S.U. Chung

q,2

, A. Cicuttin

z,y

, M.L. Crespo

z,y

, Q. Curiel

v

, S. Dalla Torre

y

, S.S. Dasgupta

f

, S. Dasgupta

x,y

, O.Yu. Denisov

ac

, S.V. Donskov

u

, N. Doshita

ag

, V. Duic

x

, W. Dünnweber

p

, M. Dziewiecki

af

, A. Efremov

g

, C. Elia

x,y

, P.D. Eversheim

c

, W. Eyrich

h

, M. Faessler

p

, A. Ferrero

v

, M. Finger

s

, M. Finger Jr.

s

, H. Fischer

i

, C. Franco

l

,

N. du Fresne von Hohenesche

m,j

, J.M. Friedrich

q

, V. Frolov

j

, F. Gautheron

b

,

O.P. Gavrichtchouk

g

, S. Gerassimov

o,q

, R. Geyer

p

, I. Gnesi

aa,ac

, B. Gobbo

y

, S. Goertz

d

, M. Gorzellik

i

, S. Grabmüller

q

, A. Grasso

aa,ac

, B. Grube

q

, T. Grussenmeyer

i

, A. Guskov

g

, F. Haas

q

, D. von Harrach

m

, D. Hahne

d

, R. Hashimoto

ag

, F.H. Heinsius

i

, F. Herrmann

i

, F. Hinterberger

c

, Ch. Höppner

q

, N. Horikawa

r,4

, N. d’Hose

v

, S. Huber

q

, S. Ishimoto

ag,5

, A. Ivanov

g

, Yu. Ivanshin

g

, T. Iwata

ag

, R. Jahn

c

, V. Jary

t

, P. Jasinski

m

, P. Jörg

i

, R. Joosten

c

, E. Kabuß

m

, B. Ketzer

q,6

, G.V. Khaustov

u

, Yu.A. Khokhlov

u,7

, Yu. Kisselev

g

, F. Klein

d

, K. Klimaszewski

ad

, J.H. Koivuniemi

b

, V.N. Kolosov

u

, K. Kondo

ag

, K. Königsmann

i

, I. Konorov

o,q

, V.F. Konstantinov

u

, A.M. Kotzinian

aa,ac

, O. Kouznetsov

g

, M. Krämer

q

, Z.V. Kroumchtein

g

, N. Kuchinski

g

, F. Kunne

v,∗∗

, K. Kurek

ad

, R.P. Kurjata

af

, A.A. Lednev

u

, A. Lehmann

h

, M. Levillain

v

, S. Levorato

y

, J. Lichtenstadt

w

, A. Maggiora

ac

, A. Magnon

v

, N. Makke

x,y

, G.K. Mallot

j

, C. Marchand

v

, A. Martin

x,y,∗∗

, J. Marzec

af

, J. Matousek

s

, H. Matsuda

ag

, T. Matsuda

n

, G. Meshcheryakov

g

, W. Meyer

b

, T. Michigami

ag

, Yu.V. Mikhailov

u

, Y. Miyachi

ag

, A. Nagaytsev

g

, T. Nagel

q

, F. Nerling

m

, S. Neubert

q

, D. Neyret

v

, J. Novy

t

, W.-D. Nowak

i

, A.S. Nunes

l

, A.G. Olshevsky

g

, I. Orlov

g

, M. Ostrick

m

, R. Panknin

d

, D. Panzieri

ab,ac

, B. Parsamyan

aa,ac

, S. Paul

q

, G. Pesaro

x,y

, D.V. Peshekhonov

g

, S. Platchkov

v

, J. Pochodzalla

m

, V.A. Polyakov

u

, J. Pretz

d,8

, M. Quaresma

l

, C. Quintans

l

, S. Ramos

l,1

, C. Regali

i

, G. Reicherz

b

, E. Rocco

j

, N.S. Rossiyskaya

g

, D.I. Ryabchikov

u

, A. Rychter

af

, V.D. Samoylenko

u

, A. Sandacz

ad

, S. Sarkar

f

, I.A. Savin

g

, G. Sbrizzai

x,y

, P. Schiavon

x,y

, C. Schill

i

, T. Schlüter

p

, K. Schmidt

i,3

, H. Schmieden

d

, K. Schönning

j

, S. Schopferer

i

, M. Schott

j

, O.Yu. Shevchenko

g,19

, L. Silva

l

, L. Sinha

f

, S. Sirtl

i

,

M. Slunecka

g

, S. Sosio

aa,ac

, F. Sozzi

y

, A. Srnka

e

, L. Steiger

y

, M. Stolarski

l

, M. Sulc

k

, R. Sulej

ad

, H. Suzuki

ag,4

, A. Szabelski

ad

, T. Szameitat

i,3

, P. Sznajder

ad

, S. Takekawa

aa,ac

, J. ter Wolbeek

i,3

, S. Tessaro

y

, F. Tessarotto

y

, F. Thibaud

v

, S. Uhl

q

, I. Uman

p

, M. Virius

t

, L. Wang

b

, T. Weisrock

m

, M. Wilfert

m

, R. Windmolders

d

, H. Wollny

v

, K. Zaremba

af

, M. Zavertyaev

o

, E. Zemlyanichkina

g

, M. Ziembicki

af

, A. Zink

h

*

Correspondingauthorat:DepartmentofPhysics,UniversityofTrieste,viaA.Valerio2,34127Trieste,ITALY.

**

Correspondingauthors.

http://dx.doi.org/10.1016/j.physletb.2015.03.056

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

aUniversitätBielefeld,FakultätfürPhysik,33501Bielefeld,Germany9

bUniversitätBochum,InstitutfürExperimentalphysik,44780Bochum,Germany9,16 cUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany9 dUniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany9

eInstituteofScientificInstruments,ASCR,61264Brno,CzechRepublic10

fMatrivaniInstituteofExperimentalResearch&Education,Calcutta-700030,India11 gJointInstituteforNuclearResearch,141980Dubna,MoscowRegion,Russia12 hUniversitätErlangen–Nürnberg,PhysikalischesInstitut,91054Erlangen,Germany9 iUniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germany9,16 jCERN,1211Geneva23,Switzerland

kTechnicalUniversityinLiberec,46117Liberec,CzechRepublic10 lLIP,1000-149Lisbon,Portugal13

mUniversitätMainz,InstitutfürKernphysik,55099Mainz,Germany9 nUniversityofMiyazaki,Miyazaki889-2192,Japan14

oLebedevPhysicalInstitute,119991Moscow,Russia

pLudwig-Maximilians-UniversitätMünchen,DepartmentfürPhysik,80799Munich,Germany9,15 qTechnischeUniversitätMünchen,PhysikDepartment,85748Garching,Germany9,15

rNagoyaUniversity,464Nagoya,Japan14

sCharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublic10 tCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic10

uStateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘KurchatovInstitute’,142281Protvino,Russia vCEAIRFU/SPhNSaclay,91191Gif-sur-Yvette,France16

wTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel17 xUniversityofTrieste,DepartmentofPhysics,34127Trieste,Italy

yTriesteSectionofINFN,34127Trieste,Italy zAbdusSalamICTP,34151Trieste,Italy

aaUniversityofTurin,DepartmentofPhysics,10125Turin,Italy abUniversityofEasternPiedmont,15100Alessandria,Italy acTorinoSectionofINFN,10125Turin,Italy

adNationalCentreforNuclearResearch,00-681Warsaw,Poland18 aeUniversityofWarsaw,FacultyofPhysics,02-093Warsaw,Poland18

afWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland18 agYamagataUniversity,Yamagata,992-8510,Japan14

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received21August2014

Receivedinrevisedform24March2015 Accepted26March2015

Availableonline1April2015 Editor:M.Doser

MeasurementsoftheCollinsand Siversasymmetriesforchargedpionsand chargedandneutralkaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protonsare presented.The resultswereobtainedusingall theavailableCOMPASSproton data,which weretakenintheyears2007and 2010.TheCollinsasymmetriesexhibitinthevalenceregionanon- zerosignalforpionsandtherearehintsofnon-zerosignalalsoforkaons.TheSiversasymmetriesare foundtobepositiveforpositivepionsandkaonsandcompatiblewithzerootherwise.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

E-mailaddresses:Andrea.Bressan@cern.ch(A. Bressan),Fabienne.Kunne@cern.ch (F. Kunne),Anna.Martin@ts.infn.it(A. Martin).

1 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal.

2 AlsoatDepartmentofPhysics,PusanNationalUniversity,Busan609-735,Re- publicofKoreaandatPhysicsDepartment,BrookhavenNationalLaboratory,Upton, NY11973,USA.

3 SupportedbytheDFGResearchTrainingGroup Programme1102“Physicsat HadronAccelerators”.

4 AlsoatChubuUniversity,Kasugai,Aichi487-8501,Japan.Seefootnote14.

5 AlsoatKEK,1-1Oho,Tsukuba,Ibaraki305-0801,Japan.

6 Presentaddress:UniversitätBonn,Helmholtz-InstitutfürStrahlen- undKern- physik,53115Bonn,Germany.

7 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700, Russia.

8 Presentaddress: RWTH Aachen University,III. PhysikalischesInstitut, 52056 Aachen,Germany.

9 SupportedbytheGermanBundesministeriumfürBildungundForschung.

10 SupportedbyCzechRepublicMEYSGrantsME492andLA242.

11 SupportedbySAIL(CSR),Govt.ofIndia.

12 SupportedbyCERN-RFBRGrants08-02-91009and12-02-91500.

13 Supported by the Portuguese FCT Fundação para a Ciência e Tecnolo- gia,COMPETEandQREN,GrantsCERN/FP/109323/2009,CERN/FP/116376/2010and CERN/FP/123600/2011.

14 Supported by the MEXT and the JSPS under the Grants No. 18002006, No. 20540299andNo. 18540281;DaikoFoundationandYamadaFoundation.

15 SupportedbytheDFG clusterofexcellence‘OriginandStructureoftheUni- verse’(www.universe-cluster.de).

1. Introduction

Thedescriptionofthenucleonspinstructureisstilloneofthe open issuesinhadronphysics.In thelastdecadesmajor progress inthisfield hasbeen madeby an interplaybetweennewexperi- mentalresultsandthedevelopmentofnon-collinearQCD.Thefirst informationon transversespin andtransversemomentum effects havebecomeavailablerecently.Presently,thecompletedescription ofquarksinthenucleonincludesallpossiblecorrelationsbetween quark spin, quark transverse momentum and nucleon spin [1,2].

At leading twist, thesecorrelations are described for each quark flavour by eight transverse momentum dependent (TMD) parton distributionfunctions(PDFs).Afterintegrationovertransversemo- mentum,onlythreeofthemsurvive,namelythenumberdensity, the helicity andthe transversity PDFs. One wayto accessexper- imentally these TMD PDFs is via semi-inclusive lepton–nucleon deep inelastic scattering (SIDIS), i.e. by studying deep-inelastic

16 SupportedbyEUFP7(HadronPhysics3,GrantAgreementnumber283286).

17 SupportedbytheIsraelScienceFoundation,foundedbytheIsraelAcademyof SciencesandHumanities.

18 SupportedbythePolishNCNGrantDEC-2011/01/M/ST2/02350.

19 Deceased.

(3)

scattering (DIS) with detection of at least one of the produced hadrons. When the target nucleon is transversely polarised, the SIDIScrosssectionexhibitsdifferentazimuthalmodulations[3]in different combinations of the two angles φS and φh. These are the azimuthal angles of the initial nucleon transverse spin vec- torandoftheproducedhadronmomentuminareferencesystem, in which the z-axis is the virtual photon direction andthe x–z plane is the lepton plane according to Ref. [4]. The amplitudes of themodulations inthe cross section (the so-calledtransverse spin asymmetries) are proportional to convolutionsofTMD PDFs withTMDfragmentationfunctions.Thetwomostthoroughlystud- iedtransverse spinasymmetries arethe Collins andSivers asym- metries.The Collins asymmetriesallow accesstothe transversity PDFscoupledtotheCollinsfragmentationfunctions[5].TheSivers asymmetries give access to the Sivers PDFs [6], which describe the correlations between quark transverse momentum and nu- cleonspin. A Sivers PDF always appears in combination withan

‘ordinary’(unpolarised) fragmentationfunctionthat describesthe fragmentationofaquarkintoahadron.

Inthispaper,wepresentresultsontheCollinsandSiversasym- metries for pions and kaons produced on transversely polarised protons in a NH3 target. Such measurements are in line with the set ofmeasurements done by the COMPASS Collaboration in the last years. Results on polarised deuterons were obtained for unidentified hadrons [7], pions and kaons [8], and on polarised protonsforcharged unidentifiedhadrons[9–11].The resultspre- sentedinthisLetterareextractedfromallavailableCOMPASSdata takenin2007and2010usingtransversely polarisedprotons. For themeasurementsin2007and2010, asimilarspectrometer con- figurationwas used.Ascomparedtothe measurementsontrans- verselypolariseddeuterons,themeasurementsontransverselypo- larisedprotonsbenefitfromamajorupgradeoftheapparatusper- formedin2005.Ofparticularrelevanceforthesemeasurementsis theupgradeoftheRICH detector[12],whichledtoimprovedef- ficiencyandpurityforthesamplesofidentifiedparticles,andthe useofanewtargetsolenoidmagnetwithapolarangleacceptance of180mradascomparedtothe70mradofthemagnetuseduntil 2005.MeasurementsoftheseasymmetriesbytheHERMESexper- imentexist[13,14] inadifferentkinematicrange (measurements in a limited x range also exist on neutron targets, see [15–17]).

Comparisonwiththeseresultsarealsopresentedinthepaper.

2. Apparatusanddataselection

The COMPASS spectrometer [18] is in operation in the North Area of CERN since 2002. The

μ

+ beam provided by the M2 beamlinehad a momentumof 160 GeV/c, a momentum spread p/p= ±5%, anda longitudinalpolarisationof −80% that origi- natedfromthe

π

-decaymechanism.Themeanbeamintensitywas about2.3×107

μ

+/s and4×107

μ

+/s withspilllengthsof4.8 s and10 sin2007and2010,respectively.

Thetargetconsistedofthreecylindricalcellsof4 cmdiameter, eachseparatedbygapsof5 cm.Thelengthofthecentralcellwas 60 cmand that of the two outer ones 30 cm. For themeasure- mentoftransverse spin effects,thetarget materialwas polarised alongthe verticaldirection. Inorderto reduce systematiceffects, neighbouringcellswerepolarisedinoppositedirections,whichal- lowsforsimultaneousdatatakingwithbothtargetspindirections.

Tofurtherminimisesystematiceffects,thepolarisationofeachcell wasreversedevery4–5days.Duringthe2007datataking,atotal amountof12×109 events(440 TB)wasrecorded insixperiods, each consisting of two sub-periods of data taking with opposite polarisation. In 2010 about 37×109 events (1.9 PB)of raw data wererecordedovertwelveperiods.

Only events with a photon virtuality Q2>1 (GeV/c)2 and a massofthehadronicfinalstate W>5 GeV/c2 havebeenusedto ensure the kinematicregion of DIS. Theupper limit on thefrac- tional energy of the virtual photon ( y) was set to 0.9to reduce uncertaintiesduetoelectromagneticradiativecorrectionsandcon- tamination from pion decay. A lower limit on y is required to ensure a good resolution in thisvariable. In the standard analy- sis this limit has been setto 0.1. A complementary sample with 0.05<y<0.1 wasalsostudied,mainlytoaddressthe Q2 depen- denceoftheasymmetries.TheBjorkenvariablex coverstherange from0.003 to0.7.A minimumvalueof0.1 GeV/c forthe hadron transverse momentum phT withrespect to the virtual photon di- rection was required to ensure good resolution in the measured azimuthal angle. A minimum value for the relative hadron en- ergy z with respect to the virtual photon energy is needed to select hadronsfromthe current fragmentationregion. Thisvalue hasbeensetto0.2forthestandardsample,whilea complemen- tarylower-z region(0.1<z<0.2)wasalsostudied.

The stability of the apparatus during data taking is crucial.

Therefore,varioustestswereperformedusingthe2007and2010 data, asdescribed in[9–11]. As aresultfrom thesequalitytests, only fourperiods ofdatatakingin 2007were usedforthe anal- ysis of the Sivers asymmetries, while for the Collins asymmetry all six periods were used. This can be understood as the Sivers asymmetryisverysensitivetoinstabilitiesinthespectrometerac- ceptance, because it represents the amplitudeof the modulation thatdependsontheazimuthalangleofthehadrontransversemo- mentum withrespect to the target spin vector, whichis aligned alongafixeddirection.Duetoimproveddetectorstability,allperi- odsof2010couldbeusedfortheextractionofbothasymmetries.

3. Particleidentification 3.1. Chargedpionsandkaons

The RICH detector information was used to identify charged hadrons as kaons and pions in the momentum range between the Cherenkovthreshold(about 2.6 GeV/c for pions, 9 GeV/c for kaons)and50 GeV/c.The detectoraftertheupgradeof2005and theparticleidentification(PID)procedurearedescribedinRef.[19]

and only the relevant details of the likelihood PID method are givenhere.

The pattern of the detected photons in each event is anal- ysedtakingintoaccountthepredictedpathofthechargedparticle to compute likelihood values for each reconstructed track enter- ing the RICH acceptance. The likelihoodvalues are computedfor different masshypotheses (LM, with M=

π

,K,p,e)and forthe hypothesis ofabsence ofsignal,namely theso-calledbackground hypothesis(Lback).A massvalueisattributedtoatrackifthelike- lihood for the corresponding mass hypothesis is the largest. In addition, cuts on the ratioof the largest likelihood value to the second largest one are applied to minimise the misidentification probability.A specificcutontheratioLK/Lback isappliedtokeep thecontaminationofprotonsinthekaonsampleatafewpercent inthemomentumrangebetweenthekaonandtheprotonthresh- oldsone (about18 GeV/c). Thecutshavebeentuned toimprove theparticleidentificationefficiencyandthesamplepurity(defined as the fraction of K (

π

) inside the identified K (

π

) sample) in order to maximisetheir product which isthe figure ofmerit for particleidentification.Thetuninghasbeenperformedonthedata collected in2007and,thankstothehighstability ofthedetector, thesamecutshavebeenappliedforthe2010data.

The particle identification efficiencies and misidentification probabilitiesweredeterminedusingsamplesofpionsfromthe K0 decay andof kaons fromthe φ decay. The efficiencies are about

(4)

Fig. 1. Purity of the identified positive and negative kaons as a function of x, z, phT.

Fig. 2. Momentump (left),relativeenergyz (centre),Q2(right)distributionoftheunidentifiedchargedhadrons(white),pions(lightgrey)andkaons(darkgrey).Thesame codeforparticles,withslightlylightergraytonesisusedforthe0.1<z<0.2 kinematicinterval;thestandardselectionisusedforthekinematicdistributionsinx andQ2.

Fig. 3. MeanvaluesofthetransversemomentumphT (left),relativeenergyz (centre),Q2(right)oftheunidentifiedpositivehadrons(circles),pions(squares)andkaons (triangles).Themeanvaluesfornegativeparticlesareessentiallyidentical.

97%forpionsand94%forkaons.Thesevaluesstarttodecreasefor momenta about30 GeV/c andreach values of 60% in the larger momentumregion.Inorder toachieve highvaluesofthe sample purity,themisidentificationprobabilitiesbetweenpionsandkaons were kept aslow as a few percent even at the largest momen- tumvalues,by adjustingthe value ofthe cut onthe ratioofthe largestlikelihood valueto the second largestone. Thepurity de- pendsalsoontherelativepopulationofthevariousparticletypes and is evaluated from the particle identification efficiencies and misidentificationprobabilitiesandthenumberofidentifiedkaons andpions for every bin in which the asymmetry are measured.

The protoncontribution is very smallasalready mentioned, and wasneglectedforthepuritycalculation.Theaveragepurityvalues forpionsareabove99%.Thekaonpurityinthedifferentx,z,and phT binsisshowninFig. 1.Itisabout94%withamostly mildde- pendenceonthevariables.The strongestdependenceisvisiblein thelarge z region forthe negative kaonsample, whichis dueto theincreasingratioofpionstokaons.Boththesamplepurityand theidentificationefficiencyhavebeenmeasured andfoundto be

compatibleinthetwodatatakingyearsaswellasinthedifferent periodsofeachyear.Effectsduetothehadronidentificationusing theRICHhavebeenevaluatedandfoundtobe smallwithrespect tothestatisticaluncertainties(lessthanhalfofthestatisticalun- certaintiesintheworstcase,namelythelastz bin).Nocorrection hasbeenappliedtothefinalresultsandtheestimatesofthepos- sible effects havebeen included in the systematicpoint-to-point uncertainties.

In Fig. 2 the distributions in momentum p, z and Q2 for identified pionsandkaons areshownandcompared tothose for unidentifiedhadrons.Theclearlyvisibledifferencesinthe p andz distributionsareduetothedifferentmomentumcutsrequiredby the particleidentification. The mean valuesofthe phT, z and Q2 distributions asafunction ofx areshowninFig. 3.The different x dependence ofthe meanvalues of z for the differentparticles is due to the different cuts inmomentum combined withthe x dependence of the kinematic correlation between z and p. The resulting statistics forcharged pions andkaons after all cutsare showninTable 1.

(5)

Fig. 4. Left:Armenteros–Podolanskyplotofthehadronpair.Right:DifferenceoftheinvariantmassofthehadronpairandthePDGvalueoftheK0mass.Themassrange usedfortheanalysisisshaded.

Table 1

Finalstatisticsfor2007and2010foridentifiedchargedpionsandkaonsandneutral kaons.

Year Number of particles (×106)

π+ π K+ K K0

2007 (Collins) 10.77 9.41 1.79 1.10 0.37

2007 (Sivers) 6.84 5.97 1.12 0.69 0.25

2010 27.26 23.72 4.48 2.71 1.00

3.2. K0identification

The K0 identification isbased on the detection oftwo oppo- sitely charged tracks coming froma secondary vertex, for which the 2-pioninvariant mass lies inthe window mK0±20 MeV/c2. A separation between the primary and the secondary vertex of atleast10 cmwas required.Furthermore,the anglebetweenthe reconstructedmomentum vector ofthe trackpairand thevector connectingtheprimaryandsecondaryverticeswasrequiredtobe smallerthan10 mrad.Ontheleft sideofFig. 4,theArmenteros–

Podolanskyplotofthehadron pairisshown, inwhichthe trans- verse momentum pT of one hadron with respect to the sum of hadron momentais shownasa function ofthe difference ofthe longitudinal momenta over their sum, (pL1pL2)/(pL1+pL2). The K0 band is clearly visibleaswell as the and¯ bands.In order to exclude the contamination by the /¯ signal, the pT regionbetween80 MeV/c and110 MeV/c wasexcluded.Theback- ground from e+e pairs was suppressed by a lower cut on pT at40 MeV/c. Forthe detected K0s, thedifference betweentheir mass value and the PDG [20] value is shown in the right panel ofFig. 4,wheretheverticallinesat±20 MeV/c2 enclosethe K0s usedforfurther analysis. Theasymmetry in thebackgroundvisi- bleintheplotisaconsequenceofthepT cutusedtosuppressthe /¯ contaminationwhichreducestheratio‘backgroundtototal’

intheselectedmassrangefrom0.07 to0.02.The transversespin asymmetriesofthebackgroundhavebeencheckedtobecompati- blewithzeroandtheoveralleffectonthefinalresultshavebeen evaluatedtobe completelynegligibleascomparedtothestatisti- caluncertainties.Thesamecutsonz andphT asforthecharged

π

andK sampleswereappliedtotheneutralkaons.Themeanvalue oftherelevantkinematicvariables areverycloseto thoseforpi- ons givenin Fig. 3 andthefinal statisticsfor the K0 sample are giveninTable 1.

4. Results

In order to extract the transverse spin asymmetries fromthe data,the sameprocedure asdescribed in Refs. [10,11]was used.

The asymmetries were evaluated in bins of the kinematic vari- ables x, z, or phT, using the same binning as in our previous analyses [8]. Allthe numericalresults are available on HEPDATA.

The (φS,φh)distributions fromthe differenttarget cells andsub- periods were fitted using an extended maximum likelihood es- timator [9], and the eight transverse spin asymmetries expected in the SIDIS process were extracted simultaneously. It has been checked that including in the fit possible additional terms due to the longitudinal components of the target polarisation [21], the changes in the resulting Sivers and Collins asymmetry val- uesare negligibleascompared tothestatisticaluncertainty.Note that the asymmetry reported here (one dimensional projection, integrated over theother kinematicsvariables) havein principle, the instrumentalacceptancefolded in.Theyarenot correctedfor it since in all our simulations the corrections turned out to be negligible.

The resulting sinh+φs) andsinhφs) modulations yield the Collins andSiversasymmetries, respectively,after division by i)thetargetmaterialdilutionfactor f ,ii)theaveragetargetproton polarisation,andfortheCollinsasymmetryiii)thetransversespin transfercoefficient.Inadditiontoammoniathetargetcellscontain small amounts of other materials. The dilution factor takes into account that the selected sample does not only include scatter- ingonthepolarisedprotonsbutalsoonothernuclei(i.e.different isotopes of He and N), whose content inside the solid state tar- get containers is knownbetter than % level. As forall the other COMPASSresultsonspindependentobservables(seef.i.[22]),the dilution factor f isexpressed in termsof thenumbernA of nu- cleiwithmassnumberA andthecorrespondingspin-independent cross sections

σ

Atot per nucleon (corrected for radiative effects) for all the elements involved f=nH·

σ

Htot/(AnA·

σ

Atot). The to- tal cross section ratios,

σ

Atot/

σ

Htot, are obtained from the struc- ture function ratios, Fn2(x,y)/Fp2(x,y) and FA2(x,y)/F2d(x,y) [23, 24]. Theoriginal procedureleading fromthemeasuredcross sec- tionratios

σ

Atot/

σ

Htottothepublishedstructurefunctionratioswas inverted stepbystep involvingthecorrectionstoaccount forthe non-isoscalar content of the target and the radiative corrections.

For unmeasured nuclei the cross section ratios are obtained in the same way from a parameterisation of F2A(x,y)/F2d(x,y) as a function of A.In thepresentanalysis, thedilutionfactorismod- ifiedby acorrectionfactor

ρ

=

σ

p1γ/

σ

ptot accountingforthedilu- tionduetoradiativeeventsonunpolarisedprotons[25].Moreover a correction for polarisation of the admixture of 15N to 14N is also applied. The dilution factor iscalculated in any bin andfor every event using x and y. Its dependence on other kinematic variables, e.g. on pT or zh has been studied but no significant variation was observed atCOMPASS energies. The resulting dilu-

(6)

Fig. 5. Left:comparisonbetweentheCollinsasymmetriesforpionsasafunctionofx,extractedfrom2007and2010datataking.Right:thesamecomparisonfortheSivers asymmetries.

Fig. 6. The Collins asymmetries for charged pions (top), charged kaons (middle) and neutral kaons (bottom) on proton as a function of x, z and phT.

tion factor increases with x from about 0.14 to 0.17. As a func- tion of z and phT it is almost constant with an average value of 0.15.

A non-flat azimuthal acceptance introduces correlations be- tweenthevariousmodulations resultingfromthefit.Thecorrela- tioncoefficientsforCollinsvs.Siversasymmetriesarefoundtobe smallandbelow0.2forallbins.Moreover,theasymmetriesmea- suredalongdifferentprojectionsofthe(x,z, phT)phasespaceare statisticallycorrelated,becausetheoverallsampleofeventsisthe same.InthecaseofCOMPASS,thesecorrelationcoefficientsforthe CollinsandfortheSivers asymmetriesare all smallerthanabout

0.3, butnon-negligible,sothat theyshouldbe takenintoaccount in any globalfit. They are slightly different for kaons and pions duetothedifferentkinematiccoverageofthetwosamples.

Inorder toestimate thesystematicuncertainties, severaltests were performed based on our previous work for the charged hadrons[9–11].Theeffectofchangesintheazimuthalacceptance betweenthedatasetsusedtoextracttheasymmetrieswasquanti- fiedbuildingfalseasymmetries,namelyassumingawrongpolari- sationdirectioninthetargetcells.TheCollinsandSiversasymme- trieswere extractedsplitting thedata accordingto the scattered muon direction(up anddown, left andright), andthe statistical

(7)

Fig. 7. TheCollinsasymmetriesforpions(top)andkaons(bottom)asafunctionof z andphT,requiringx>0.032.

compatibilityofthe results was checked.No such false asymme- trywasobservedwithintheaccuracyofthemeasurementandthe point-to-pointsystematicuncertaintieswereevaluatedfromthese tests asa fractionof the statisticalerror. For 2010, this fraction is 0.6 and for 2007 it ranges between 0.5 and 0.7. The system- aticuncertaintyduetoparticlemisidentificationisverysmalland included in these fractions. All results are subject to a 5% scale uncertaintythatresultsfromtheuncertaintiesinthetargetpolar- isationanddilutionfactor.

For both years of data taking, the asymmetries were evalu- ated in each period andtheir compatibility was checked. While for 2010 this test shows good agreement among the results of the differentperiods, for2007 itintroduces an additionalsource ofsystematicuncertaintiesfortheSiversasymmetries.Verymuch like in the case of unidentified hadrons, an additional absolute uncertainty of ±0.012 was assigned to the

π

+ Sivers asymme- try. No such time dependencewas observed either forthe other hadronsorfortheCollins asymmetries.Thisvalue istaken tobe half of the difference between the mean asymmetries evaluated usingthe datafromthebeginning andthe endofthe2007data taking. Fig. 5 shows the Collins and Sivers asymmetries for pi-

ons asa function of x from the two data taking years,obtained as weighted mean of the asymmetries from the different peri- ods. Thetwo measurements arein goodagreementforthe pions andforthenotshownkaons.The substantialimprovementofthe statistical precision of the 2010 data with respect to the 2007 data amounts to a factor of 1.6 for the Collins asymmetry and of 1.9 forthe Sivers asymmetry. The final results were obtained combiningthetwosamples,takingintoaccountthedifferentsta- tistical andsystematicuncertainties.The resultingsystematicun- certainties areabout0.6ofthe statisticalonesforall theparticle types.

The Collinsasymmetriesasa functionofx,z,or phT measured by COMPASS for pions and kaons on transversely polarised pro- tons are shownin Fig. 6.The pion asymmetries are very similar to theunidentifiedhadron asymmetries [10]: atsmallx they are compatible withzero, while inthe valence region they show an increasing signal, which has opposite sign for

π

+ and

π

. This naively indicates that the unfavoured and favoured Collins frag- mentation functions have opposite sign. The results for charged kaons,althoughwithlargerstatisticaluncertainties,showasimilar trend: inparticularthe K+ asymmetryhasa negativetrendwith increasing x, andthe K one is positive on average. The Collins asymmetry forneutralkaonsshowsapositivetrendwithincreas- ing z.Theaverageasymmetryispositivebutcompatiblewithzero within thestatistical uncertainty.In order to investigatein more detail the behaviour of the asymmetries as a function of z and phT,theasymmetriesforchargedhadronswere evaluatedina re- gion where the signal is different from zero, namely x>0.032.

The results are showninFig. 7 for pionsandkaons. Theyare in good agreementwiththe other existingmeasurements on apro- tontargetfromtheHERMESexperiment[13].Thisisanon-obvious result, asinthelast x binsthe COMPASS Q2 valuesarelarger by afactor3–4thantheHERMESones.Theweak Q2 dependenceof theCollinsasymmetryisalsosupportedbyarecentglobalfit[26]

oftheHERMESpionresults,theCOMPASSpreliminarypionasym- metries from the 2010 data, and the Belle [27] e+e

π

+

π

asymmetries,whichisabletoprovideagooddescriptionofallthe datasets.Acomparisonbetweenthefinalresultsofthispaperand thefitisshowninFig. 8.

TheCollinsasymmetryforchargedhadronswasfurtherinvesti- gatedbyextendingthestandardkinematicrangesinz andy.Com- paredtotheabovepresentedresults,theasymmetriesextracted in

Fig. 8. ComparisonbetweentheCollinsasymmetriesforpionsandoneofthefitsin[26](fitwithstandardparameterisationandfitofA12 Belleasymmetries[27]).The preliminaryasymmetriesfrom2010dataareincludedinthefit.

(8)

Fig. 9. The Sivers asymmetries for charged pions (top), charged kaons (middle) and neutral kaons (bottom) as a function of x, z and phT.

thelow-z region(0.1<z<0.2)gavenoindication fora substan- tialz-dependence,neitherforpionsnorforkaons.Similarly,inthe low-yregion(0.05<y<0.1)thepionasymmetriesdonotexhibit any special behaviour, while the kaon ones suffer fromtoo low statistics.

The Sivers asymmetries measured by COMPASS for pions and kaonsontransversely polarisedprotons areshowninFig. 9. Also inthiscase,thepionasymmetriesareverysimilartotheunidenti- fiedhadronasymmetries[11].Theasymmetriesfornegativepions andkaons,aswellasforneutralkaons arecompatiblewithzero, while for positive pions and kaons there is a clear evidence for a positive signal extending over the full measured x region and increasing with z. Very intriguing is the fact that, as for HER- MES[14],theK+signalislargerthanthe

π

+one,whichindicates a possibly not negligible role of seaquarks [28–30]. This is well visible in Fig. 10, where the two asymmetries are directly com- pared, andfromthe meanvaluesin the x>0.032 region, which arerespectively0.027±0.005 and0.043±0.014.Unlikethecaseof theCollins asymmetry,the Sivers asymmetry measured byCOM- PASSat large x for positive pions andkaons is smaller than the onefromHERMES [14].Thisdifference iswell visiblealso inthe z and phT variables when selecting the x>0.032 region of the COMPASS data, as shown in Fig. 11. Several fits, which include the recently revisited Q2 evolution, were performed using HER- MESasymmetries[14],COMPASSasymmetriesondeuteron[8]and for unidentified hadrons on proton [11], and JLab Hall A asym- metries on 3He [15,16]. In Fig. 12, the results of some of these fits[31–33],whichemploy Q2 TMDevolutions,areshowntowell reproducetheCOMPASSresults.Itwillbeinterestingtoseethere-

Fig. 10. The Sivers asymmetries for positive pions and kaons, as a function of x.

sultsofsuch fitswhentheresultspresentedinthisLetterwillbe included.

Moreinformationonthe Q2evolutionisprovidedbythestudy ofthe Sivers asymmetriesin thelow- y region between0.05 and 0.1, performed only using the 2010 data (as already done for chargedhadrons[10,11]).Thepionasymmetriesinthisregionare comparedintheleftpanelofFig. 13totheasymmetriesobtained in the standard y range. In the region of overlap the mean Q2 values of these two samples are respectively 3.5 (GeV/c)2 and 1.8 (GeV/c)2. As forunidentified hadrons, there is an indication foranincreaseofthe

π

+ asymmetriesatlow- y. Thedependence of the Sivers asymmetries with z is further investigated consid- ering the z region between0.1 and 0.2, where the asymmetries

(9)

Fig. 11. TheSiversasymmetriesforpositivepions(top)andkaons(bottom)onprotonasafunctionofx,z andphT,requiringx>0.032.Theasymmetriesarecomparedto HERMESresults[14].

Fig. 12. ComparisonbetweentheSiversasymmetriesforpionsandexistingglobalfits[31–33],inwhichtheCOMPASSresultsfortheunidentifiedhadronsonprotons[11]

areincluded.

Fig. 13. The Sivers asymmetries for pions in different y ranges (left) and z ranges (right), 2010 data.

(10)

showsmaller values.The comparisonofthepionasymmetries as afunction of x for the twoseparated z ranges areshown inthe rightpanel ofFig. 13.Fornegative pions,a positive signalshows up in the low-z region, which is not observed for larger values of z.

Insummary,usingthehighstatisticsdatacollectedin2007and 2010,COMPASShasmeasured theCollinsandSiversasymmetries in muonproduction of charged pions and charged and neu- tral kaons produced off transversely polarised protons. The high energy muon beam allowed the measurement of a broad kine- matic range in x and Q2. The x, z and pT dependences of the asymmetries were studied. Further investigations extending the range in z and y were also performed. The Collins asym- metries are definitely different from zero for pions and there are hints of a non-zero signal also for kaons, although in this case the statistical significance is marginal. The Sivers asymme- tries are positive for positive pions and kaons, although differ- ent in size. This result is of particular interest since it can be used to access the sea quark Sivers PDFs.The results presented in this paper provide an important input for the global anal- yses. Together with other measurements covering complemen- tary kinematic ranges, they allow the study of the Q2 depen- denceof the asymmetries and the quantitative extraction of the Collins FF andof the transversity andSivers PDFs. Thisinforma- tion is crucial for the predictions for future Drell–Yan measure- ments and for measurements at future high-energy electron–ion colliders.

Acknowledgements

Thiswork was made possible thanks to the financial support ofourfundingagencies.Wealsoacknowledge thesupportofthe CERNmanagementandstaff,aswellastheskillsandeffortsofthe techniciansofthecollaboratinginstitutes.

References

[1]A.Kotzinian,Nucl.Phys.B441(1995)234.

[2]P.J.Mulders,R.D.Tangerman,Nucl.Phys.B461(1996)197;

P.J.Mulders,R.D.Tangerman,Nucl.Phys.B484(1997)538(Erratum).

[3]A.Bacchetta,etal.,J.HighEnergyPhys.0702(2007)093.

[4]A.Bacchetta,etal.,Phys.Rev.D70(2004)117504.

[5]J.C.Collins,Nucl.Phys.B396(1993)161.

[6]D.W.Sivers,Phys.Rev.D41(1990)83.

[7]E.S.Ageev,etal.,COMPASSCollaboration,Nucl.Phys.B765(2007)127.

[8]M.Alekseev,etal.,COMPASSCollaboration,Phys.Lett.B673(2009)127.

[9]M.Alekseev,etal.,COMPASSCollaboration,Phys.Lett.B692(2010)240.

[10]C.Adolph,etal.,COMPASSCollaboration,Phys.Lett.B717(2012)376.

[11]C.Adolph,etal.,COMPASSCollaboration,Phys.Lett.B717(2012)383.

[12]P.Abbon,etal.,Nucl.Instrum.MethodsSect.A616(2010)21.

[13]A.Airapetian,etal.,HERMESCollaboration,Phys.Lett.B693(2010)11.

[14]A.Airapetian,etal.,HERMESCollaboration,Phys.Rev.Lett.103(2009)152002.

[15]X.Qian,etal.,JeffersonLabHallACollaboration,Phys.Rev.Lett.107(2011) 072003.

[16]K. Allada,et al., JeffersonLab HallA Collaboration,Phys. Rev.C89 (2014) 042201.

[17]Y.X.Zhao,etal.,JeffersonLabHallACollaboration,Phys.Rev.C90 (5)(2014) 055201.

[18]P.Abbon,etal.,COMPASSCollaboration,Nucl.Instrum.MethodsSect.A577 (2007)455.

[19]P.Abbon,etal.,Nucl.Instrum.MethodsSect.A631(2011)26.

[20]J.Beringer,etal.,ParticleDataGroup,Phys.Rev.D86(2012)010001.

[21]M.Diehl,S.Sapeta,Eur.Phys.J.C41(2005)515,arXiv:hep-ph/0503023.

[22]M.G.Alekseev,etal.,COMPASSCollaboration,Phys.Lett.B690(2010)466.

[23]P.Amaudruz,etal.,NewMuonCollaboration,Nucl.Phys.B371(1992)3.

[24]J.Ashman,etal.,EuropeanMuonCollaboration,Z.Phys.C57(1993)211.

[25]A.A. Akhundov,D.Yu.Bardin,L. Kalinovskaya,T.Riemann,Fortschr.Phys. 44 (1996)373.

[26]M.Anselmino,etal.,Phys.Rev.D87(2013)094019.

[27]R.Seidl,etal.,BelleCollaboration,Phys.Rev.D86(2012)032011(E).

[28]A.V.Efremov,K.Goeke,P.Schweitzer,Eur.Phys.J.Spec.Top.162(2008)1.

[29]A.V.Efremov,K.Goeke,P.Schweitzer,Czechoslov.J.Phys.56(2006)F181.

[30]M.Anselmino,etal.,Eur.Phys.J.A39(2009)89.

[31]M.Anselmino,E.Boglione,S.Melis,Phys.Rev.D86(2012)014028.

[32]P.Sun,F.Yuan,Phys.Rev.D88(2013)114012.

[33]M.G.Echevarria,etal.,Phys.Rev.D89(2014)074013.

Referenzen

ÄHNLICHE DOKUMENTE

WYVXQ3KcfiR j[CQ3BHQ

Even when high cost …rms merge, MFN improves world welfare relative to tari¤ discrimination if the greater market power of the merged unit is o¤set by its higher production cost in

Table 21-1 Comparison between primary and secondary temperature sensors Table 21-2 Salinity comparison between primary and secondary sensors Table 21-3 CTD salinity from

International Symposium “Consumer Information – M arket Regulation by Means of Transparency?” 5 Comparative testing is not well developed as a mean for providing objective consumer

The development accounting and the decomposition of the total factor productivity (TFP) indicate that those results are mainly explained by relative differences

“Plasma-wall interaction and plasma behaviour in the non- boronised all tungsten ASDEX Upgrade”, Journal of Nuclear Materials 390, (2009), pp.. “Development and analysis of a

The general presumption of this paper is that information asymmetries are stronger for asset pools with lower quality. Therefore the originator faces penalties for

Given that both kinds of length contrast are signaled by segment durations and given that the non-native durational differences between short and long segments lie well beyond