• Keine Ergebnisse gefunden

⇒ zweigetrennteAtomwolkenimAbsandd DieserverursachtrepulsiveoptischeDipolkraft I MitblauverstimmtemLaser(514nm)wirdinderFallenmitteeinligthsheeterzeut I ⇒ zigarrenartigeAtomwolke NatriumAtomewerdeninmagnetischerFallegespeichertundgek¨uhlt. I DasInterferen

N/A
N/A
Protected

Academic year: 2022

Aktie "⇒ zweigetrennteAtomwolkenimAbsandd DieserverursachtrepulsiveoptischeDipolkraft I MitblauverstimmtemLaser(514nm)wirdinderFallenmitteeinligthsheeterzeut I ⇒ zigarrenartigeAtomwolke NatriumAtomewerdeninmagnetischerFallegespeichertundgek¨uhlt. I DasInterferen"

Copied!
21
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

5.6 BEC als kohärente Materiewelle

(2)

Interferenz von Bose-Einstein Kondensaten Das BEC-Interferenz Experiment

Erzeugung zweier unabh¨angiger Kondensate

Das Interferenzexperiment:

M.R.Andrews, C.G.Townsend, H.J.Miesner, D.S.Durfee, D.M. Kurn, W. Ketterle, Science275, 637 (1997)

I

Natrium Atome werden in magnetischer Falle gespeichert und gek¨ uhlt.

⇒ zigarrenartige Atomwolke

I

Mit blau verstimmtem Laser (514nm) wird in der Fallenmitte ein ligth sheet erzeut

I

Dieser verursacht repulsive optische Dipolkraft

⇒ zwei getrennte Atomwolken im Absand d

(3)

Interferenz von Bose-Einstein Kondensaten Das BEC-Interferenz Experiment

Erzeugung zweier unabh¨angiger Kondensate

I

Mit rf induzierte Verdampfungsk¨ uhlung ⇒ T < T

C

I

zwei unabh¨ angige Kondensate (5 × 10

5

Atomen) Grundzusand: F= 1 und m

F

= -1 (nach ca. 30 sec)

I

Beobachtung mittels Phasen-Kontrastaufnahme

(4)

Interferenz von Bose-Einstein Kondensaten Das BEC-Interferenz Experiment

Interferenz der beiden Kondensate und deren Beobachtung

Wie funktioniert es:

(5)
(6)

Interferenz von Bose-Einstein Kondensaten Das BEC-Interferenz Experiment

Handelt es sich wirklich um einen Interferenzeffekt?

Handelt es sich wirklich um einen Interferenzeffekt?

-Vergleich von Dichteverteilungen

-Zur Trennung verwendetes laser sheet wurde nicht ausgeschalten

-Dichteschwankungen, durch Zusammenprall?

(7)

BEC

BEC

Light sheet

z z

z

z z

U LS U LS

U LS U LS

idealer Spiegel dispersiver Spiegel

dispersiver Strahlteiler Phasenschieber

Dipolare Spiegel für BEK

(8)

Selbstinterferenz eines reflektierten Kondensates

K. Bongs, S. Burger, G. Birkl, K. Sengstock, W. Ertmer, K. Rzazewski, A. Sanpera und M.

Lewenstein, Phys. Rev. Lett. 83, 3577 (1999).

(9)

Spiegel für BEC BEC

BEC hüpft auf einem dispersiven Spiegel - kohärente Reflektion führt zu Interferenzstrukturen.

K. Bongs, S. Burger, G. Birkl, K. Sengstock, W. Ertmer, K. Rzazewski, A. Sanpera, M.

Lewenstein

Phys. Rev. Lett. 83, 3577 (1999)

100 µm

Experiment Theorie

(10)

Atomlaser

F=1,m=1 F=1,m=0 F=1,m=-1

z

radio frequency wave

• Durch Einstrahlung von schwacher RF-Strahlung können Atome mit einstellbarer Zeitdauer und Effizienz ausgekoppelt werden.

→ Durch Gravitation entsteht ein kohärenter Materiewellenstrahl = Atomlaser

• Aber: Atomlaserstrahl existiert nur bis das Kondensatreservoir entleert ist.

• „Kontinuierlicher“ Atomlaser: RF mit fester Frequenz an bis Reservoir leer ist.

• Gepulter Atomlaser: Gepulste Eintrahlung von RF oder Einstrahlung von

zwei RF-Frequenz, die Schwebung in RF-Stärke verursachen

(11)

BEC

Atomlaser

Kohärente Materiewellenstrahlung kann durch (quasi-) kontinuierliche Auskopplung aus einem BEK erzeugt werden.

Resonator

Auskoppler Gravity

BEC

ω RF m=2 F

m=0 F

(12)
(13)

5.7 Vortizes

Grundzustand: k=0 Vortex-Zustand: k=1

(14)

Andreas Hemmerich 2004© 39

Rotating Laser Beam

Condensate

vortex lattice NIST 1 ρ ∇

2

ρ = κ

2

x

2

+ y

2

V

trap

- µ h

2

+ 2m + gρ

x

2

+ y

2

for → 0 right hand side diverges

thus Lim ρ

→ 0 x

2

+ y

2

= 0

x

2

+ y

2

<< ξ 2 : 1 ρ ∇

2

ρ ≈ κ

2

x

2

+ y

2

⇒ ρ ∝ x

2

+ y

2

κ

2

x

2

+ y

2

>> ξ 2 , η >> 1 : Th-F density distribution 0 = V

trap

- µ + gρ

Hydrodynamic GP-Equation:

Bound solutions of hydrodynamic GP-equation exist only for integer κ

vortex solution has reduced maximum density as com- pared to corresponding ground state:

→ for η >>1, excitation of vortices stabilizes BEC with attractive interaction

excitation of N vortices with κ=1 costs less kinetic energy than excitation of one κ=N vortex:

→ vortex lattices

harmonic potential ω x = ω y :

4 5

1 2 3

00

x / L0

6

η << 1, κ = 1

η >> 1, κ = 1

η << 1, κ = 0

Experiment:

(15)

Beobachtung von

Vortizes

(16)
(17)

QUANTUM - Quantum Phase Transition from a Superfluid to a Mott ... http://www.quantum.physik.uni-mainz.de/bec/experiments/mottinsulat...

3 of 4 31.01.2006 11:55

In the superfluid case, each atom is delocalized over the entire lattice. Each lattice site is populated with a superposition of different number states which form a coherent state with a well defined phase for each lattice site. In the Mott Insulator state the atoms are localized to lattice sites with a defined number of atoms at each site. Now only one number state is occupied, for example with exactly one atom per site.

But with a minimized number uncertainty, the phase uncertainty is maximized and the interference pattern vanishes. The phase coherence is lost but replaced by atom number correlations.

Measuring the Gap in the Excitation Spectrum

The gas of atoms can move freely through the lattice in the superfluid regime. But when the Mott insulator regime is entered, the mobility of the atoms is blocked due to the repulsive interaction between the atoms. With an exact number of atoms at each lattice site, it costs the onsite interaction energy U for an atom to tunnel to an adjacent site. This energy U must be provided to create a particle-hole excitation.

Since this excitation is the lowest possible excitation in the Mott insulator state, a gap in the excitation spectrum is formed.

This gap, which is an important characteristic of an Mott insulator, was measured by applying a potential gradient to the system. The tunneling of atoms to adjacent sites is blocked until the gradient becomes large enough to overcome the gap: A difference of the potential energy between neighbouring lattice sites of U can provide the energy needed for tunneling (see right picture above).

5.8 Mott-Isolator Übergang

(18)

QUANTUM - Quantum Phase Transition from a Superfluid to a Mott ... http://www.quantum.physik.uni-mainz.de/bec/experiments/mottinsulat...

2 of 4 31.01.2006 11:55

One might think that the system in the deep lattice is still superfluid but that the coherence is lost because the lattice sites are dephased, which means that one has a statistical mixture of Bloch states. But we were able to show that this is not the case. Instead a totally different regime is entered, the regime of a Mott Insulator.

Restoring Coherence

The phase coherence can be restored very rapidly when the lattice potential is lowered again. A significant amount of coherence is restored already after about one tunnelling time. This is shown in the graph below (filled circles), where the width of the central interference peak, which is a measure for coherence in the system, is plotted against the ramp down time.

The open circles show the same measurement for an ensemble, which was intentionally statistically dephased before reaching the Mott insulator phase. The coherence is not restored at all in this case, even for of times up to 400 ms. This is one of the evidences that the state in the deep lattice is not just a statistically dephased superfluid state, but really the Mott insulator

The Bose-Hubbard Hamiltonian

The system of interacting bosonic particles in a lattice potential is very well described by a Bose-Hubbard Hamiltonian in second quantisation. It can be derived by expanding the field operator in the wannier basis of localized wave functions at each lattice site, and consists of three parts:

The first term is the kinetic energy term with the tunneling matrix element J. J is basically determined by the overlap between adjacent localized wave functions and decreases exponentially with the lattice depth.

The second term describes an energy offset in each lattice site for example due to an external confinement.

The third term is the potential energy term characterized by the onsite atom-atom interaction energy U. In our case U is very large, about h*1.6 kHz, due to the strong confinement at each lattice site in a 3D lattice. U tells you how much energy it costs to put a second atom into a lattice with already one atom present at this lattice site.

For a shallow lattice J is large compared to U and the hamiltonian is dominated by the kinetic energy term with a superfluid ground state (left side of diagram below). For a deep lattice J becomes small, the hamiltonian is dominated by the interaction energy term and the ground state is the state of a Mott insulator for commensurate filling (right side).

(19)

QUANTUM - Quantum Phase Transition from a Superfluid to a Mott ... http://www.quantum.physik.uni-mainz.de/bec/experiments/mottinsulat...

1 of 4 31.01.2006 11:55

Ultrakalte Quantengase

Einführung Experimente

Mott Insulator Optical Lattices Magnetic Transport Publikationen Mitglieder Galerie FAQs AG Ott Quantenatomoptik Atom- und Neutronenphysik Antiwasserstoff and Antiprotonen

Angewandte Laser Massen Spektroskopie

Experimente mit gespeicherten und gekühlten Ionen Laser-Resonanz-Ionisation zur selektiven

Spurenanalyse Neutrino-Ruhemasse Kollineare

Laserspektroskopie Spurenanalyse radiotoxischer Isotope Kryodetektoren

Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms

Introduction

One of the most intriguing aspects of quantum mechanics is that even at absolute zero temperature quantum fluctuations prevail in a system, whereas all thermal fluctuations are frozen out. Although these quantum fluctuations are microscopic in nature, they are nevertheless able to induce a macroscopic phase transition in the ground state of a many body system, when the strength of two competing terms in the underlying Hamiltonian is varied across a critical value.

When atoms with repulsive interactions are transferred from a magnetically trapped Bose-Einstein condensate into a three-dimensional optical lattice potential, they will undergo such a quantum phase transition from a Superfluid to a Mott Insulator as the potential depth of the lattice is increased. For low potential depths, the atoms form a superfluid phase, where each atom is spread out over the entire lattice, with long-range phase coherence across the lattice. For high potential depths the repulsive interactions between the atoms cause a transition to a Mott insulator phase. In this phase the atoms are localized at the lattice sites with an exactly defined atom number, but no phase coherence throughout the lattice. The Mott insulator phase is characterized by a gap in the excitation spectrum, which is detected in the experiment. We also demonstrate that it is possible to reversibly change between the two ground states of the system.

Superfluid state with coherence, Mott Insulator state without coherence, and superfluid state after restoring the coherence

Entering the Mott Insulator Phase

In the weakly interacting regime a Bose-Einstein condensate in a 3D optical lattice can be well described by a macroscopic wave function. In the ground state only one bloch state is occupied, which means that the phase of the macroscopic wave function is the same at each lattice site. This state can be clearly identified by detecting sharp peaks in the multiple matter wave interference pattern after a time of flight expansion (see also the section about the 3D lattice).

If we now increase the lattice depth to deeper and deeper values, we observe that the interference peaks dim out and a non coherent background gains strength. For a deep lattice the phase coherence is totally lost.

Kontakt QUANTUM Prof. Bloch Staudingerweg 7 55128 Mainz Tel

+49-6131-39-26234 Fax

+49-6131-39-25179 Homepage

(20)
(21)

Referenzen

ÄHNLICHE DOKUMENTE

• publi void start(); legt einen neuen Thread an, setzt den Zustand auf ready und übergibt damit den Thread dem. Scheduler

(a) The potential V governing the evolution of the width (J of an impurity trapped with frequency fh for positive (full lines) and negative (dotted lines)

The occupation number of a magnetically trapped Bose-Einstein condensate is limited for atoms with attractive interactions.. It has been predicted that, as this limit is approached,

Die Abbildung 5 zeigt ein regelmäßiges Siebeneck und davon abgeleitete Sterne glei- cher Seitenlänge... zweitinnerst einen Stern der

Quantum dots embedded in a 1D Luttinger liquid of cold bosonic atoms realize a spin-boson model with Ohmic coupling, which exhibits a dissipative phase transition and allows us

In einer ganzen Klasse oder einer Fördergruppe könnte ein Wettbewerb veranstaltet werden, indem jedes Kind dasselbe Spielfeld und dieselbe Buchstabenanweisung erhält; Gewinner ist,

Am Samstag, 06.November 2021, fi ndet in Nidau wieder der alljährliche „Zibelemärit“ statt. Mit seinem farbenfrohen Erschei- nungsbild begeistert dieser die Besucher seit

Thereby the inventory problem is not just optimised with physical algorithms and compared to other methods (especially a genetic algorithm), but also re- garded as physical system;