• Keine Ergebnisse gefunden

Problem 1.4: Friedrichs’ inequality

N/A
N/A
Protected

Academic year: 2022

Aktie "Problem 1.4: Friedrichs’ inequality"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

IWR – Universit¨at Heidelberg Prof. Dr. Guido Kanschat Alec Gilbert

Due date:19.10.2018

Homework No. 1

Finite Elements, Winter 2018/19 Problem 1.1: Variational equations in R

n

Given a symmetric, positive definite matrixA∈Rn×nand a vectorb∈Rnand the “energy functional”

E(x) = 12xTAx−xTb, (1.1)

(a) Derive the variational equation of the minimization problem by studying the derivative of the auxiliary functionΦ(t) = E(x+ty)for arbitraryy∈Rn.

(b) Show that a vectorx∈RnminimizesE(x), that is,

E(x)≤E(y) ∀y∈Rn, if and only if

Ax=b.

(c) Conclude that the minimizerxexists and is unique.

Problem 1.2: Minimizing sequence

(a) Using the knowledge from Problem 1.1 that a minimiserxof the energy functional in (1.1) exists, show that a sequence {x(k)}that satisfies

E(x(k))→ inf

y∈Rd

E(y), (1.2)

necessarily converges tox. The “binomial formula”xTAx−yTAy= (x+y)TA(x−y)and the fact thatAis invertible are useful ingredients to this proof.

(b) Show without assuming the existence of the minimizerx, that a sequence{x(k)}for which (1.2) holds is necessarily a Cauchy sequence. Can you conclude the existence of a minimizerx?

(2)

Problem 1.3: Integration by parts

LetΩbe a domain inRd. Use the Gauß theorem for smooth vector fieldsϕ: Ω→Rd, namely, Z

∇·ϕdx= Z

∂Ω

ϕ·nds, to show Green’s first and second formula (for smooth scalar functionsuandv)

− Z

∆uvdx= Z

∇u· ∇vdx− Z

∂Ω

nuvds Z

(u∆v−v∆u) dx= Z

∂Ω

(u∂nv−v∂nu) ds.

Here,nis the outward unit normal vector toΩon∂Ω. The differential operators have the meaning:

∇u= (∂1u, . . . , ∂du)T gradient

nu=n· ∇u normal derivative

∇·ϕ=∂1ϕ1+· · ·+∂dϕd divergence

∆u=∇·∇u=∂11u+· · ·+∂ddu Laplacian

Problem 1.4: Friedrichs’ inequality

(a) Prove Friedrichs’ inequality

kukL2(Ω)≤cku0kL2(Ω), with c=b−a forΩ = (a, b)and functionsu∈C01(Ω).

(b) Generalize the proof for functions inH01(Ω), using that each function inH01(Ω)is the limit of a sequence inC01(Ω).

Referenzen