• Keine Ergebnisse gefunden

Higgs boson mass: the quest for precise predictions in SUSY models

N/A
N/A
Protected

Academic year: 2022

Aktie "Higgs boson mass: the quest for precise predictions in SUSY models"

Copied!
53
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Higgs boson mass: the quest for precise predictions in SUSY models

Dominik St¨ockinger

TU Dresden

26.1.2017, PSI/Z¨urich, Particle Theory Seminar

based on: [Athron, Park, Steudtner, DS, Voigt ’16] + Kwasnitza

Dominik St¨ockinger 1/32

(2)

MhExp= 125.09±0.24GeV

95 100 105 110 115 120 125

-3 -2 -1 0 1 2 3

Mh / GeV

Xt / MSUSY FlexibleEFTHiggs/MSSM

FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0 SUSYHD 1.0.2

(3)

Outline

1 Fixed-order, EFT-type, and new combined approach

2 Numerical results

3 Uncertainty estimates

4 Application to non-minimal models, further improvements

Dominik St¨ockinger Introduction 3/32

(4)

Hallmark of SUSY: M

h

predictable!

Standard Model: mh2=λv2

MSSM: λ↔gauge couplings

HHHH ↔ HHH˜H˜

m2h= 1 2 h

mA2 +mZ2 −q

(m2A+mZ2)2−4m2Zm2Ac2 i

=v21

4 gY2 +g22

cos22β+O 1

m2A

(5)

Extremely large loop corrections

Σleadingh ∝v2yt4 L , Xt2 , Xt4

, whereL≡lnMSUSY

Mweak Compare: RGE forλhas additive term, allows to predict the large log from simple EFT-arguments

βλSM=−12κLyt4+. . .

In contrast, theXt-terms originate from finite loop corrections

Dominik St¨ockinger Introduction 5/32

(6)

Plots illustrate qualitative behaviour ∝ X

t2

, X

t4

95 100 105 110 115 120 125

-3 -2 -1 0 1 2 3

Mh / GeV

Xt / MSUSY FlexibleEFTHiggs/MSSM

FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0 SUSYHD 1.0.2

(7)

Plots illustrate qualitative behaviour ∝ L

80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleEFTHiggs/MSSM FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0 SUSYHD 1.0.2

. . . and three types of calculations:

Fixed order (Softsusy [Allanach], SPheno [Porod, Staub],FlexibleSUSY), 2-loop (gaugeless limit)

EFT-type (SUSYHD [Vega,Villadoro],HSSUSY), 2-loop matching/3-loop running

Combined (FeynHiggs [Hahn et al],FlexibleEFTHiggs)

Dominik St¨ockinger Introduction 7/32

(8)

80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleEFTHiggs/MSSM FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0

SUSYHD 1.0.2 95

100 105 110 115 120 125

-3 -2 -1 0 1 2 3

Mh / GeV

Xt / MSUSY FlexibleEFTHiggs/MSSM

FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0 SUSYHD 1.0.2

Aims and questions

How/why do the calculations differ?

What is the theory uncertainty?

Present improved method FlexibleEFTHiggs

(9)

Outline

1 Fixed-order, EFT-type, and new combined approach

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 8/32

(10)

Overview of M

h

calculations

Two basic approaches

standard P.T. = tree +O(α) +O(α2) +O(α3) +. . . resummed logs = tree +O(αnLn) +O(αnLn−1) +. . . Resummation via EFT+RGE neglects termsO(1/MSUSY)

[systematic improvement by orders ofMweak/MSUSYpossible with higher-dimensional operators in EFT]

Combined approaches:

resummed logs + full MSUSY-dependence at fixed order

(11)

Overview of Higgs mass calculators

Status of Flexible* and other Higgs mass calculations:

MSSM FS-versions of: non-MSSM, generated FS-original (≈Softsusy) fixed 2L FS-original fixed 1L

Spheno

SUSYHD,HSSUSY EFT, 2L matching+3L running

FEFTHiggs EFT, 1L matching+3L running FEFTHiggs

many verifications; can study differences in detail. Note:≥2-loop only in gaugeless limit!

More Higgs mass calculations in MSSM:

MSSM, fixed order: H3m, FeynHiggs, Softsusy, Spheno,. . . MSSM, EFT: SUSYHD, HSSUSY

MSSM, combined: FeynHiggs, FlexibleEFTHiggs

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 10/32

(12)

Overview of Higgs mass calculators

Status of Flexible* and other Higgs mass calculations:

MSSM FS-versions of: non-MSSM, generated FS-original (≈Softsusy) fixed 2L FS-original fixed 1L

Spheno

SUSYHD,HSSUSY EFT, 2L matching+3L running

FEFTHiggs EFT, 1L matching+3L running FEFTHiggs

many verifications; can study differences in detail. Note:≥2-loop only in gaugeless limit!

More Higgs mass calculations in MSSM:

MSSM, fixed order: H3m, FeynHiggs, Softsusy, Spheno,. . . MSSM, EFT: SUSYHD, HSSUSY

MSSM, combined: FeynHiggs, FlexibleEFTHiggs

(13)

Fixed order DR calculation in detail

1 Find DR parameters ˜gi, ˜yt, ˜mZ, . . . at the SUSY scale. E.g. ˜yt from mFS,SPht =Mt+ Σ(1)t

MtFS

˜ mtSPh

(FS≈Softsusy)

2 Calculate the Higgs pole mass from the DR parameters.

0 = det h

p2δij −(m2φ)ij + ˜Σφ,ij(p2) i

( ˜Σ includes tadpole term)

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 11/32

(14)

Example: leading logs in fixed-order calculations

1 Find DR parameters ˜gi, ˜yt, ˜mZ, . . . at the SUSY scale. E.g. ˜yt from

mFSt ,SPh=Mt+ Σ(1)t

MtFS

mtSPh

2 Calculate the Higgs pole mass from the DR parameters.

0 = det h

p2δij −(m2φ)ij + ˜Σφ,ij(p2) i

Mh2 =m2h+ ˆv2t4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L

736EFT

736 9923 FS

3 SPh

 +· · ·

Hence: not fixed order w.r.t. low-energy parameters, induced 3-loop terms different and wrong!

(15)

Example: leading logs in fixed-order calculations

1 Find DR parameters ˜gi, ˜yt, ˜mZ, . . . at the SUSY scale. E.g. ˜yt from

mFSt ,SPh=Mt+ Σ(1)t

MtFS

mtSPh

2 Calculate the Higgs pole mass from the DR parameters.

Mh2 =mh2+ ˜v2t4

12LκL+ 192˜g32L2κ2L

Mh2 =m2h+ ˆv2t4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L

736EFT

736 9923 FS

3 SPh

 +· · ·

Hence: not fixed order w.r.t. low-energy parameters, induced 3-loop terms different and wrong!

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 12/32

(16)

Example: leading logs in fixed-order calculations

1 Find DR parameters ˜gi, ˜yt, ˜mZ, . . . at the SUSY scale. E.g. ˜yt from

(in terms of low-energy SM parameters ˆyt, ˆg3:)

˜

ytFS,SPh= ˆyt

1−8ˆg32L+

976

10409 FS 9 SPh

ˆ g34L2κ2L

+. . .

2 Calculate the Higgs pole mass from the DR parameters.

Mh2 =mh2+ ˜v2t4

12LκL+ 192˜g32L2κ2L

Mh2 =m2h+ ˆv2t4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L

736EFT

736 9923 FS

3 SPh

 +· · ·

Hence: not fixed order w.r.t. low-energy parameters, induced 3-loop terms different and wrong!

(17)

Example: leading logs in fixed-order calculations

1 Find DR parameters ˜gi, ˜yt, ˜mZ, . . . at the SUSY scale. E.g. ˜yt from

(in terms of low-energy SM parameters ˆyt, ˆg3:)

˜

ytFS,SPh= ˆyt

1−8ˆg32L+

976

10409 FS 9 SPh

ˆ g34L2κ2L

+. . .

2 Calculate the Higgs pole mass from the DR parameters.

Mh2 =mh2+ ˜v2t4

12LκL+ 192˜g32L2κ2L

Mh2 =m2h+ ˆv2t4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L

736EFT 736 9923 FS

3 SPh

 +· · ·

Hence: not fixed order w.r.t. low-energy parameters, induced 3-loop terms different and wrong!

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 12/32

(18)

EFT-type calculation in detail

assume SUSY masses atMSUSYQmatchMweakQ assume SM = correct low-energy EFT belowQmatch Then: setup for correct terms of orderαnLn, αnLn−1

1 atµ=Qmatch: integrate out SUSY, match to SM need 1-loop δpi piSM(µ) =pSUSYi (µ) +δpi

2 between Qmatch> µ >Q: run in SM need 2-loopβpSMi dpiSM(µ)

d lnµ =βpSMi (µ)

3 atµ=Q: compute Higgs mass in SM, match toMtExps . . . need 1-loop SM ˆΣh Mh2SM(Mweak)v2+ ˆΣh

(19)

Example: leading logs in EFT-type calculations

1 atµ=Qmatch: integrate out SUSY, match to SM

λ≡λSM(Qmatch) = mhMSSM v2

2 between Qmatch> µ >Q: run in SM

ˆλ=λ+ ˆyt4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L(736) +. . .

3 atµ=Q: compute Higgs mass in SM, match toMtExps . . .

Mh2 = ˆλˆv2

Mh2 =m2h+ ˆv2t4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L

736EFT

736 9923 FS

3 SPh

 +· · ·

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 14/32

(20)

Example: leading logs in EFT-type calculations

1 atµ=Qmatch: integrate out SUSY, match to SM λ≡λSM(Qmatch) = mhMSSM

v2

2 between Qmatch> µ >Q: run in SM

ˆλ=λ+ ˆyt4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L(736) +. . .

3 atµ=Q: compute Higgs mass in SM, match toMtExps . . .

Mh2 = ˆλˆv2

Mh2 =m2h+ ˆv2t4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L

736EFT

736 9923 FS

3 SPh

 +· · ·

(21)

Example: leading logs in EFT-type calculations

1 atµ=Qmatch: integrate out SUSY, match to SM λ≡λSM(Qmatch) = mhMSSM

v2

2 between Qmatch> µ >Q: run in SM λˆ =λ+ ˆyt4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L(736) +. . .

3 atµ=Q: compute Higgs mass in SM, match toMtExps . . .

Mh2 = ˆλˆv2

Mh2 =m2h+ ˆv2t4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L

736EFT

736 9923 FS

3 SPh

 +· · ·

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 14/32

(22)

Example: leading logs in EFT-type calculations

1 atµ=Qmatch: integrate out SUSY, match to SM λ≡λSM(Qmatch) = mhMSSM

v2

2 between Qmatch> µ >Q: run in SM λˆ =λ+ ˆyt4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L(736) +. . .

3 atµ=Q: compute Higgs mass in SM, match toMtExps . . . Mh2 = ˆλˆv2

Mh2 =m2h+ ˆv2t4

12LκL−192ˆg32L2κ2L+ 4ˆg34L3κ3L

736EFT

736 9923 FS

3 SPh

 +· · ·

(23)

EFT-type calculation in detail: matching at SUSY scale

“pure EFT” (SUSYHD, HSSUSY):

require Γfull(p = 0) = ΓEFT(p = 0) in limitMSUSY → ∞ λ= 1

4 gY2 +g22

cos22β+ ∆λ(1)+ ∆λ(2) Pro: clean expansion in well-defined orders

Con: neglects 1/MSUSY-terms already at tree-level!

Possible improvements: EFT+non-renormalizable operators

FeynHiggs: combined approach, add resummed logs onto fixed-order calculation without double counting

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 15/32

(24)

EFT-type calculation in detail: matching at SUSY scale

FlexibleEFTHiggs: pole mass matching:

requireMhpole,full=Mhpole,EFT λ= 1

v2 h

(MhMSSM)2+ ˜ΣSMh ((MhSM)2) i

yt,mZ, . . .similar

Pro: exact at tree-level and 1-loop (2-loop can/will be included)

Pro: easier to automate for non-minimal SUSY

Con: can contain superfluous 2-loop terms, e.g. ∝∆yt4∗L

(25)

Further details and discussion

“pure EFT”

λ= 1 4

gY2+g22

cos2+ 1 (4π)2

3(ytSM)4

ln mQ2

3 Q2

+

6(ytSM)4Xt2ln m2

Q3 m2

U3 m2Q

3m2U 3

+. . .

pole mass matching

λ= 1 v2 h

(mMSSMh )2Σ˜MSSMh ((MhMSSM)2,ytMSSM, . . .) + ˜ΣSMh ((MhSM)2,ytSM, . . .)i

Equivalence at one-loop up toO(Mweak2 /MSUSY2 ) [Athron,Park,Steudtner,DS,Voigt]

Equivalence at two-loop [Kwasnitza, Voigt]

“superfluous” 2-loop terms in one-loop matching

form of terms: lnQ2-dependent/independent! How to estimate missing higher-order terms?

Dominik St¨ockinger Fixed-order, EFT-type, and new combined approach 17/32

(26)

Outline

2 Numerical results

Verify expected similarities, differences between calculations

(27)

Verification: step-by-step comparison to SUSYHD

Xt= 0, so ∆λ(2)0

80 90 100 110 120 130

1 10 100

Mh / GeV

MSUSY / TeV 0.2

SUSYHD λ(2), yt NNNLO SUSYHD λ(1), yt NNNLO SUSYHD λ(1), yt NNLO FlexibleEFTHiggs/MSSM λ(2), yt NNNLO FlexibleEFTHiggs/MSSM λ(1), yt NNNLO FlexibleEFTHiggs/MSSM w/ yt(0), yt NNNLO FlexibleEFTHiggs/MSSM w/ yt(0), yt NNLO FlexibleEFTHiggs/MSSM w/ yt(1), yt NNLO

agreement with replica of SUSYHD, two-loop matching here unimportant (commonMSUSY,Xt= 0) FlexibleEFTHiggs-like matching: drastic change at lowMSUSY uncertainty of SUSYHD changes ofytat matching/low scales higher-order effect, numerically sizeable

Dominik St¨ockinger Numerical results 18/32

(28)

Verification: step-by-step comparison to SUSYHD

Xt= 0, so ∆λ(2)0

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

1 10 100

(Mh - MhFlexibleEFTHiggs/MSSM) / GeV

MSUSY / TeV 0.2

SUSYHD λ(2), yt NNNLO SUSYHD λ(1), yt NNNLO SUSYHD λ(1), yt NNLO FlexibleEFTHiggs/MSSM λ(2), yt NNNLO FlexibleEFTHiggs/MSSM λ(1), yt NNNLO FlexibleEFTHiggs/MSSM w/ yt(0), yt NNNLO FlexibleEFTHiggs/MSSM w/ yt(0), yt NNLO FlexibleEFTHiggs/MSSM w/ yt(1), yt NNLO

agreement with replica of SUSYHD, two-loop matching here unimportant (commonMSUSY,Xt= 0) FlexibleEFTHiggs-like matching: drastic change at lowMSUSY uncertainty of SUSYHD changes ofytat matching/low scales higher-order effect, numerically sizeable

(29)

Comparison fixed-order and EFT results

Xt= 0, ∆λ(2)0

80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleEFTHiggs/MSSM FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0 SUSYHD 1.0.2

FEFTHiggs agrees with pure EFT for large masses

and agrees with fixed-order calculations for masses “interpolates”

fixed-order calculations differ strongly at highMSUSY theory uncertainty

Dominik St¨ockinger Numerical results 19/32

(30)

Comparison fixed-order and EFT results

Xt6= 0, ∆λ(2)6= 0

95 100 105 110 115 120 125 130 135 140

1 10 100

Mh / GeV

MSUSY / TeV 0.3

FlexibleEFTHiggs/MSSM FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0 SUSYHD 1.0.2

95 100 105 110 115 120 125

-3 -2 -1 0 1 2 3

Mh / GeV

Xt / MSUSY FlexibleEFTHiggs/MSSM

FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0 SUSYHD 1.0.2

non-log shift between FEFTHiggs and SUSYHD from missing 2-loop matching fixed-order calculations differ strongly at highMSUSY theory uncertainty

(31)

Outline

3 Uncertainty estimates

Find comprehensive estimates for fixed-order and EFT

Dominik St¨ockinger Uncertainty estimates 20/32

(32)

Uncertainties of fixed-order calculations

Source:

missing ≥3 loop terms (∝L3,L2,L,1) Estimates:

1 Estimate using known MSSM higher-order results

2 Estimate from generating motivated higher-order terms

1 top-mass definition (sensitive toL3)

2 renormalization scale (sensitive toL2)

(33)

Illustrate fixed-order uncertainty estimates

80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleSUSY/MSSM yt(MZ) SARAH/SPheno yt(MZ) FlexibleSUSY/MSSM yt(MS) SARAH/SPheno yt(MS) uncertainty from varying C1 ΔMh(Q)

Estimate using known MSSM higher-order results: change mFSt ,SPh =Mt+ Σ(1)t (. . .)±∆mt(2),known induces leading 3-loop change inMh

Dominik St¨ockinger Uncertainty estimates 22/32

(34)

Illustrate fixed-order uncertainty estimates

80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleSUSY/MSSM yt(MZ) SARAH/SPheno yt(MZ) FlexibleSUSY/MSSM yt(MS) SARAH/SPheno yt(MS) uncertainty from varying C1 ΔMh(Q)

Estimate from generating motivated higher-order terms:

mFSt ,SPh=Mt+ Σ(1)t

MtFS

mtSPh

at

MSUSY or Mweak

four options also induce leading 3-loop changes in Mh

(35)

Illustrate fixed-order uncertainty estimates

80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleSUSY/MSSM yt(MZ) SARAH/SPheno yt(MZ) FlexibleSUSY/MSSM yt(MS) SARAH/SPheno yt(MS) uncertainty from varying C1 ΔMh(Q)

renormalization scale Q varied by factor 2 induces change in Mh of

O(3-loop×L2×ln(2)) andO(2-loop, non-gaugeless×L×ln(2)) scale variation by itselfnot sufficient!

Dominik St¨ockinger Uncertainty estimates 22/32

(36)

Uncertainties of fixed-order calculations

Source:

missing ≥3 loop terms (∝L3,L2,L,1) Estimates:

1 Estimate using known MSSM higher-order results

2 Estimate from generating motivated higher-order terms

1 top-mass definition (sensitive toL3)

2 renormalization scale (sensitive toL2)

Comments: method can be applied to non-minimal models. Could be an underestimate of the uncertainty: missing estimates for 3LL terms governed by not yt, non-divergent 3NLL terms.

(37)

Summary of fixed-order uncertainty estimates

-6 -4 -2 0 2 4 6

1 10 100

ΔMh / GeV

MSUSY / TeV 0.3

ΔMh(4 x yt) ΔMh(Q)

-4 -2 0 2 4

-3 -2 -1 0 1 2 3

ΔMh / GeV

Xt / MSUSY ΔMh(4 x yt)

ΔMh(Q)

Dominik St¨ockinger Uncertainty estimates 24/32

(38)

Uncertainties of new EFT calculation

Sources:

high-scale uncertainty: missing≥2 loop matching corrections

low-scale uncertainty: missing ≥2 loop terms in low-scale Higgs pole mass calculation

EFT-uncertainty (in SUSYHD/HSSUSY): from missing 1/MSUSY-suppressed terms

Estimate high-scale uncertainty:

1 Estimate using known MSSM higher-order results

2 Estimate from generating motivated higher-order terms

1 top-mass matching either at tree-level or 1-loop (∆yt1LXt,mgluino)

2 matching scale (sensitive to divergent terms, not toXt)

(39)

Illustrate FlexibleEFTHiggs uncertainty estimates

-4 -2 0 2 4

-3 -2 -1 0 1 2 3

ΔMh / GeV

Xt / MSUSY uncertainty from varying C2 and C3

ΔMh(yt 0L vs. 1L) ΔMh(Qmatch) ΔMh(Q)

Estimate using known MSSM higher-order results: change λ→λ±∆λ(2),known

Dominik St¨ockinger Uncertainty estimates 26/32

(40)

Illustrate FlexibleEFTHiggs uncertainty estimates

-4 -2 0 2 4

-3 -2 -1 0 1 2 3

ΔMh / GeV

Xt / MSUSY uncertainty from varying C2 and C3

ΔMh(yt 0L vs. 1L) ΔMh(Qmatch) ΔMh(Q)

Estimate from generating motivated higher-order terms yt-matching either at tree-level or 1-loop

matching-scale variation

induce 2-loop changes in λ-matching

(41)

Illustrate FlexibleEFTHiggs uncertainty estimates

-4 -2 0 2 4

-3 -2 -1 0 1 2 3

ΔMh / GeV

Xt / MSUSY uncertainty from varying C2 and C3

ΔMh(yt 0L vs. 1L) ΔMh(Qmatch) ΔMh(Q)

Low-scale uncertainty: missing SM higher orders

However: non-linear behaviour, different definitions possible 109.5 109

110 110.5 111 111.5 112 112.5 113 113.5

100 150 200 250 300

Mh / GeV

Q / GeV ΔMh(Q) Mh(Q)

Mh = 111.22 GeV

Dominik St¨ockinger Uncertainty estimates 26/32

(42)

Summary of fixed-order and FlexibleEFTHiggs uncertainty estimates

-6 -4 -2 0 2 4 6

1 10 100

ΔMh / GeV

MSUSY / TeV 0.3

ΔMh(4 x yt) ΔMh(Q)

-6 -4 -2 0 2 4 6

1 10 100

ΔMh / GeV

MSUSY / TeV 0.3

uncertainty from varying C2 and C3 ΔMh(yt 0L vs. 1L) ΔMh(Qmatch) ΔMh(Q)

-4 -2 0 2 4

-3 -2 -1 0 1 2 3

ΔMh / GeV

Xt / MSUSY ΔMh(4 x yt)

ΔMh(Q) -4

-2 0 2 4

-3 -2 -1 0 1 2 3

ΔMh / GeV

Xt / MSUSY uncertainty from varying C2 and C3

ΔMh(yt 0L vs. 1L) ΔMh(Qmatch) ΔMh(Q)

(43)

Combined uncertainty estimates

fixed-order: combine quadratically

∆Mh(4×yt),∆Mh(Q) (1) EFT: combine quadratically

maxh

∆Mh(yt 0L vs. 1L),∆Mh(Qmatch)i

,∆Mh(Q) (2)

Dominik St¨ockinger Uncertainty estimates 28/32

(44)

80 85 90 95 100 105 110 115 120 125 130 135

1 10 100

Mh / GeV

MSUSY / TeV Xt = 0

0.2

FlexibleEFTHiggs/MSSM FlexibleSUSY/MSSM ΔMhFlexibleSUSY ΔMhFlexibleEFTHiggs

95 100 105 110 115 120 125 130

-3 -2 -1 0 1 2 3

Mh / GeV

Xt / MSUSY MSUSY = 2 TeV

FlexibleEFTHiggs/MSSM FlexibleSUSY/MSSM ΔMhFlexibleSUSY ΔMhFlexibleEFTHiggs

110 115 120 125 130 135 140

-3 -2 -1 0 1 2 3

Mh / GeV

Xt / MSUSY MSUSY = 30 TeV

FlexibleEFTHiggs/MSSM FlexibleSUSY/MSSM ΔMhFlexibleSUSY ΔMhFlexibleEFTHiggs

FlexibleEFTHiggs more precise than fixed order above2 TeV reliable at low and highMSUSY

uncertainty estimates are conservative and overlap consistently

(45)

Outline

4 Application to non-minimal models, further improvements

Dominik St¨ockinger Application to non-minimal models, further improvements 29/32

(46)

NMSSM

λ=κ= 0.2 λ=κ= 0.4

80 90 100 110 120 130

1 10

Mh / GeV

MSUSY / TeV 0.2

FlexibleEFTHiggs/NMSSM FlexibleSUSY/NMSSM SOFTSUSY 3.6.2 SARAH/SPheno NMSSMTools 4.8.2 SARAH/SPheno FS-like ΔMhFlexibleSUSY ΔMhFlexibleEFTHiggs

60 70 80 90 100 110 120 130 140 150

1 10

Mh / GeV

MSUSY / TeV 0.2

FlexibleEFTHiggs/NMSSM FlexibleSUSY/NMSSM SOFTSUSY 3.6.2 SARAH/SPheno NMSSMTools 4.8.2 SARAH/SPheno FS-like ΔMhFlexibleSUSY ΔMhFlexibleEFTHiggs

-8 -6 -4 -2 0 2 4 6 8

1 10

ΔMh / GeV

MSUSY / TeV λ = 0.4

0.2 ΔMh(4 x yt)

ΔMh(Q)

-8 -6 -4 -2 0 2 4 6 8

1 10

ΔMh / GeV

MSUSY / TeV

λ = 0.4

0.2

ΔMh(Q) ΔMh(Qmatch) ΔMh(yt 0L vs. 1L)

Only SPheno has complete 2-loop IR catastrophe, result unreliable for highMSUSY

(47)

MRSSM

40 50 60 70 80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleEFTHiggs/MRSSM FlexibleSUSY/MRSSM 1L SARAH/SPheno 2L SARAH/SPheno 2L FS-like ΔMhFlexibleSUSY ΔMhFlexibleEFTHiggs

Point SPheno SPheno SPheno SPheno FlexibleSUSY FlexibleEFT-

1L 2L 1L, (5) 2L, (5) 1L Higgs 1L

BM10 120.4 125.6±1.3 120.0 125.1±1.3 120.6 122.1±1.7 BM20 120.8 126.0±1.1 120.4 125.6±1.1 120.2 121.7±1.8 BM30 121.0 125.7±1.3 120.5 125.2±1.3 120.4 121.9±1.9

points from Diessner, Kalinowski, Kotlarski, DS

-10 -5 0 5 10

1 10 100

ΔMh / GeV

MSUSY / TeV 0.2

ΔMh(4 x yt) ΔMh(Q)

-10 -5 0 5 10

1 10 100

ΔMh / GeV

MSUSY / TeV 0.2

ΔMh(yt 0L vs. 1L) ΔMh(Qmatch) ΔMh(Q)

Complementary to/more precise than Sarah/SPheno (FO 2-loop), but uncertainty probably still underestimated

Dominik St¨ockinger Application to non-minimal models, further improvements 31/32

(48)

Improvements

1 1-loop matching → 2-loop matching

2 remove superfluous 2-loop terms induced in 1-loop matching

-4 -2 0 2 4 6 8 10

1 10 100

0.2 (Mh - MhFlexibleEFTHiggs/MSSM 2L) / GeV

MS / TeV

FlexibleEFTHiggs/MSSM 2L FlexibleEFTHiggs/MSSM 1L FlexibleSUSY/MSSM 2L FlexibleSUSY/HSSUSY 2L FlexibleSUSY/HSSUSY 1L SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.2 SUSYHD 1.0.3 FlexibleEFTHiggs/MSSM 1L*

Alexander Voigt + Thomas Kwasnitza, preliminary

(49)

Conclusions

New approach combines FO + EFT

I understand differences, pros and cons

80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleEFTHiggs/MSSM FlexibleSUSY/MSSM FlexibleSUSY/HSSUSY SOFTSUSY 3.6.2 SARAH/SPheno FeynHiggs 2.12.0 SUSYHD 1.0.2

Comprehensive uncertainty estimates

I for fixed-order and EFT

I yt-change and scale variation

-6 -4 -2 0 2 4 6

1 10 100

ΔMh / GeV

MSUSY / TeV 0.3

ΔMh(4 x yt) ΔMh(Q)

-6 -4 -2 0 2 4 6

1 10 100

ΔMh / GeV

MSUSY / TeV 0.3

uncertainty from varying CΔMh(yt2 0L vs. 1L) and C3 ΔMh(Qmatch) ΔMh(Q)

Applicable to non-minimal models

I NMSSM, MRSSM, . . .

I complementary to Sarah/SPheno

40 50 60 70 80 90 100 110 120 130 140

1 10 100

Mh / GeV

MSUSY / TeV 0.2

FlexibleEFTHiggs/MRSSM FlexibleSUSY/MRSSM 1L SARAH/SPheno 2L SARAH/SPheno 2L FS-like ΔMhFlexibleSUSY ΔMhFlexibleEFTHiggs

Dominik St¨ockinger Conclusions 33/32

Referenzen

ÄHNLICHE DOKUMENTE

V or fast 50 Jahren formulierten die sechs Theoretiker Englert, Brout, Higgs, Guralnik, Hagen und Kibble einen später nach ihnen benannten Mechanismus, mit dem es erstmals

● Incorporation of spontaneous symmetry breaking in gauge field theory = Higgs mechanism:.. ● Leads to prediction of new particle: →

● Excitation of vacuum ground state leads to existence of a new particle, characterized by very peculiar coupling structure, needed to preserve the symmetry of the system:.

– cross section for each process depending on parameters of particle and material properties. – propagation rules for particles in materials and fields – treatment

recorded events are reconstructed: “detector hits” → physical objects like electrons, muons, photons, hadrons, jets, missing energy … need to know

● Spin and CP studies need something to make spin of particles visible → spin analyzer.. ● Principle: angular momentum conservation in 2-body decay ( best high energetic or with

– process stable particles through detector simulation to obtain „hits“ in detector cells;. – run

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY2. Searches for the Higgs Boson Beyond