• Keine Ergebnisse gefunden

ARTICLE IN PRESS

N/A
N/A
Protected

Academic year: 2022

Aktie "ARTICLE IN PRESS"

Copied!
11
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Zoology

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / z o o l

Biparental immune priming in the pipefish Syngnathus typhle

Anne Beemelmanns, Olivia Roth

HelmholtzCentreforOceanResearchKiel(GEOMAR),EvolutionaryEcologyofMarineFishes,DüsternbrookerWeg20,D-24105Kiel,Germany

a r t i c l e i n f o

Articlehistory:

Received30October2015

Receivedinrevisedform8February2016 Accepted6June2016

Availableonlinexxx

Keywords:

Maternaleffects Paternaleffects

Trans-generationalimmunepriming Epigeneticeffects

Host–parasiteinteraction

a b s t r a c t

Thetransferofimmunityfromparentstooffspring(trans-generationalimmunepriming(TGIP))boosts offspringimmunedefenceandparasiteresistance.TGIPisusuallyamaternaltrait.However,iffathers haveaphysicalconnectiontotheiroffspring,andifoffspringareborninthepaternalparasiticenviron- ment,evolutionofpaternalTGIPcanbecomeadaptive.InSyngnathustyphle,asex-rolereversedpipefish withmalepregnancy,bothparentsinvestintooffspringimmunedefence.ToconnectTGIPwithparental investment,weneedtoknowhowparentssharethetaskofTGIP,whetherTGIPisasymmetricallydis- tributedbetweentheparents,andhowthematernalandpaternaleffectsinteractincaseofbiparental TGIP.Weexperimentallyinvestigatedthestrengthanddifferencesbutalsothecostsofmaternaland paternalcontribution,andtheirinteractivebiparentalinfluenceonoffspringimmunedefencethrough- outoffspringmaturation.Todisentanglematernalandpaternalinfluences,twodifferentbacteriawere usedinafullyreciprocaldesignforparentalandoffspringexposure.Inoffspring,wemeasuredgene expressionof29immunegenes,15genesassociatedwithepigeneticregulation,immunecellactivityand life-historytraits.Weidentifiedasymmetricmaternalandpaternalimmuneprimingwithadominating, long-lastingpaternaleffect.WecouldnotdetectanadditiveadaptivebiparentalTGIPimpact.However, biparentalTGIPharboursadditivecostsasshownindelayedsexualmaturity.Epigeneticregulationmay playarolebothinmaternalandpaternalTGIP.

©2016PublishedbyElsevierGmbH.

1. Introduction

Thetransferof non-geneticinformationfromparents tooff- spring is a phenotypic plastic trait that can have fast and long-lastingeffectsindependentofgeneticinheritance(Mousseau and Fox, 1998). Such parental effects are a key source of trans-generationalphenotypicplasticitythatallowforimmediate responsestonovelenvironmentalchallenges(Bondurianskyand Day(2009);BoulinierandStaszewski(2008)).Forinstance,trans- generational immune priming(TGIP), thetransfer of immunity fromparentstoprogeny,enhancesoffspringimmunecompetence andbuffersthemagainstimpactsofpathogensformerlyexperi- encedby theirparents(Grindstaff et al.,2006; Hasselquistand Nilsson,2009;Saddetal.,2005).

Thematernaltransferofimmunologicalactivecomponentslike antibodies viablood, milk,or egg is of major importance dur- ing earlylife stages (Boulinier and Staszewski, 2008; Brambell, 1970a,b;Ehrlich,1892),whentheadaptiveimmunesystemisstill

Correspondingauthor.Tel.:+494316004557;fax:+494316004553.

E-mailaddress:oroth@geomar.de(O.Roth).

subjecttomaturation(Lindholmetal.,2006; Rossiter,1996).A mechanismthatenablesparentstopassontheirimmunecompo- nentstotheprogeny,andinthiswayprotecttheiryoungduringthis crucialperiod,shouldthereforebeadaptive(MarshallandUller, 2007).Particularly,iftheprevailingparasiteassemblageissimi- laracrossgenerations,persistentorevenmultigenerationalTGIP might befavoured(Lemkeet al.,1994; Reid et al.,2006).TGIP hasevolvedinvertebrates(Grindstaffetal.,2003;Hasselquistand Nilsson,2009;JiménezdeOyaetal.,2011),butcanalsobefound ininvertebrates,whereitisachievedbyothermechanismsthan antibody-mediatedimmunity(Freitaketal.,2009;Freitaketal., 2014;Littleetal.,2003;Moret,2006;Rothetal.,2010;Saddetal., 2005;Salmelaetal.,2015)

TGIPwasdeterminedasamaternaltrait,becausenon-genetic immunologicalexperiencewassupposedtobeexclusivelypassed onvia the eggor placenta, while sperm cells were considered too small to carry those (Bonduriansky and Day, 2009). How- ever,latelythepotentialofparentaltransferofepigenetictraits influencingtheoffspringphenotypehasbeendiscovered(Jablonka and Lamb, 2014,2015; Jiang et al., 2013).Epigenetics concern stimuli-triggeredchangesingeneexpressionthatdonotinvolve analterationofthenucleotidesequence,butareheritableacross http://dx.doi.org/10.1016/j.zool.2016.06.002

0944-2006/©2016PublishedbyElsevierGmbH.

(2)

generations(Bergeretal.,2009;Gómez-Díazetal.,2012).Subse- quently,factorsthataffectthegeneexpressionbutnottheDNA sequencecanbepassedontothenextgenerationandcontribute tothephenotypicplasticityoftheoffspring(JablonkaandLamb, 2014,2015; Szyf,2015; Youngsonand Whitelaw, 2008). Here, RNAmolecules(RassoulzadeganandCuzin,2015;Rassoulzadegan et al., 2006), DNA-methylation (Ci and Liu, 2015; Jiang et al., 2013) and histonemodifications (Campos et al., 2014; Gaydos et al., 2014; Jones, 2015; Ragunathan et al., 2015; Vilcinskas, 2016,thisissue), factorsassociatedwiththeregulationof gene expression,canbetrans-generationallyinheritedandmanifestas stableepigeneticmarksinthefollowinggeneration(Jablonkaand Lamb,2015;KappelerandMeaney,2010).Environmentalstress- orssuchasparasitesandpathogensmanipulatethehost’simmune systemwhile interfering withhistone acetylation/deacetylation processes (Mukherjee et al., 2012; Mukherjee et al., 2015) or DNA-methylationpatterns(Marretal.,2014).Todate,epigenetic inheritanceofimmuneprimingupon pathogenexposureacross generations based onDNA methylation changes hasonly been demonstratedtooccurinplants(Dorantes-Acostaetal.,2012;Luna etal.,2012),whereashistonemodificationsmightbeassociated withinheritableimmune memoryuponinfectionin eukaryotes (Youngbloodetal.,2010;Ragunathanetal.,2015)andinvertebrates (Vilcinskas,2016,thisissue).However,thequestionwhichmech- anismsareresponsibleformediatingimmuneprimingeffectsthat arebasedonepigeneticchangesinvertebratesisstillunresolved.

Ifepigeneticfactorsareinvolvedorifmalesovercomethemech- anisticbarrieroflimitedspermsize,TGIPmaynotbelimitedto females.Inabeetle,biparentalTGIPwasdiscoveredfirst(Rothetal., 2010;Zanchietal.,2011).Ifbothparentstransfertheirpathogen experiencetotheprogeny,offspringbenefitscouldbemorethan additive(Rothet al., 2010)resulting in an inducedphenotypic plasticity (Jokela, 2010). This could imply an enhanced adap- tivepotentialtohandleparasiticinfections (Marshall andUller, 2007).However,investmentinimmunityiscostlyandtradedoff againstotherlifehistorytraitslikefecundityand/orreproduction (Contreras-Gardu ˜noetal.,2014).Asspecificcostsareassociated withmaternalandpaternalTGIP,anasymmetricinvestmentofthe parentsmayhaveevolved(Zanchietal.,2011).

Biparentalinvestmentinoffspringimmunityalsoexistsinthe sex-rolereversedpipefishSyngnathustyphle(Rothetal.,2012b).

Here, females deposit theireggsinto a protective brood-pouch ofthemales,inwhichtheyarefertilisedandnurseduntilbeing releasedasindependentjuveniles(Berglundetal.,1986;Kvarnemo etal.,2011).Theevolutionofsex-rolereversalcoupledwithan internalbroodingstructuremaymechanisticallyenablea pater- naltransferofnon-geneticfactors.Ourpreviousstudy(Rothetal., 2012b)suggestedthat sex-role reversalmayopenthe doorfor biparentalinfluencesonoffspringimmunity.

Inthepresentstudyweaimedtoinvestigatetheconnection ofTGIPandparentalinvestmentbyunravellingthestrengthand differencesbetweenmaternalandpaternalimpactandtheirinter- activebiparentalinvestmentintooffspringimmuneprotectionin thesex-rolereversedpipefishS.typhle.Wemeasuredtheeffects ofmaternal,paternalandbiparentalTGIPonoffspringimmunity andlifehistorybyutilizinganextendedsetof29immunegenes and15genesrelatedtoepigeneticmodificationprocessesaswell asimmunecellactivityandlifehistorytraits.

Wehypothesisedthat(I)thecombinationofmaternalandpater- nalimmune priming,i.e.biparentalimmunepriming,resultsin a synergisticeffect.By includingtwo differentallopatric bacte- riaspecies for maternaland paternalexposure(Vibrio spp. and Tenacibaculummaritimum)inafullyreciprocaldesign,weexplored whetherbacteria-specificbiparentalimmuneprimingmayharbour additiveimmuneprimingeffects.Wefurtherhypothesisedthat(II) parentalimmunepriminginS.typhleisasymmetricanddirectly

connectedtothereversedmatingsystemwithastronger,long- lastingpaternalimmuneprimingeffect.Toassessthemaintenance ofparentalimmuneprimingwecomparedone-weekoldandfour- month-oldjuveniles.Weexpectedthat(III)theparentalimmune primingeffectwouldceaseuponmaturation,withmaternaleffects ceasingearlierthanpaternaleffects.

Weassessedgenesassociatedwithepigeneticregulationpro- cesseslikeDNA-methylationandhistone-acetylation/methylation toexploretheconnectionbetweenepigenetic modificationand regulationofimmunegeneexpressionanditsnon-genetictrans- ferovergenerations.Wepredictedthat(IV)changesinepigenetic tracesintheoffspringgenerationwouldshowparentalsex-based differences.

Finally, we addressed the costs and benefits of TGIP by monitoringkeylifehistorytraits(size,mass,conditionfactor,hep- atosomaticindex)ofthejuvenilesandevaluatedtheirtimetoreach sexualmaturity.Wehypothesisedthat(V)strengthofmaternal, paternalandbiparentalimmuneprimingpredictstheseverityofa resourceallocationtrade-offandexpectedpaternalandbiparental immuneprimingtobeassociatedwithgreaterenergeticcosts.

2. Materialsandmethods

2.1. Parentalgeneration(P)treatment

Broad-nosedpipefishS.typhlewerecaughtinthesouth-western BalticSea(5444N;953E,Germany)inspring2013.Theywere keptunderBalticsummerconditions(salinityof15psu,18C,and 14–16hlight)andfedtwiceadaywithmysids.

For theexperimentalsetupmature pipefishwere eitherleft naïve or injected with 50␮l of 108 cells/ml heat-killed bacte- riasolutionaccordingto(Rothetal.,2012b).Twonovelbacteria species,Vibriospp.(Italianisolate,I2K3)(Rothetal.,2012a)and T.maritimum(DSMNo.17995)(Suzukietal.,2001)wereapplied toexcludeconfoundingeffectswithpreviouspathogenencoun- tersinthewild.Bothbacteriatypesactivatetheimmunesystem offishandcausetwodifferentdiseases:‘vibriosis‘(Alcaideetal., 2001)and‘flexibacteriosis‘(Bernardetetal.,1990;Kolygasetal., 2012),respectively.Thisallowedustoanalysethetransmissionof bacteria-specificimmunememorybymothersandfathers,respec- tively,andpotentialadditiveimmuneprimingeffects.Matingpairs ofimmune-challengedindividualswereformedin36cm×80cm aquariaconnectedtoasemi-flow-throughsystemwithmaternal, paternalorbiparentalimmunechallengeinafullyreciprocalmat- ingdesign:1.(MatV+PatT+),2.(MatT+PatV+),3.(MatNPatT+),4.

(MatNPatV+),5.(MatT+PatN),6.(MatV+PatN),7.(MatNPatN),with (V+) forVibrio, (T+)for Tenacibaculumand (N) fornaïve (seven parentaltreatmentswerereplicated eighttimes,resultingin56 breedingpairs(families)inseparatebreedingtanks)(Fig.S1inthe supplementaryonlineAppendix).AshamexposurewithPBSwas notimplementedasearlierstudieshadsuggestedthatTGIPisnot confoundedbythesterileneedleinjection(Rothetal.,2012b)and shaminjectionwithPBSdoesnotinduceimmunegeneexpression (Birreretal.,2012).

2.2. Filialgeneration1(F1)treatment

All56couplesmatedsuccessfullyaftertheimmunechallenge and aboutfive weeks later (July 2013), one-week-old offspring (8dayspostbirth)wereexposedtohomologousandheterologous heat-killedbacteria(Vibrio(V+)andTenacibaculum(T+)),orstayed naïveascontrols(N).Forthispurpose,aneedlewasdippedintoa solutionof109cells/mlheat-killedbacteriaandusedtoprickthe juvenilesintraperitoneally.Subsequently,thesewerekeptinsep- aratetanksfor20h.Afterthisincubationtime,thejuveniles’body

(3)

standardlengthsweremeasured,andwhole-bodysampleswere usedforRNAextraction.Fortheanalysisweselectedonlyfamilies withaminimumclutchsizeof15juveniles,with4replicatesper parentaltreatment(28familiesinall).Fromeachofthe28families, 15offspringwereusedanddistributedoverthethreetreatments, resultingin5specimensperoffspringtreatmentandatotalnumber of420sampledjuveniles.

Remaining F1-offspring (approx. 420 pipefish) were pooled accordingtotheir7parentaltreatmentgroupsandtransferredinto 36cm×80cmaquariaconnectedtoasemi-flow-throughcircula- tionsystemusingthreetankreplicatesperparentaltreatmentanda densityof20pipefishpertank.TocompareTGIPbetweendifferent developmentalstages,four-month-oldjuveniles(notfullysexu- allymature)fromthe7differentparentaltreatmentgroupswere injectedwith20␮l108cells/mlheat-killedVibrio(V+)orTenacibac- ulum(T+)bacteria(intraperitoneally)orstayed naïve(N),using 3replicatesperoffspringtreatmentpersamplingevent.Intotal, 9individualsofthe7parentaltreatmentgroupswererandomly collectedout of thetanks at two consecutivesampling events, resultinginatotalnumberof126sampledjuveniles.Afterincu- bation(20h),bodystandardlengthandbodymassweremeasured beforethefish weresacrificed. The liverwas weighedand the hepatosomaticindex(HSI=ratiooflivermass[g]relativetobody mass[g])wascalculatedtoevaluatetheenergystatusofthefish (Chellappaetal.,1995).Furthermore,afishbodyconditionfactor (CF)wasdeterminedafterthemethodofFrischknecht(1993).

Forcharacterizingtheimmuneresponse,andtogaininforma- tionabouttheactivityoftheadaptiveandinnateimmunesystem, wemeasuredtheabsolutenumberoflymphocytesandmonocytes intheheadkidneyandbloodaccordingtotheprotocolofRothetal.

(2011).

Remaining F1-offspring (approx. 280 pipefish) were left immunologicallyuntreatedand,tomaintainanequaldensityratio (20pipefishpertank),pooledwithinthematernal,paternaland biparentaltreatmentgroupsandrandomlydistributedintothree tankreplicates.ThetimefortheF1-offspringtoreachsexualmatu- ritywasrecorded.

2.3. Quantificationofgeneexpression

WequantifiedthemRNA-levelof44pre-selectedtargetgenes ofpreviousstudies(Birreretal.,2012;Rothetal.,2012b)using quantitativerealtimepolymerasechainreaction(qPCR).Thegenes wereidentifiedandselectedbasedonanexpressed-sequence-tag (EST)libraryfromS.typhleexposedtonaturalVibrioisolates(Haase etal.,2013).Accordingly,immunegeneswereselectedamongpre- viouslyidentifiedgenesthatweredifferentiallyexpressedinthe pipefishuponinfection(Haaseetal.,2013)andpresumedtobe importanttargetgenesduringourappliedimmunechallenge.The chosengenesweregroupedintofunctionalcategories:(i)innate immune system (immediate and non-specific immune defence upon infection, i.e. phagocytosis), (ii)adaptive immune system (specific antibody-mediated immune defence), (iii) innate and adaptiveimmunegenes(genesconnectedtobothpathways),(iv) complementsystem(complementstheantibodyandphagocytic cell-mediatedimmuneresponse),and(v)epigeneticmodulators (DNAmethylation,histonede/methylation,histonede/acetylation) (TableS6).Primerefficienciesweretested,withallprimerpairs attainingstandardcurveswithslopesoflogquantityvs.threshold cycle(Ct)between−3.6and−3.1andefficienciesof90–100%(Table S7).

TheRNAextractionof420whole-bodysamplesofearly-stage juvenilepipefish(oneweekpostbirth)and126gilltissue sam- plesoflate-stagejuvenilepipefish(fourmonthspostbirth)was performedwithanRNeasy96Universal-TissueKit(Qiagen,Venlo, Netherlands)accordingtothemanufacturer’sprotocol.Extraction

yieldsweremeasuredbymeansofaspectrophotometer(NanoDrop ND-1000;Peqlab,Erlangen,Germany)toallowareversetranscrip- tionintocDNAviaaQuantiTectReverseTranscriptionKit(Qiagen) ofafixedamountof800[ng/␮l]persample.Thegeneexpression of48geneswasmeasuredusingaBioMarkHDsystem(Fluidigm, SouthSanFrancisco,CA,USA)basedon96.96dynamicarrays(GE chips).Apre-amplificationstepwasperformedbymixinga500 [nM]primerpoolofall48primerswith2.5mlTaqManPreAmp MasterMix(AppliedBiosystems,Waltham,MA,USA)and1.25␮l cDNApersample.Themixturewaspre-amplified(10minat95C;

14cycles:15sat95C;4minat60C)andtheobtainedPCRprod- uctsdiluted 1:10with low EDTA-TEbuffer. For chiploading,a samplemixwaspreparedbycombining3.5␮l2xSsofast-EvaGreen SupermixwithLowROX(Bio-RadLaboratories,Hercules,CA,USA) with0.35␮l20xDNABindingDyeSample&AssayLoadingReagent (Fluidigm)and3.15␮lpre-amplifiedPCRproducts.Anassaymix waspreparedbycombining 0.7␮lof 50[␮M] primerpairmix, 3.5␮lAssayLoadingReagent(Fluidigm),and3.15␮llowEDTA-TE buffer.Finally,5␮lofeachsampleandassaymixwerefilledinto theGEchipsandmeasuredintheBioMarksystem,applyingthe GE-fast96.96PCRprotocolaccordingtothemanufacturer’s(Flu- idigm)instructions.Thesamplesweredistributedrandomlyacross chipsandeachoftheseincludednotemplatecontrols(NTC),con- trolsforgDNAcontamination(-Rt)andstandardsandtwotechnical replicatespersampleandgene.

2.4. Dataanalysisandstatistics

Foreachofthetwotechnicalreplicatespersample,themean cycletime(Ct),thestandarddeviation(SD),andthecoefficientof variation(CV)werecalculated.SampleswithaCVlargerthan4%

wereremoved,duetopotentialmeasurementerrors(Bookoutand Mangelsdorf,2003).Thecombinationofthehousekeepinggenes ubiquitin(Ubi)andribosomeprotein(Ribop)showedthehighest stability(geNormM>0.85)(Hellemansetal.,2007)andtheirgeo- metricmeanwasusedtoquantifyrelativegeneexpressionofeach targetgene bycalculating −Ct-values.Allplots andstatistical testswereperformedinRv3.2.2(RCoreTeam,2015)andPRIMER v6(ClarkeandGorley,2006).Multivariatestatisticswereusedto inferdifferencesin theentireexpressionpattern of29immune genesand15genesassociatedwithepigeneticregulation(Table S6).

Data analysis was conducted on three different levels to address our hypotheses. First, we evaluated maternal, pater- naland biparentalimmuneprimingeffectsincombinationwith thetwo pathogen species(Vibrio andTenacibaculum).Thus, we assessed the effect of seven parental treatment combinations ongene expression(29immunegenes), lifehistory parameters (body size, body mass, CF, and HSI) of one-week-old juveniles and four-month-old juvenilesandimmune cellcountmeasure- ments (lymphocyte/monocyte ratio of blood and head kidney) for the latter. On the second level, we explored the impactof maternaland paternaleffects in thebiparentaltreatmentcom- binationbyexaminingtheF0-parentalxF1-offspringinteraction terms. We elucidatedwhethermaternaland paternaleffects in a biparentalcombination hadadditiveimmune primingeffects.

Onthethirdlevel,weanalyzedmaternal,paternalandbiparental effects on genes associated with epigenetic regulation pro- cesses (DNA-methylation and histone-acetylation/deacetylation andmethylation/demethylation).Parentalbacteria-specificgroups werecombined,merging theparental Vibrioand Tenacibaculum treatmentsintofourparentaltreatments.

ThePERMANOVAmodel(‘vegan’package −‘adonis’function in R) was based on a Bray-Curtis matrix of non-transformed

−Ct-values,applying‘F0-parents’ and‘F1-offspring’ treatment as fixed factors and including ‘family’ as nested factor within

(4)

the‘F0-parents’treatmentsand ‘size’ascovariatetocorrect for size-relevantinfluences.Theanalysisofsimilarity(ANOSIM)was performedwiththesoftwarePRIMERv6(Clarke,1993;Clarkeand Gorley,2006)basedonaBray-Curtisdistancematrixand4th-root transformation,whichallowedapairwisecomparisonbetweenthe levelsofparentalandoffspringtreatment.Weappliedaprincipal componentanalysis(PCA)fortheevaluationofdifferentialgene expressionprofilescausedbytheparentaltreatments.Further,we useda between-classanalysis(BCA) toillustratetheinteraction betweenF0-parentaland F1-offspring treatment(Chesselet al., 2004;DolédecandChessel,1987;Thioulouseetal.,1995).Inaddi- tion,a correspondingscatterplotwasaddedtodemonstratethe contributionofeachsinglegene.Here,thedirectionofthearrows determinesthecorrelationbetweenvariables(genes)andprinci- palcomponents.Thelengthofthearrowisdirectlyproportionalto thecontributionofeachgenetothetotalvariability(Oksanenetal., 2007).

Statisticalunivariateapproaches wereappliedforlifehistory parametersandimmunecellcounts.Assumptionsofnormalityfor eachresponsevariableweregraphicallyexaminedandtestedwith theShapiro–WilkandLevinetestsafterBox–Coxtransformation usingJmp9(SASInstituteInc.,Cary,NC,USA).Alinearmodelwas fittedusingthefixedfactors‘F0-parents’and ‘F1-offspring’,the non-independentfactor‘family’or‘samplingday’or‘tank’nested into‘F0-parents’whiletaking‘size’ascovariate.Forthebodysize analysisthesamemodelwithoutcovariatewasused.Allsignificant ANOVASforF0-parentalandF1-offspringeffectswerefollowedby post-hocTukey’sHSDtest.

3. Results

3.1. Maternal,paternalandbiparentalimmuneprimingeffectsin one-week-vs.four-month-oldjuveniles

3.1.1. One-week-oldF1-juveniles−immunegeneexpression 29 candidate genes connected to pathways of the innate immune system, the adaptive immune system and the com- plement component system were significantly affected upon the parental bacteria treatments (PERMANOVA-immune:

F6,377=12.44, p<0.001 seeFig. 1A and TableS1 in the supple- mentaryonline Appendix). ThePCA revealed both a difference betweenthetwoappliedparentalbacteriatreatments(Vibrioand Tenacibaculum)andaparentalsex-basedeffect(Fig.1AandTable S2).F1-offspring of mothersand fatherschallenged withVibrio orTenacibaculumdisplayedasignificantlydifferentialexpression profilealongthesecondprincipalcomponent(PC2:18.9%oftotal variation) clustering according to the specific bacteria species (ANOSIM-immune:MatV+vs.MatT+, p=0.001;PatV+ vs.PatT+, p=0.001;Fig.1AandTableS2).However,bothbiparentaltreat- mentgroupsclusteredtogetherwiththematernal-Tenacibaculum aswellasthepaternal-Tenacibaculumtreatments,whichincluded theirrespectivesingleparentalTenacibaculumtreatment(Fig.1A).

Hence,thebiparentaltreatmentsweremoresimilartothemater- nalandpaternalTenacibaculumtreatmentsincomparisontothe parentalVibriotreatment.Particularly,thepaternalTenacibaculum treatmentwasnotsignificantlydifferentfromthebiparentaltreat- mentcomprisingtherespectivepaternalTenacibaculumtreatment (ANOSIM-immune:PatT+vs.Bi-(MatV+PatT+),p>0.05;Fig.1Aand TableS2).

3.1.2. Four-month-oldF1-juveniles–immunegeneexpression In four-month-old juveniles the identical29 immune genes weresignificantlyinfluencedbytheparentalbacteriatreatments (PERMANOVA-immune:F6,98=3.21,p<0.001;Fig.2AandTableS1).

InthemultivariatePCAanalysisweidentifiedadifferencebetween

thetwoparentalbacteriatreatments(VibrioandTenacibaculum) independentoftheparentalsexeffectclusteredinopposeddirec- tionsalongthefirstprincipalcomponent(PC1:27.8%ofthetotal variation)(ANOSIM-immune:MatV+vs.MatT+,p=0.001;PatV+vs.

PatT+,p<0.028;Fig.2AandTableS3).Juvenilesfrombothpater- naltreatmentswerenotsignificantlydifferentfromthoseofthe respectivebiparentaltreatments(ANOSIM-immune:PatT+vs.Bi- (MatV+PatT+),p>0.05;PatV+vs.Bi-(MatT+PatV+),p>0.05;Fig.2A andTableS3)indicatingalong-lastingpaternalimmunepriming effect.

3.1.3. Four-month-oldF1-juveniles–immunecellcounts

Theparentalimmunechallengeoffour-month-oldF1-offspring significantlyaffectedthenumberoflymphocytesandmonocytesin theheadkidney(PERMANOVA-cellshk:F6,97=7.29,p<0.001;Table S1) and blood (PERMANOVA-cells blood: F6,97=4.66, p<0.001;

TableS1).Thelymphocyte/monocyte-ratioofF1-offspringinthe head kidneywas strongly elevatedby the maternal as wellas the paternal Vibrio treatment (ANOVA-LM-ratio hk: F6,73=6.4, p<0.001,TukeyHSD:C<MatV+,C<PatV+;Fig.4AandTableS5).

Incontrast,solelythepaternalTenacibaculumtreatmentelevated the L/M-ratio in F1-offspring (TukeyHSD: C=MatT+, C<PatT+;

Fig. 4A and Table S5). When parents received maternal-Vibrio andpaternal-Tenacibaculum treatmentin a biparentalcombina- tion, the L/M-ratio was significantly raised in contrast to the controlgroup(TukeyHSD: C<Bi-(MatV+PatT+);Fig.4 andTable S5) but showed a similar pattern as the maternal or paternal combinations.In contrasttothat, theL/M-ratioin theblood of F1-offspring waspositivelyinfluenced upon the paternalVibrio treatment only (ANOVA-LM-ratio blood/F0-parents: F6,73=5.15, p<0.001,TukeyHSD:C<PatV+;Fig.4BandTableS5)andfurther revealed a Vibrio-specific offspring treatment effect (ANOVA- LM-ratio blood/F1-offspring: F2,73=7.89, p<0.001, TukeyHSD:

F1-N<F1-V+;TableS5).

3.2. Interactionofmaternal,paternalandbiparentalimmune primingeffectsandbacteriaspecificity

3.2.1. One-week-oldF1-juveniles–immunegeneexpression Basedonthe29immunegenesasignificantinteractionbetween theF0-parentalandtheF1-offspringtreatmentintheone-week- oldjuvenileswasdetected(PERMANOVA-immune:F12,377=1.75, p<0.001;Fig.1BandTableS1).Theappliedpairwisecomparison ofinteractiontermsshowedthatthebiparentalimmunepriming effect was significantly influenced by the paternal Tenacibac- ulum immune challenge. Tenacibaculum-exposed F1-offspring of the biparental treatment Bi-(MatV+PatT+) were not signifi- cantly differentfromTenacibaculum-challenged offspring ofthe singlepaternal Tenacibaculumtreatment (ANOSIM-immune:Bi- (MatV+PatT+)/F1-T+ vs. PatT+/F1-T+, p>0.05; Table S2). With paternalVibriotreatmentthetwogroupsrevealedasignificantly different immune gene expression pattern (ANOSIM-immune:

Bi-(MatT+PatV+)/F1-V+ vs. PatV+/F1-V+, p=0.004; Table S2).

In contrast, both maternal treatment interaction terms were significantly different from both biparental treatment interac- tions(ANOSIM-immune:Bi-(MatV+PatT+)/F1-V+vs.MatV+/F1-V+, p=0023;Bi-(MatT+PatV+)/F1-T+vs.MatT+/F1-T+,p=0.001;Table S2).

Tosimplifythevisualizationofthecomplexinteractionterms, the two respective parental and offspring bacteria treatment groups(VibrioandTenacibaculum)werecombinedintoonesingle bacteriatreatmentgroup(bac)tofocusonparentaleffectsonly.

Asdemonstrated in thebetween-class analysis (BCA), a robust F1-offspring treatmenteffectis explained by thefirst principal component (52.8% of total variation) displaying a clustering of the parental bacteria treatments apart from the parental con-

(5)

Fig.1.Immunegeneexpressionofone-week-oldSyngnathustyphleF1-juveniles(N=420).(A)PCAplotbasedon29immunegenesvisualizingtheexpressionprofilesof 7F0-parentaltreatmentgroups(parentalcontrol(Control),paternalVibrio(PatV+)andTenacibaculum(PatT+),maternalVibrio(MatV+)andTenacibaculum(MatT+),and thebiparentaltreatmentgroups(Bi-MV+xPT+andBi-MT+xPV+)).(B)BCAplotbasedon29immunegenesdisplayingtheinteractionoffourF0-parentaltreatmentgroups (parentalcontrol(Control),paternal(Pat),maternal(Mat),andbiparental(Bi))withF1-offspringtreatment(Vibrio,Tenacibaculumcombinedinbacterialchallenge(Bac) versusnochallengeornaïve(N)).Colorsrepresentdifferentparentalbacterialchallenges,withVibrioinred,Tenacibaculuminblueandthejointbiparentalgroupsinpurple.

Thecorrespondingarrow-scatterplotsontherighthandsiderepresentthecontributionofeachvariable(immunegene)tothetotalvariability.Thecontributionofeachgene issymbolisedbythelengthofthearrow,whichisdirectlyproportionaltothecontributionofeachvariable.Thescaleofthegraphsisgivenbygridsizedintheupperright handcornerofeachpanel.TheEigenvaluesarerepresentedbyabarchartinthelowerrighthandcorner,withthetwoblackbarsequivalenttothetwoaxesusedtodraw thePCAorBCAplotandtheircorrespondingscatterplots(A:PC1=24.7%,PC2=18.9%;B:PC1=52.8%,PC2=20.1%).

trol(PERMANOVA-immune: F2,377=18.36,p<0.001;Fig. 1Band TableS1).Moreover,F1-offspringofthebiparentalbacteriatreat- ment,whichwerechallengedwithbacteria(F0-biparental/F1-bac) assembled together with the F1-offspring of the correspond- ing paternal bacteria treatment (F0-paternal/F1-bac), whereas F1-offspringofthematernaltreatmentexposedtobacteria(F0- maternal/F1-bac) were similar to F1-offspring of the control (F0-control/F1-bac)(Fig.1B).

3.2.2. Four-month-oldF1-juveniles–geneexpressionand immunecellcounts

Infour-month-oldoffspringtherewasnointeractionbetween F1-parental treatment and F0-offspring treatment on the 29 immune genes (PERMANOVA-immune: F12,377=0.83, p>0.05;

Fig. 2B and Table S1). The lymphocyte/monocyte ratio in the head kidney of four-month-old juveniles revealed a significant F1-parental treatment and F0-offspring treatment interaction (PERMANOVA-cellshk:F12,97=2.75,p<0.005;TableS1).TheL/M- ratio in the head kidney of F1-offspring with paternal Vibrio challengewasmorepronounceduponhomologousVibrioexposure compared to the heterologous Tenacibaculum treatment, indi- cating a paternal Vibrio specificity effect on the cellular level

(ANOVA-LM-ratiohk:F12,73=2.9,p<0.002,TukeyHSD:F0-PatV+x F1-T+<F0-PatV+xF1-T+;Fig.S2andTableS5).

3.3. Maternal,paternalandbiparentalimmuneprimingeffects connectedtoepigeneticregulationmechanisms

3.3.1. One-week-oldF1-juveniles–geneexpressionofepigenetic regulationgenes

Inone-week-oldF1-offspring15genesresponsibleforepige- neticregulationmechanismslikeDNA-methylationandhistone- modifications displayed a significant parental treatment effect (PERMANOVA-epigen:F6,377=6.6,p=0.001;Fig.3andTableS1).

Toreducecomplexityandfocusonparentaltreatmenteffects,we appliedanANOSIMforpairwisecomparisonsbetweencombined maternal,paternalandbiparentaleffectsindependentofthetwo parentalbacteriatreatments(TableS4).TheANOSIMindicatedthat theeffectwasnotdrivenbytheparentaltreatment,sincetherewas nodifferentialexpressioncomparedtothecontrolgroup(ANOSIM- epigen:Patvs.C,p>0.05;Matvs.C,p>0.05;Bivs.C,p>0.05;Fig.3A andTableS4).Itwasratherduetodifferenceswithinthematernal, paternalandbiparentaltreatments(ANOSIM-epigen:Patvs.Mat, p=0.019;Bivs.Mat,p=0.002,Bivs.Pat,p=0.004;Fig.3AandTable S4).

(6)

Fig.2.Immunegeneexpressionoffour-month-oldjuvenilesofS.typhle(N=126).(A)PCAplotbasedon29immunegenesvisualizingtheexpressionprofilesof7F0-parental treatmentgroups(parentalcontrol(Control),paternalVibrio(PatV+)andTenacibaculum(PatT+),maternalVibrio(MatV+)andTenacibaculum(MatT+),andthebiparental treatmentgroups(Bi-MV+xPT+/Bi-MT+xPV+).(B)BCAplotbasedon29immunegenesdisplayingtheinteractionoffourF0-parentaltreatmentgroups(parentalcontrol (Control),paternal(Pat),maternal(Mat),andbiparental(Bi))withF1-offspringtreatment(Vibrio,Tenacibaculumcombinedinbacterialchallenge(Bac)versusnochallenge (N)).ColorsrepresentdifferentparentalbacterialchallengeswithVibrioinred,Tenacibaculuminblueandthejointbiparentalgroupsinpurple.Thecorrespondingarrow- scatterplotsontherighthandsiderepresentthecontributionofeachvariable(immunegene)tothetotalvariability.Thecontributionofeachgeneissymbolisedbythe lengthofthearrow,whichisdirectlyproportionaltothecontributionofeachvariable.Thescaleofthegraphsisgivenbygridsizedintheupperrighthandcornerofeach panel.TheEigenvaluesarerepresentedbyabarchartinthelowerrighthandcorner,withthetwoblackbarsequivalenttothetwoaxesusedtodrawthePCAorBCAplot andtheircorrespondingscatterplots(A:PC1=27.8%,PC2=14.7%;B:PC1=41.6%,PC2=17.3%).

3.3.2. Four-month-oldF1-juveniles–expressionofepigenetic regulationgenes

In contrast to the effects we found for one-week-old juve- niles,epigeneticregulationgenesoffour-month-oldjuvenileswere affected by the parental bacteria challenges in comparison to thecontrolgroup(PERMANOVA-epigen:F6,93=6.6,p=0.001,Table S1; ANOSIM-epigen: Pat vs. Control, p=0.001; Matvs. Control, p=0.006; Bivs.Control, p=0.001;Fig.3BandTableS4). Thisis additionallysupportedinthegraphicalvisualizationofthePCA,in whichparentaltreatmentsarefoundindistinctclustersalongthe firstprincipalcomponent(45.8%oftotalvariation).Nosignificant differencesbetweenmaternal,paternalandbiparentaltreatment couldbeidentified(Fig.3BandTableS4).

3.4. Costsofimmunepriming–lifehistorytraits 3.4.1. One-week-oldF1-juveniles–lifehistory(size)

One-week-oldF1-offspringwithparentalbacteriatreatments hadalargerbodysizethanthecontrolgroup(ANOVA-size.one- week: F2,378=30.04, p<0.001, C<MatV+, C<MatT+, C<PatV+, C<PatT+;Fig.S3AandTableS5).F1-offspringfrommotherschal- lengedwithbacteriaevenrevealedalargerbodysizethanoffspring withpaternaltreatment(TukeyHSD:PatV+<MatV+,PatT+<MatT+;

Fig.S3AandTable7).Inaddition,F1-offspringofmotherswithVib- rioexposurewerebiggerinsizethanoffspringofmotherswith Tenacibaculumtreatment(TukeyHSD:MatT+<MatV+;Fig.S3Aand TableS5).

3.4.2. Four-month-oldF1-juveniles–lifehistory (size/mass/CF/HSI)

Inamultivariateapproach,bodysize,mass,CFandHSIoffour- month-oldjuvenilepipefishweresignificantlyinfluencedbythe parentalimmune challenge(PERMANOVA-life-size/mass/CF/HSI:

F6,98=2.56,p<0.004;TableS1).However,body lengthandmass of four-month-old juvenileswere only increased if exposed to a maternal Vibrio immune challenge. Offspring with maternal Vibrioexposurewere1.35±0.32cmlargerand0.27±0.071gheav- ier than the control group (ANOVA-size: F6,98=2.86, p=0.013, TukeyHSD: C<MatV+; Table S5 and Fig. S3B; ANOVA-mass:

F6,98=4.43,p=0.001,TukeyHSD:C<MatV+,PatT+<MatV+,C<Bi- (MatV+PatT+); Table S5 and Fig. S3C). Further, the paternal Tenacibaculum treatment positively influenced the HSI of F1- offspring,whichhadalargerliver(1.24±0.24mg)thanoffspringof theparentalcontroltreatment(ANOVA-HSI:F6,74=2.39,p=0.034, TukeyHSD:C<T+;TableS1andS5andFig.S3D).

(7)

Fig.3. Expressionof15epigeneticgenesfor(A)one-week-oldand(B)four-month-oldjuvenilesofS.typhle.ThePCAplotsarebasedon15genesassociatedwithepigenetic regulationprocesses(DNA-methylationandhistonemodifications)andshowtheexpressionprofilesofcombinedfourF0-parentaltreatmentgroups(parentalcontrol(black), paternal(red),maternal(blue),andbiparental(purple).Thecorrespondingarrow-scatterplotsontherighthandsiderepresentthecontributionofeachvariable(epigenetic gene)tothetotalvariability.Thecontributionofeachgeneissymbolisedbythelengthofthearrow,whichisdirectlyproportionaltothecontributionofeachvariable.The scaleofthegraphsisgivenbygridsizedintheupperrighthandcornerofeachpanel.TheEigenvaluesarerepresentedbyabarchartinthelowerrighthandcorner,with thetwoblackbarsequivalenttothetwoaxesusedtodrawthePCAplotandthecorrespondingscatterplots(A:PC1=44.2%,PC2=28.3%;B:PC1=45.8%,PC2=22.7%).

3.4.3. Six-month-oldF1-offspring–lifehistory(sexualmaturity) Upon a parental immune challenge, juvenile males devel- oped a brood pouch (i.e. sexualmaturity) one month (average 38.6±2days)laterthanoffspringofunexposedparents(ANOVA- maturitymales:F3,168=158.8,p<0.001,TukeyHSD:C<Mat,C<Pat, C<Bi;Fig.S4andTableS5).Ifbothparentsreceivedthebacterial treatment,malesreachedsexualmaturityevenlater(6±1days) (TukeyHSD:Mat<Bi,Pat<Bi;Fig.S4andTableS5).

4. Discussion

4.1. Doescombinedmaternalandpaternalimmunepriming causeamorethanadditiveeffect?

Weexploredthesynergisticeffectsofmaternalandpaternal immuneprimingbyapplyingtwodifferentbacteriaspecies(Vibrio spp.andT.maritimum).Contrarytoourexpectations,thebiparental effectsprettymuchcompensatedeachotheranddidnotpileup to an additiveimpact. In contrast, biparental immune priming withthesamebacteriaphylotypesforbothparentsinducedsyn- ergisticbeneficialeffects(Rothetal.,2012b).Thisdiscrepancymay havearisenduetostrongbacteria-specificimmuneprimingeffects (BeemelmannsandRoth,2016,unpublisheddata).Theimpactof biparental treatment in one-week-old juveniles was driven by Tenacibaculumbacteria,asoffspringreceivingbiparentaltreatment

combinationsrevealedasimilarimmunegeneexpressionprofileas theirsiblingswiththerespectivesinglematernalandsinglepater- nalTenacibaculumtreatments.Incontrast,thefactthattheoffspring treatmentgroupwithsingleparentalVibriotreatmentsclustered farapartfromthecontrolgroupandinanoppositedirectionto theparentalTenacibaculumgroupspointstoanantagonisticVibrio- mediatedparentaleffect.Ourresultsthussuggestthatthebacteria type determinesthestrengthand degreeofbiparentalimmune priming.

Thisbacteria-specificeffectwasalsofoundinfour-month-old juvenilesas indicated bysimilar immunegene expression pro- files.Olderjuvenilesofbiparentaltreatmentgroupsweresolely influenced by the paternal bacteria treatment, independent of theappliedbacteriaspecies.Hence,offspringoffatherswhohad beenchallengedwithVibrioorTenacibaculumbacteriashoweda similarimmunegeneexpressionprofileasoffspringofthecorre- spondingbiparentaltreatmentcombinations,whilethematernal groupsweresignificantlydifferentfromtherespectivebiparental groups. Neither was any synergistic parental immune priming effect detected in four-month-old juveniles, but we did find a dominatingpaternalimmuneprimingeffect.Inlinewiththis,the immunecellactivityintheheadkidneyandbloodoffour-month- old juveniles was upregulated upon the paternal treatmentas comparedtothecontrol.

(8)

A

0.0 0.2 0.4

Control MatT+ MatV+ PatT+ PatV+

MatT+PatV+

MatV+PatT+

Lympho cyte/mono cyt e ratio of head kidney (4 −month)

B

0.0 0.4 0.8 1.2

Control MatT+ MatV+ PatT+ PatV+

MatT+PatV+

MatV+PatT+

Lymphocytes:Monocytes[ratio]

Lymphocyte/mono cyt e rati o of bloo d (4 −month)

Lymphocytes:Monocytes[ratio]

Fig.4. Parentaltreatmenteffectsbasedonimmunecellcountmeasurementsof four-month-oldjuvenilesofS.typhle(N=126).(A)Lymphocyte/monocyteratioof headkidney,(B)lymphocyte/monocyteratioofblood.Barplotsaregroupedaccord- ingtoF0-parentaltreatments(parentalcontrol(Control),maternalTenacibaculum (MatT+)andVibrio(MatV+),paternalTenacibaculum(PatT+)andVibrio(PatV+),and biparental(MatT+PatV/MatV+PatT+).Errorbarsrepresentthestandarderrorofthe meansem).

4.2. Dowefindasymmetricparentalimmunepriming?

Consistentwithourhypothesis (II)we identified differences betweenmaternalandpaternalimmunepriming.Ourdataindi- cateasymmetricparentalinvestmentintooffspringimmunitywith astrongerpaternalthanmaternalcontribution.One-week-oldF1- offspringoffathersexposedtoTenacibaculumrevealedanimmune geneexpressionprofilethatcouldnotbedifferentiatedfromthat ofF1-offspringofparents exposedtobiparentaltreatment,also includingthepaternalTenacibaculumchallenge(Bi-(MatV+PatT+) identicaltoPatT+). In thiscombination, we furtheridentified a significantinteractiontermindicating a paternalTenacibaculum specificityeffect.Thissuggeststhatfathersmediatedthebiparental immuneprimingeffect.Four-month-oldjuvenilesevenrevealed stronger paternal immune priming effects independent of the appliedbacteriaspecies. Whenfocussingonlyonthematernal, paternalandbiparentalinteractionterm,wefounda stableand strongerimpactofthepaternaltreatmentonimmunegeneexpres- sionthanthatofthematernaltreatmentforbothone-week-oldand four-month-oldjuveniles.

F1-offspringoffathersexposedtoVibrioorTenacibaculumbac- teriainducedtheirimmunecellproliferationintheheadkidney, themajor immune organ of teleosts, earlier than those of the controlgroup. In addition, a homologous paternalVibrio expo- sure increased the cellular immune defense compared to the heterologouscombination,whichindicatesastrongpaternalVib- riospecificityeffect.Thatthelymphocyte/monocyte-ratiointhe bloodofF1-offspringwasincreasedonlyuponthepaternalVibrio treatmentsuggeststhatthepaternalVibriotreatmentcausedafast

inductionofcellularimmunityinthenextgeneration.Inthecase ofthematernaltreatment,onlytheexposuretoVibrioinducedcell proliferationinthehead-kidneyofF1-offspring,whichhighlights thatmothersonlyprovidedcellularprotectionagainstpotentially familiarVibriobacteria.Theparentalgenerationwaswild-caught intheKielFjordwherepipefishareinconstantcontactwithvari- ousVibriophylotypes(Rothetal.,2012a).Duringthepresentstudy, weusedaVibriophylotypeisolatedfromanItalianpipefish(Roth etal.,2012a),whichwesupposedtobeallopatricandmostlikely noveltotheimmunesystemofBalticpipefish.However,poten- tiallytheepitopestructureofItalianandBalticVibriophylotypesof theirnaturalhabitatwasnotdifferentiableforS.typhleeitherdue tostrongsimilaritiesorduetoimmunologicalcross-reactivity.In contrast,theTenacibaculumbacteriawereisolatesfromadifferent fishspeciesinthePacific(Suzukietal.,2001).Mostlikely,theshort maternalcontacttoTenacibaculumbacteriawasnotsufficientto provideimmunologicallong-termprotectiononthecellularlevel viatheegg.Thecloseconnectiontothefathersduringmalepreg- nancy,however,waslongenoughtoboost thecellularimmune defenseagainstbothexperiencedbacteria.

Theseresultssupportourhypothesis(II)thatinthissex-role reversedmatingsystemchallengedfathershaveastrongerinflu- enceonoffspringimmunity.Sincethefathersarecloselyconnected totheprogenyduringmalepregnancytheyprobablytransferred immunityforalongertimeperiod.In teleosts,femalesproduce costlyeggs,inwhichtheydepositnutritionproteinsandimmune componentsovertheeggyolk(Blyetal.,1986;BobeandLabbé, 2010; Swain et al., 2006). In the sex-role reversed pipefish S.

typhle females oviposit theireggsinto the male’sbrood pouch wheretheyarefertilisedandremainduringpregnancy(4weeks) (Berglund etal.,1986).Freshlyhatchedjuvenilesconsumepro- teinsofthematernalyolksac,butarealsosuppliedwithadditional nutrition and oxygen via the paternal brood pouch (Azzarello, 1991;Carcupinoetal.,1997,2002;Kvarnemoetal.,2011;Ripley and Foran, 2006;Ripley andForan, 2009).Consequently,males and females have different possibilities totransfer non-genetic componentstostimulatetheoffspring’simmunity.Infemales,a depositionintotheeggyolkismostlikely,whilemalesmaytransfer substancesthroughthespermfluidandtheplacenta-likestruc- tureinthebroodpouch.Malesandfemalesseemtohaveevolved differentmechanismstoinvestintotheimmunedefenceoftheir progeny.

4.3. Aretheredifferencesintermsofstabilitybetweenmaternal, paternalandbiparentalimmunepriming?

Parentaleffectsareofshortduration(Lindholmetal.,2006).Yet, inlinewithpreviousfindings(Rothetal.,2012b)ourdataindicate thattheimpactofparentalTGIPpersistedtofour-month-oldoff- spring.TheTGIPeffectsdidnotceaseafterthematurationofthe adaptiveimmunesystem,whichtakesapproximately4–8weeks infish(Magnadóttiretal.,2005).ThecontinuityofTGIPwasinflu- encedbythesexoftheparent.Inaccordancewithourhypothesis (III),paternaleffectswerefoundtobelonger-lastingthanmaternal effects.Infour-month-oldjuveniles,theimpactofpaternalimmune primingonimmunegeneexpressioncouldnotbedifferentiated fromthebiparentaltreatmentcombinations.Thisimpliesthatthe biparentalimpactwasdrivenbythepaternaltreatment.Moreover, immunecellactivityintheheadkidneycamewithspecificityinthe caseofpaternalVibrioexposure,andthepaternalimmunepriming effectwasevenpreservedintheblood.Ourresultsthusindicate thatpaternalimmuneprimingwasdrivingthebiparentaleffectsin four-month-oldjuveniles.

(9)

4.4. Canchangesinepigeneticregulationgenesbeattributedto parentalsex-baseddifferences?

In one-week-old F1-juveniles genes involved in epigenetic regulation processes like DNA-methylation and histone acety- lation/methylationrevealednodifferentialexpressionaccording to the parental treatment. Yet, we found paternal effects on histone-acetylation/deacetylationgenes.Throughanalteredtran- scriptional regulation,paternal immune priming mayinfluence offspringimmunegeneexpression,potentiallyfacilitatedviainher- itable immune memorycarried acrossgenerations by histones (Ragunathanetal.,2015).

In four-month-old juveniles, the same genes were affected bymaternal,paternalandbiparentalbacterialchallenge.During developmentandmaturation,DNA-methylationpatternsandepi- geneticmarksareunderconstantchangeandhighlyflexible(Monk etal.,1987;RazinandShemer,1995).Aconsistentpatternofepi- genetictracescanthuslikelyonlybeestablishedaftermaturation whenprogrammingoftheparentalDNAmethylomeiscomplete(Ci andLiu,2015).Recentdataevensuggestthatlong-lastingparental immuneprimingeffectscanbemaintainedviaepigeneticmarks andarepreserveduntilthesecondgeneration(Beemelmannsand Roth, 2016, unpublished data). In contrast to the opinion that TGIPceasesafterthematurationoftheadaptiveimmunesystem, long-lastingTGIPinfour-month-oldjuvenilesandeveninthesec- ondgeneration(BeemelmannsandRoth,2016,unpublisheddata) aremediatedthroughinheritedmaternalandpaternalepigenetic marks.

4.5. Arethereanyallocationtrade-offsandcostsassociatedwith maternal,paternalandbiparentalimmunepriming?

Themaintenance ofinducedimmunityisenergeticallycostly and,therefore,enhancedlevelsofimmunedefenceinprimedoff- springimplytrade-offswithotherfitness-relatedtraits(Lochmiller andDeerenberg,2000;Schmid-Hempel,2011;Zanchietal.,2011).

Inlinewiththis,TGIPexhibitedcostsintermsofprolongedtimeto sexualmaturity.F1-malesofthebiparentaltreatmentneededsig- nificantlylongertoproducebroodpouchtissueand,hence,reach sexualmaturitythanindividualsofuni-maternaloruni-paternal treatments.Thisimplieshighcostsofbiparentalimmuneprim- ing.Aslong-lastingpaternalimmune primingbearsequalcosts asmaternalimmuneprimingin termsofdelayedmaturity,this suggeststhatthepaternalmechanismofimmunetransferismore effectiveand less costly.However, maternally primedoffspring revealedadditionalbenefitsthroughanimprovedbodycondition, asreflectedbylargeroffspringsize,indicatingthatexposedmoth- ersinvestmoreintothecurrentclutchduetothepossibleriskof notsurvivingthenextreproductiveevent(Landisetal.,2015).

5. Conclusion

Our study highlights the difference between maternal and paternalimmunepriminginpipefish.Itsupportsourpredictions ofasymmetricparentalinvestmentintooffspringimmunityand of dominatinglong-lastingpaternal immunepriming. Enhance- mentofimmunityuponpaternalimmunechallengealteredgene expressionandimprovedpathogen-specificimmunecellactivity.

Asoffspringarebornintheirfather’senvironmentandmostlikely experienceasimilarpathogenassembly,transferofasolidlong- termprotection against current pathogens should befavoured.

WhilematernalTGIPhadastrongimpactonyoungjuveniles,it diminishedduringthecourseofoffspringmaturationand came withlowspecificity.Eventhoughmaternaleffectswereweakerand oflowerstability,prolongedreproductiontimewascausedequally

bybothparents.However,thesedetrimentaleffectsmaybecom- pensatedbyapositivematernalimpactonoffspringsizeandbody mass.

Itseemsthatparentalpathogenexperienceinduceddifferen- tialand sometimesevenantagonistic geneexpression patterns.

Hence,ina biparentalcombinationwithtwo differentbacterial species,thespecifictypeofbacteriumdeterminedthestrengthand degreeofbiparentalimmunepriming.Thisledtoacompensated biparentalimpactinsteadofsynergisticadditivebiparentaleffects ashasbeenshowninapreviousstudythatusedidenticalpathogens forbothparents(Rothetal.,2012b).Asthebiparentaltreatment didnotleadtoanadditivelong-termeffectandalsocausedasevere delayinoffspringmaturation,biparentalimmuneprimingseemsa costlystrategy(Contreras-Gardu ˜noetal.,2014).Ourresultsindi- catethat TGIPhasimportant consequencesontheevolution of lifehistory,host–pathogencoevolutionandparentalinvestment strategies.Wefoundthefirstevidencefortheinvolvementofepi- genetic regulationprocesses like DNA-methylation and histone acetylation,whichbothparentsaffectedmorewithincreasingage oftheiroffspring.Wesupposethatmaternalandpaternalepige- neticmarksmightmediatelong-termprotection.Furtherresearch shouldfocusonparentalDNA-methylationandhistoneacetyla- tionpatternsuponpathogenexposuretounravelthemechanisms behindTGIP.TostudywhetheritholdstruethatTGIPcorrelates withparentalinvestment,matingsystemswithvaryingmaternal andpaternalcontributionsshouldbeexamined.

Acknowledgments

WethankMaudePoirier,SophiaWegner,MartinGrimm,Verena Klein,FabianWendt,JoaoGladeck,IsabelKeller,SusanneLandis, JoannaMiest,DianaGill,FranziskaBrunnerandAndreaFrankefor supportduringexperimentalfieldandlabwork.Thisstudywas financedbygrantstoO.R.fromtheGermanResearchFoundation (DFG,project4628/1-1,associatedwiththePriorityProgramme SPP1399,Host–ParasiteCoevolution)andtheVolkswagenstiftung.

A.B.wassupportedbyastipendfromtheInternationalMaxPlanck ResearchSchoolforEvolutionaryBiology(IMPRS).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.zool.2016.06.002.

References

Alcaide,E.,Gil-Sanz,C.,Sanjuan,E.,Esteve,D.,Amaro,C.,Silveira,L.,2001.Vibrio harveyicausesdiseaseinseahorse,Hippocampussp.J.FishDis.24,311–313.

Azzarello,M.Y.,1991.SomequestionsconcerningtheSyngnathidaebroodpouch.

Bull.Mar.Sci.49,741–747.

Berger,S.L.,Kouzarides,T.,Shiekhattar,R.,Shilatifard,A.,2009.Anoperationaldefi- nitionofepigenetics.GenesDev.23,781–783.

Berglund,A.,Rosenqvist,G.,Svensson,I.,1986.Matechoice:fecundityandsexual dimorphismintwopipefishspecies(Syngnathidae).Behav.Ecol.Sociobiol.19, 301–307.

Bernardet,J.,Campbell,A.,Buswell,J.,1990.Flexibactermaritimusistheagentof

‘blackpatchnecrosis’inDoversoleinScotland.Dis.Aquat.Organ.8,233–237.

Birrer,S.C.,Reusch,T.B.,Roth,O.,2012.Salinitychangeimpairspipefishimmune defence.FishShellfishImmunol.33,1238–1248.

Bly,J.E.,Grimm,A.,Morris,I.,1986.Transferofpassiveimmunityfrommotherto younginateleostfish:haemagglutinatingactivityintheserumandeggsof plaice,PleuronectesplatessaL.Comp.Biochem.Physiol.A84,309–313.

Bobe,J.,Labbé,C.,2010.Eggandspermqualityinfish.Gen.Comp.Endocrinol.165, 535–548.

Bonduriansky,R.,Day,T.,2009.Nongeneticinheritanceanditsevolutionaryimpli- cations.Annu.Rev.Ecol.Evol.Syst.40,103.

Bookout,A.L.,Mangelsdorf,D.J.,2003.Quantitativereal-timePCRprotocolforanal- ysisofnuclearreceptorsignalingpathways.Nucl.Rec.Signaling1,102.

Boulinier,T.,Staszewski,V.,2008.Maternaltransferofantibodies:raisingimmuno- ecologyissues.TrendsEcol.Evol.23,282–288.

Abbildung

Fig. 1. Immune gene expression of one-week-old Syngnathus typhle F1-juveniles (N = 420)
Fig. 2. Immune gene expression of four-month-old juveniles of S. typhle (N = 126). (A) PCA plot based on 29 immune genes visualizing the expression profiles of 7 F0-parental treatment groups (parental control (Control), paternal Vibrio (PatV+) and Tenacibac
Fig. 3. Expression of 15 epigenetic genes for (A) one-week-old and (B) four-month-old juveniles of S
Fig. 4. Parental treatment effects based on immune cell count measurements of four-month-old juveniles of S

Referenzen

ÄHNLICHE DOKUMENTE

Given the strong asymmetry in the potential to control decisions and given the fact that females can almost double the length of their incubation period if males are

To distinguish between parental preference for intense plumage colouration and potential effects of the carote- noids per se on sibling interactions or begging (e.g. Saino et al.

The maternity leave scheme in Estonia remained an exclusive right for women throughout the Soviet Union period, until 1991 when Estonia regained independence and fathers were

Whilst possibly inoculation with live avirulent vaccine will prove of some value in the prevention of pneumonic plague, administration of prophylactic sulfa-doses has given

We food- deprived either male or female of a pair independently of each other for a limited period of time to lower their body condition, and recorded incubation durations,

The measure of transfer income is common to all accounting systems (including the con- ventional current-money-income system).18 PP Given mutually consistent measures of (a)

When digital tech- nology found its way into the domain, interaction with these varia- bles changed fundamentally: virtual control elements on computer screens no longer provided

Dengue morbidity can be reduced by implementing improved outbreak prediction and detection through coordinated epidemiological and entomological surveillance; promoting