• Keine Ergebnisse gefunden

Sedimentation of Particulate Matter During a Phytoplankton Spring Bloom in Relation to the Hydrographical Regime*

N/A
N/A
Protected

Academic year: 2022

Aktie "Sedimentation of Particulate Matter During a Phytoplankton Spring Bloom in Relation to the Hydrographical Regime* "

Copied!
16
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Marine Biology 47, 211-226 (1978)

MARINE BIOLOGY

9 by Springer-Verlag 1978

Sedimentation of Particulate Matter During a Phytoplankton Spring Bloom in Relation to the Hydrographical Regime*

V. Smetacek, K. von Br6ckel, B. Zeitz$chel and W. Zenk

Institut fiir Meereskunde an der Universit~t Kiel; Kiel, Germany (FRG)

Abstract

D a t a p r e s e n t e d and d i s c u s s e d h e r e w e r e c o l l e c t e d c o n t i n u o u s l y d u r i n g A p r i l / M a y 1975 in the B o r n h o l m B a s i n of the B a l t i c Sea. S e d i m e n t a t i o n r a t e s of p a r t i c u l a t e m a t t e r w e r e r e c o r d e d w i t h 5 m u l t i s a m p l e s e d i m e n t traps from d i f f e r e n t d e p t h s in the w a t e r c o l u m n at 2 p o s i t i o n s 170 k m apart. C u r r e n t m e t e r d a t a c o l l e c t e d d u r i n g the same p e r i o d and d e p t h s i n d i c a t e d t h a t the p o s i t i o n s r e m a i n e d h y d r o g r a p h i c a l l y d i s t i n c t d u r i n g the i n v e s t i g a t i o n . P a r t i c u l a t e m a t t e r f r o m the e u p h o r i c zone i n c l u d i n g d i a - tom c e l l s f o r m e d the b u l k of the m a t e r i a l c o l l e c t e d b y all traps. This flux of or- g a n i c p a r t i c l e s to the b o t t o m was u n i m p e d e d b y the s t r o n g d e n s i t y s t r a t i f i c a t i o n p r e s e n t in the w a t e r column. The u p p e r traps a l w a y s c o l l e c t e d less m a t e r i a l than l o w e r ones. This p a r a d o x has b e e n a s c r i b e d to d i m i n i s h i n g c u r r e n t s p e e d s w i t h depth, c o n c o m i t a n t w i t h an i n c r e a s e in s i n k i n g r a t e s of p h y t o p l a n k t o n and p h y t o d e t r i t u s . B o t h f a c t o r s i n f l u e n c e the s a m p l i n g e f f i c i e n c y of s e d i m e n t traps, w h i c h are t h o u g h t to h a v e u n d e r e s t i m a t e d a c t u a l s e d i m e n t a t i o n rates here. A time lag of 2 to 3 w e e k s in b l o o m d e v e l o p m e n t s e e m e d r e s p o n s i b l e for the c h a r a c t e r i s t i c d i f f e r e n c e s b e t w e e n the two p o s i t i o n s . The p h a s e of m a j o r s e d i m e n t a t i o n at one p o s i t i o n c o v e r e d a b o u t 18 days, and a d i s t i n c t s e q u e n c e in the c o m p o s i t i o n of the m a t e r i a l c o l l e c t e d b y the 6 g l a s s e s of e a c h trap i n d i c a t e d p h a s e s of a p r o g r e s s i v e l y d e t e r i o r a t i n g p h y t o - p l a n k t o n p o p u l a t i o n in the w a t e r c o l u m n c o n t r i b u t i n g the p a r t i c u l a t e m a t e r i a l . A total of 6.2 g C m -2 in 34 days was r e c o r d e d at this station. A p a r t f r o m a trap s i t u a t e d in an o x y g e n d e f i c i e n t layer w h i c h c o l l e c t e d 0.44 g C m -2 of z o o p l a n k t o n corpses, z o o p l a n k t o n m o r t a l i t y was o v e r e s t i m a t e d by the traps. L a r g e - s c a l e s e d i m e n - t a t i o n of "fresh" o r g a n i c m a t t e r p r o d u c e d b y the s p r i n g b l o o m is p r o b a b l y a r e g u - lar f e a t u r e in areas w i t h low o v e r - w i n t e r i n g z o o p l a n k t o n p o p u l a t i o n s and, as such, p o s s i b l y has a d i r e c t s t i m u l a t o r y e f f e c t on g r o w t h and r e p r o d u c t i o n of the b e n t h o s .

I ntroduction

The q u a l i t y and q u a n t i t y of o r g a n i c m a t - ter s e t t l i n g o u t of s u r f a c e layers is of v i t a l i m p o r t a n c e to all h e t e r o t r o p h i c life b e l o w the e u p h o t i c zone. The pro- c e s s e s by w h i c h p a r t i c u l a t e o r g a n i c m a t - ter r e a c h e s the sea bed, a f u n d a m e n t a l a s p e c t of s e d i m e n t / w a t e r c o l u m n i n t e r - action, has r e c e i v e d c o m p a r a t i v e l y lit- tle a t t e n t i o n in the literature. This is due l a r g e l y to the m e t h o d o l o g i c a l d i f f i - c u l t i e s i n v o l v e d in m e a s u r i n g rates and m e c h a n i s m s of this v e r t i c a l t r a n s p o r t .

S e d i m e n t traps have b e e n u s e d to d i r e c t l y m e a s u r e the flux of p a r t i c u l a t e m a t t e r to the s e d i m e n t s , a l t h o u g h in m a -

*Contribution No. 185 of the Joint Research Pro- gramme 95, Kiel University.

rine e n v i r o n m e n t s t h e i r use has g e n e r a l - ly b e e n r e s t r i c t e d to s h a l l o w e r i n s h o r e areas (Parsons e t al., 1977). In this pa- per, d a t a on s h o r t - t e r m d y n a m i c s of s e d i - m e n t a t i o n of p a r t i c u l a t e m a t t e r in the B o r n h o l m B a s i n (Southwest B a l t i c Sea), d e r i v e d f r o m s e d i m e n t traps, are d i s - c u s s e d in c o n j u n c t i o n w i t h d e t a i l e d hy- d r o g r a p h i c a l m e a s u r e m e n t s for the same p e r i o d and area.

D a t a w e r e c o l l e c t e d d u r i n g the j o i n t p h y s i c a l / c h e m i c a l / b i o l o g i c a l e x p e r i m e n t

"Baltic 75" c o n d u c t e d d u r i n g A p r i l / M a y 1975 in the B o r n h o l m Basin. P h y s i c a l p a r a m e t e r s and d a t a on s e d i m e n t a t i o n w e r e r e c o r d e d c o n t i n u o u s l y b y m o o r e d in-

s t r u m e n t s , and p r o f i l e s of v a r i o u s p a r a m - eters w e r e t a k e n f r o m a n c h o r e d ships.

C r u i s e r e p o r t s and d a t a h a v e b e e n p u b - l i s h e d b y K e u n e c k e e t al. (1975) and K i e l - m a n n e t al. (1976).

0025-3162/78/0047/0211/S03.20

(2)

212 V. Smetacek et al.: Phytoplankton Sedimentation

B o t t o m t o p o g r a p h y of t h e a r e a a n d t h e p o s i t i o n of t h e m o o r i n g s a r e g i v e n in Fig. I. T h e B o r n h o l m B a s i n r e p r e s e n t s o n e of a s e r i e s of b a s i n s a n d s i l l s on a l o n g i t u d i n a l s e c t i o n t h r o u g h t h e B a l t i c Sea. Its d e e p e s t i n l e t f r o m t h e W e s t is f o r m e d b y t h e B o r n h o l m G a t (45 m), d i - v i d e d i n t o 2 c h a n n e l s b e t w e e n t h e i s l a n d of B o r n h o l m a n d t h e S w e d i s h c o a s t (K~g- ler a n d L a r s e n , in p r e s s ) . T h e S t o l p e R i d g e (60 m) r e p r e s e n t s t h e o u t l e t t o - w a r d s the G o t l a n d Sea. T h e B o r n h o l m B a - s i n m e a s u r e s 105 m a t its d e e p e s t p a r t . The t w o r e c o v e r e d m o o r i n g s c a r r y i n g s e d i m e n t t r a p s w e r e i n s t a l l e d in t o p o - g r a p h i c a l l y d i f f e r e n t l o c a t i o n s . "Max"

( " B a l t i c 75" S t a t i o n 4) w a s s i t u a t e d NE of t h e i s l a n d of B o r n h o l m i n 64 m d e p t h . T h e s i t e is b e s t d e s c r i b e d as a p l a t e a u on the w a l l o f a 75 m d e e p c h a n n e l d i - v i d i n g the i s l a n d a n d t h e 10 k m d i s t a n t C h r i s t i a n s ~ - B a n k . A n i n t e r a c t i o n b e t w e e n b o t t o m t o p o g r a p h y a n d c u r r e n t s y s t e m s

w a s c h o s e n in an o p e n a r e a of t h e B o r n - h o l m B a s i n . T h i s s i t e s h o w e d a r a t h e r s m o o t h b o t t o m r e l i e f at a d e p t h of 70 m.

A n a n c h o r s t a t i o n w a s o c c u p i e d b y R.V.

" M e t e o r " f r o m 17 to 26 A p r i l in t h e v i - c i n i t y of " M o r i t z " . A l l p o s i t i o n s w e r e s i t u a t e d b e l o w t h e 60 m - i s o b a t h . T h i s d e p t h c o n t o u r is t h e s h a l l o w e s t i s o b a t h t h a t f o r m s a c l o s e d c u r v e a r o u n d t h e B o r n - h o l m B a s i n (Simons, 1976), a n d is i d e n t i - c a l w i t h t h e e a s t e r n s i l l d e p t h ( S t o l p e R i d g e ) .

C h a r a c t e r i s t i c f o r t h e h y d r o g r a p h y of the B a l t i c , an i n l a n d s e a in a h u m i d area, is t h e e x c e s s of l o w - s a l i n i t y s u r - f a c e w a t e r f l o w i n g i n t o the N o r t h Sea.

T h e v o l u m e of t h i s o u t f l o w is of t h e s a m e o r d e r of m a g n i t u d e as the r i v e r d i s - c h a r g e i n t o t h e B a l t i c , as p r e c i p i t a t i o n a n d e v a p o r a t i o n c a n c e l e a c h o t h e r o n t h e a v e r a g e ( D i e t r i c h a n d S c h o t t , 1974).

D u e to t h e d i f f e r e n c e in d e n s i t i e s b e - t w e e n N o r t h S e a a n d B a l t i c S e a w a t e r , an c a n b e e x p e c t e d a t t h i s l o c a t i o n . In c o n - i n f l o w of the f o r m e r , c o n t r o l l e d b y m e t e - trast, " M o r i t z " ( " B a l t i c 75" S t a t i o n 9)

1+o,0. J

~ = ~ ' / M O R I T Z / / 5 5 ~ '

\ \ ~.

STA.

k

5o10 . 5o20 , Y 5 A

I

o r o l o g i c a l f o r c i n g a n d b y b o t t o m t o p o g - r a p h y , o c c a s i o n a l l y t a k e s p l a c e ( S i e d l e r a n d H a t j e , 1974). T h i s l e a d s to t h e c h a r - a c t e r i s t i c h a l o c l i n e in the B a l t i c Sea, w h i c h i n c r e a s e s in d e p t h f r o m t h e i n l e t (Kategatt) t o w a r d s the c e n t r a l B a l t i c . T h e h i g h e r s a l i n i t y b o t t o m w a t e r s in t h e d e e p e r b a s i n s , i n c l u d i n g t h e B o r n h o ! m B a s i n , h a v e r e s i d e n c e t i m e s f r o m m o n t h s to y e a r s a n d a r e g e n e r a l l y d e f i c i e n t in o x y g e n . L o c a l o v e r t u r n i n g u n d e r e x t r e m e m e t e o r o l o g i c a l c o n d i t i o n s in w i n t e r c a n o c c u r s p o r a d i c a l l y a n d r e n e w t h e s t a g n a t - ing w a t e r in the d e e p e r b a s i n s (Krause, 1969).

Materials and Methods

F i e l d S e t - U p

H y d r o g r a p h i c a l p r o f i l e s w e r e o b t a i n e d u s i n g a C T D - s y s t e m ( c o n d u c t i v i t y , t e m p e r - a t u r e , depth) b y H o w a l d t ( B a t h y s o n d e ) . D a t a p r o c e s s i n g a n d i n s t r u m e n t c h a r a c t e r - i s t i c s a g r e e d w i t h P e t e r s ' (1976) r e p o r t on c a l i b r a t i o n a n d e d i t i n g of C T D data.

C u r r e n t m e t e r s a n d s e d i m e n t t r a p s w e r e p l a c e d in s e p a r a t e l e g s of t w o -

l e g g e d m o o r i n g a r r a y s 110 m a p a r t , as d e - s c r i b e d b y K e u n e c k e e t al. (1975) a n d Z e i t z s c h e l e t al. (1978). s e l f - r e c o r d i n g A a n d e r a a c u r r e n t m e t e r s e q u i p p e d w i t h t e m p e r a t u r e s e n s o r s w e r e p l a c e d at 15, 25, 35, 55 a n d 61 m l e v e l s a t "Max" a n d Fig. ~. Bathymetric chart of SW part of Bornholm a t 15, 35, 55 a n d 67 m d e p t h s a t " M o r i t z "

Basin (after KSgler and Larsen, in press). Moor- T h e b o t t o m m o s t u n i t r e c o r d e d c o n d u c t i v - ings at "Max" and "Moritz" carried sediment ity as w e l l . T h e m u l t i s a m p l e s e d i m e n t traps and various current/temperature/conductiv- t r a p s e m p l o y e d in t h i s i n v e s t i g a t i o n ity (CTD) recorders. Also included are Location I h a v e b e e n d e s c r i b e d b y Z e i t z s c h e l e t al.

of the moored wind recorder, Station "CTD", and (1978) . W i t h t h i s t y p e of s e d i m e n t t r a p the anchor station. Station BY5A was occupied by it is p o s s i b l e to o b t a i n 8 s u c c e s s i v e Matthaus et al. (1976) s a m p l e s f o r p r e d e t e r m i n e d t i m e i n t e r v a l s .

(3)

v. Smetacek et al.: Phytoplankton Sedimentation 213

D e t a i l s of the s a m p l i n g p r o c e d u r e are a n a l y s e s w e r e c a r r i e d out as r e c o m m e n d e d g i v e n in T a b l e I. 0.5 cm3 of c h l o r o f o r m by U N E S C O (1966), u s i n g a c e l l - m i l l for was a d d e d b e f o r e h a n d to e a c h g l a s s as a h o m o g e n i z i n g s a m p l e s (Derenbach, 1969).

p r e s e r v a t i v e . H e n d r i k s o n (1975) found S p e c t r o p h o t o m e t r i c e q u a t i o n s g i v e n b y that c h l o r o f o r m , w h i l e o t h e r w i s e w e l l L o r e n z e n (1967) w e r e u s e d for c a l c u l a t - s u i t e d for this purpose, tends to con- ing c h l o r o p h y l l and p h e o p i g m e n t s . B o t h v e r t c h l o r o p h y l l to p h e o p i g m e n t s b u t pre- v a l u e s w e r e a d d e d t o g e t h e r and are re- v e n t s f u r t h e r b r e a k d o w n t h a t i n e v i t a b l y

takes p l a c e if no p r e s e r v a t i v e is used.

A n c h o r Station

D i s c r e t e s a m p l e s w e r e c o l l e c t e d f r o m 12 d e p t h s in the w a t e r c o l u m n at 8 h i n t e r - vals and a n a l y s e d in the same m a n n e r as the s e d i m e n t t r a p samples. Z o o p l a n k t o n was s a m p l e d b y v e r t i c a l net hauls. This s t a t i o n was o c c u p i e d f r o m 17 to 26 April, 1975.

A n a l y s i s o f Collected Material

The m a t e r i a l c o l l e c t e d in each glass was s t r a i n e d t h r o u g h 300 ~m g a u z e to r e m o v e l a r g e r z o o p l a n k t o n and then s u s p e n d e d in a k n o w n v o l u m e of f i l t e r e d sea water.

f e r r e d to as c h l o r o p h y l l a e q u i v a l e n t s (chl. a equiv.) below.

P h y t o p l a n k t o n c a r b o n (PPC) was c a l c u - lated f r o m cell counts, o b t a i n e d by in- v e r t e d m i c r o s c o p y , u s i n g c o n v e r s i o n fac- tors for s p e c i e s and s i z e g r o u p s g i v e n by S m e t a c e k (1975).

Results

Physical Parameters

S e l e c t e d t e m p e r a t u r e , s a l i n i t y and d e n s i - ty p r o f i l e s o b t a i n e d f r o m S t a t i o n CTD

(see Fig. 1), c o v e r i n g the p e r i o d 19 A p r i l to 25 May, are g i v e n in Fig. 2.

The w a t e r c o l u m n d o w n to a d e p t h of a b o u t 50 m was h o m o g e n e o u s o n 19 A p r i l ; its a b n o r m a l l y h i g h t e m p e r a t u r e (4oc), c o m p a r e d to the l o n g - t e r m m e a n (dashed S u b s a m p l e s for the a n a l y s e s d e s c r i b e d be- line in Fig. 2), was due to the m i l d w i n - low w e r e p i p e t t e d from this s u s p e n s i o n , ter of 1 9 7 4 / 1 9 7 5 (Matth~us et al., 1976).

k e p t h o m o g e n e o u s b y a g i t a t i o n .

The z o o p l a n k t o n was c o u n t e d u n d e r a s t e r e o - m i c r o s c o p e , and c o u n t s w e r e con- v e r t e d to b i o m a s s u s i n g factors d e r i v e d from d i r e c t m e a s u r e m e n t s of a n u m b e r of i n d i v i d u a l s .

D r y w e i g h t ( D W ) of p a r t i c l e s < 3 0 0 ~ m was d e t e r m i n e d on m e m b r a n e filters w i t h a p o r e size of 0.8 ~m, a c c o r d i n g to the m e t h o d of Lenz (1971).

P a r t i c u l a t e o r g a n i c n i t r o g e n (PON) and c a r b o n (POC) w e r e m e a s u r e d w i t h a CHN a n a l y z e r ( H e w l e t t - P a c k a r d , 185 B) on p r e c o m b u s t e d W h a t m a n GF/C f i l t e r s w h i c h w e r e t r e a t e d w i t h d i l u t e HCl b e f o r e m e a - surement. C h l o r o p h y l l a and p h e o p i g m e n t

T e m p e r a t u r e time s e r i e s from the m o o r e d i n s t r u m e n t s (Fig. 3) s h o w that the b u i l d - up of t h e r m a l s t r a t i f i c a t i o n s t a r t e d on 21 A p r i l at b o t h s t a t i o n s . The c h a r a c t e r - istic d e v e l o p m e n t of the s e a s o n a l t h e r m o - c ! i n e w i t h d o w n w a r d m i g r a t i n g layers to a d e p t h of a b o u t 35 m is s h o w n by the p r o f i l e s a f t e r 19 April. The d e n s i t y p r o - files r e f l e c t m a i n l y the s a l i n e s t r u c - ture, and c l e a r l y s h o w the s t a b l e h a l o - c l i n e at 55 m d e p t h p r e s e n t t h r o u g h o u t the e x p e r i m e n t . The w a t e r m a s s b e l o w this t r a n s i t i o n layer w a s c h a r a c t e r i s e d b y h i g h e r t e m p e r a t u r e and l o w e r o x y g e n levels (Grasshoff, p e r s o n a l c o m m u n i c a - tion) than the u p p e r layer. B e c a u s e of

T a b l e i. P o s i t i o n s a n d d e p t h s o f m u l t i s a m p l e s e d i m e n t t r a p s . T h e 6 s a m p l i n g i n t e r v a l s f o r a l l t r a p s h a v e b e e n a s s i g n e d l e t t e r s A - F P o s i t i o n a n d t r a p D e p t h D i s t a n c e f r o m S a m p l i n g i n t e r v a l s o f (m) b o t t o m (m) i n d i v i d u a l t r a p s (1975) 5 5 o 1 3 . 8 ' N ; 1 5 o 0 . 5 2 ' E

( w a t e r d e p t h 64 m)

" M a x " 32 32 32

" M a x " 47 47 17

" M a x " 6 0 6 0 4

5 5 o 3 8 . 6 ' N; 1 5 O 2 2 . 9 ' E ( w a t e r d e p t h 70 m)

" M o r i t z " 51 5 i 19

" M o r i t z " 65 65 5

A I O . I V . - ] 4 . I V . B 14.IV. - 2 0 . I V . C 2 0 . I V . - 2 6 . I V . D 2 6 . I V . - 2. V.

E 2. V. - 8. V.

F 8. V. - 14. V.

A 1 2 . 1 V . - 14.IV.

B - F s a m e a s " M a x " 32

(4)

214 V. Smetacek e t a l . : Phytoplankton Sedimentation

Temperature (~ Sulini_ty (%o)

3 7 7 11 15

' ill

I

I 0 I I l I I I

20 J 9~ 20

~u 9 191Y,

~ 60 ~ 6o

80 80

20

40

1:3

m

a_ 60

80

O~ST p 9 CGS

o I I } I I

- 9 . Y ,

~ 19.

- - 2 5

_ 26.~. " ~ 21.#/

Fig. 2. Development of seasonal thermocline at Station "CTD". In spring 1975, temperature of total water column showed a positive anomaly of 2~ (according to Matth~us e t a l . , 1976). Long-term mean profile is depicted by dashed line (6 STP = i n s i t u density parameter in CGS units: conductivity, temperature, depth)

its h i g h e r t e m p e r a t u r e , t h i s w a t e r c o u l d in the B o r n h o l m S e a f r e q u e n t l y s h o w e d r e - o n l y h a v e e n t e r e d the B o r n h o l m B a s i n b e - v e r s e d i r e c t i o n s . " M o r i t z " w a s s i t u a t e d f o r e the p r e v i o u s w i n t e r , i n d i c a t i n g a f a i r l y in t h e c e n t r e of a r e g i o n of e d d y r e s i d e n c e t i m e h e r e of at l e a s t 6 m o n t h s , f o r m a t i o n , g e n e r a t e d b y the i n t e r a c t i o n As t e m p e r a t u r e a n d s a l i n i t y w e r e a l w a y s o f w i n d s t r e s s a n d b o t t o m t o p o g r a p h y . p o s i t i v e l y c o r r e l a t e d , it c a n b e p r e - T h e p r e d i c t i o n s f r o m a n u m e r i c a l m o d e l s u m e d t h a t l i t t l e if a n y r e n e w a l of h i g h - c o m p u t e d for the S o u t h w e s t B a l t i c f u r - er s a l i n i t y s u b h a l o c l i n e w a t e r t h r o u g h t h e r c o n f i r m s t h i s c i r c u l a t i o n p a t t e r n the 45 m B o r n h o l m G a t t o o k p l a c e d u r i n g

t h e e x p e r i m e n t .

T i m e s e r i e s of w i n d a n d c u r r e n t s p e e d as w e l l as d i r e c t i o n a r e d e p i c t e d in Figs. 4 a n d 5. A p o s i t i v e c o r r e l a t i o n b e - t w e e n w i n d s p e e d a n d c u r r e n t s e x i s t e d in the u p p e r layer, i.e., t h e s u r f a c e c u r r e n t s y s t e m w a s p r e d o m i n a n t l y w i n d - d r i v e n . C u r r e n t d i r e c t i o n a t "Max" a n d

" M o r i t z " , h o w e v e r , d i f f e r e d s o m e w h a t . T h i s is b e s t s e e n f r o m t h e p r o g r e s s i v e v e c t o r d i a g r a m m e s in F i g . 6. T h e s e d i a - g r a m m e s t r a c e the t h e o r e t i c a l p a t h of a w a t e r p a r t i c l e in time, a n d s h o u l d n o t b e r e g a r d e d as a m e a s u r e o f l a r g e - s c a l e or l o n g - t e r m w a t e r t r a n s p o r t , as t h e u n d e r l y i n g a s s u m p t i o n of a h o m o g e n e o u s c u r r e n t f i e l d is at b e s t h i g h l y r e - s t r i c t e d in t i m e a n d s p a c e . A t "Max", c u r r e n t s w e r e g e n e r a l l y p a r a l l e l to t h e c o a s t , w i t h n e t s u r f a c e t r a n s p o r t to t h e N W i n t e r r u p t e d b y i n t e r m i t t e n t r e v e r s a l s in f l o w d i r e c t i o n . A t " M o r i t z " , c u r r e n t s w e r e p r e d o m i n a n t l y w e s t e r l y , i n d i c a t i n g n e t s u r f a c e t r a n s p o r t o f w a t e r p a s t

" M o r i t z " f r o m NE to SW. H o w e v e r , s i m u l - t a n e o u s d a t a f r o m o t h e r c u r r e n t m e t e r s

(Simons, 1976).

B e c a u s e of t h i s l a r g e - s c a l e v o r t i c i t y , the r e s i d e n c e t i m e o f s u r f a c e w a t e r in the B o r n h o l m S e a is p r o b a b l y l o n g e r t h a n i n d i c a t e d b y d a t a f r o m t h e c u r r e n t m e - ters m o o r e d a t " M o r i t z " . H o w e v e r , a m o r e or l e s s s t e a d y a d m i x t u r e of o p e n B a l t i c S e a w a t e r f r o m t h e N o r t h a n d E a s t to t h e c i r c u l a t i n g w a t e r of t h e B o r n h o l m S e a m u s t h a v e o c c u r r e d d u r i n g t h e e x p e r i m e n t .

T h e l e v e l o f t h e h a l o c l i n e d i f f e r e d b y s e v e r a l m e t e r s a t t h e two s t a t i o n s , a l t h o u g h its l e v e l r o s e a n d f e l l i n t e r - m i t t e n t l y d u r i n g the e x p e r i m e n t as s h o w n by t h e t e m p e r a t u r e t i m e s e r i e s f r o m t h e

62 m a n d t h e 55 m d e p t h s at "Max" a n d

" M o r i t z " r e s p e c t i v e l y (Fig. 3). T h e a b - r u p t p e a k s a n d t r o u g h s in the c u r v e s for t h e s e d e p t h s d e m o n s t r a t e c h a n g e s in t h e h a l o c l i n e l e v e l . T h e t e m p e r a t u r e r e c o r d

f r o m 67 m a t " M o r i t z " s h o w e d t h a t t h e h a l o c l i n e w a s c o n s t a n t l y a b o v e this l e v - el e x c e p t for a 5 - d a y p e r i o d f r o m 3 to 8 M a y . T h u s , t h e t r a p s "Max" 32 a n d "Max"

47 w e r e s i t u a t e d t h r o u g h o u t in t h e i n t e r - m e d i a t e l a y e r b e t w e e n e u p h o t i c z o n e (25

to 30 m) a n d h a l o c l i n e a n d " M o r i t z " 65

(5)

V. S m e t a c e k et al.: P h y t o p l a n k t o n S e d i m e n t a t i o n 215

(D P 6

E 8

M Q x

2

10. Apr. 1975 20. 25.

J

Interval A J B

30. 5.Moy

,l,lIIll]i

10 15.

I c I D I E I F I

8

6

-g

~ 8

E 6 L

Moritz

r I l l l t

10 6

8t

10. Apr.1975 Interval A

~ l I l i l l [ I

De

I l l l l r l l l I l l l l l l l

20. 25. 30 5.May 10. 15.

o I E I F I

B I C I

Fig. 3. O n e - h o u r - a v e r a g e d t e m p e r a t u r e time s e r i e s f r o m d i f f e r e n t d e p t h s r e c o r d e d at "Max" and

"Moritz" f r o m 10 A p r i l to 16 May. V e r t i c a l l i n e s d e n o t e s a m p l i n g i n t e r v a l s (A - F) of i n d i v i d u a l g l a s s e s of s e d i m e n t traps. U n t i l iO May at "Max", t e m p e r a t u r e g r a d i e n t b e t w e e n 15 a n d 25 m levels w a s n e g l i g i b l e , t h e r e f o r e , the t e m p e r a t u r e s e r i e s from 25 m d e p t h is d e p i c t e d o n l y for the last pe- r i o d F (8 to 14 May). N o t e s h i f t e d s c a l e on o r d i n a t e f r o m "Moritz" 67 m

(6)

216 V. S m e t a c e k e t al.: P h y t o p l a n k t o n S e d i m e n t a t i o n

: L .:x I

I ~ 1 [ 1 1 1 tt~:15 cm sec -1 o f f s e t

, 4

15 9 - -

R mo

~5

[11II flll*~lI~ Ill tTll If~rl~ll I1tl

G)

E

uo

c~ 123

~80

m

m 15

E

~80 o

3 0 -

cO 15

E

("4

O2 r'~

ISO

0

10. Apr. 19?5 20. 25. 30. 5.MG 10. 15

Intervol A I B I C I D I E F I

Fig. 4. O n e - h o u r - a v e r a g e d t i m e s e r i e s of c u r r e n t s p e e d (SPD) in c m s e c -I a n d d i r e c t i o n (DIR) in de- g r e e true c u r r e n t r e c o r d e d a t "Max" f r o m 10 A p r i l to 17 May. T o d e m o n s t r a t e the g r e a t s i m i l a r i t y in c u r r e n t s p e e d s b e t w e e n 15 a n d 25 m d e p t h s , i n d i c a t i v e o f low s h e a r in the top layer, the s e r i e s f r o m t h e s e d e p t h s are c o m b i n e d in u p p e r m o s t diagram_me. T h e o r d i n a t e f o r 25 m d e p t h c u r v e is s h i f t e d 5 cm sec -I h i g h e r t h a n for c u r v e f r o m 15 m d e p t h to a v o i d o v e r l a p p i n g . D e c r e a s i n g c u r r e n t s p e e d a n d in- c r e a s i n g i n f l u e n c e o f t o p o g r a p h y w i t h d e p t h is r e f l e c t e d in diagraranes f r o m 62 m d e p t h . V e r t i c a ~ l i n e s d e n o t e s a m p l i n g i n t e r v a l s (A - F) o f i n d i v i d u a l g l a s s e s of s e d i m e n t t r a p s . D E G T C = d e g r e e true c u r r e n t

(7)

V. S m e t a c e k e t al.: P h y t o p l a n k t o n S e d i m e n t a t i o n 217

I - 30 g ul E 15 CD EL.

~d LU C]

rr"

C]

C] n tr~

rv

2

r~

u)

CD 360

180

30

15

360

ivloritz

E _c

F-I

180

15

360

180

3o

3 6 0

1800

10. Apt, 1975 20. 25. 30. 5. Ma 10. 15.

Intervel I A I B I C I D I E F I

I0

i

5 g

0 ~ E

Q Q_

U3

E

C3

E to c~

C3 E

CL

Fig. 5. O n e - h o u r - a v e r a g e d t i m e s e r i e s o f c u r r e n t s p e e d (SPD) in c m sec-i a n d d i r e c t i o n (DIR) r e - c o r d e d a t " M o r i t z " f r o m iO A p r i l to 16 M a y t o g e t h e r w i t h w i n d d a t a ( s p e e d i n m sec-l) r e c o r d e d at L o c a t i o n I. W i n d a n d c u r r e n t d i r e c t i o n s a r e g i v e n u n i f o r m l y a c c o r d i n g to o c e a n o g r a p h i c u s a g e (O o = t o w a r d s N)

(8)

218 V. Smetacek et al.: Phytoplankton Sedimentation

~cix 15m Moritz

Ap: 75

15m

_ ~ ')13.Ap~

1

t H LOKM N l~ t t LOKM

/

Max 62m Moritz

N t

67m

t 40 KM

13 Apr. 75

U

I I 20 KiM

Fig. 6. Progressive vector diagrammes from 15 m levels and bottom_most current meters at "Max" and

"Moritz". Data were averaged hourly before plotting. Dashes indicate 2-day intervals from 11/12 April to 14 May 1975. Note different scale for "Moritz" 67 m. (U and V = East and North components of velocity, respectively)

w a s l o c a t e d , w i t h the o n e e x c e p t i o n , c o n - a d e c r e a s e in w i n d s p e e d . T h e low z o o - s t a n t l y b e l o w it. C u r r e n t s p e e d s g e n e r a l - p l a n k t o n b i o m a s s , w h i c h r a n g e d b e t w e e n ly d e c r e a s e d w i t h d e p t h , a l t h o u g h c o n - 0 . 4 0 a n d 0 . 4 5 g C m -2, w a s e q u i v a l e n t to s i d e r a b l e s p e e d s w e r e s o m e t i m e s r e c o r d e d

at the h a l o c l i n e l e v e l . A t b o t h s t a t i o n s , c u r r e n t s b e l o w t h e h a l o c l i n e w e r e m u c h s l o w e r a n d g e n e r a l l y in a n o p p o s i t e d i - r e c t i o n to t h o s e in the s u r f a c e l a y e r s

(Fig. 6).

A n c h o r Station

T h e e u p h o t i c z o n e e x t e n d e d to a b o u t 25 to 30 m and, b e f o r e 19 A p r i l , w a s n o t l i n k e d to a n y m e a s u r a b l e d e n s i t y s t r a t i - f i c a t i o n a b o v e the h a l o c l i n e . A l a r g e p h y t o p l a n k t o n p o p u l a t i o n (3 g C m -2 a n d 110 m g c h l o r o p h y l l a m-2) w a s f a i r l y e v e n l y d i s t r i b u t e d in the u p p e r 30 m at the s t a r t of s a m p l i n g a t the a n c h o r s t a - tion. P h y t o p l a n k t o n c o n c e n t r a t i o n s w e r e m u c h l o w e r in t h e i n t e r m e d i a t e l a y e r b e -

t w e e n the e u p h o t i c z o n e a n d the h a l o - c l i n e , a n d b e l o w t h e l a t t e r h a r d l y a n y c e l l s w e r e p r e s e n t e x c e p t for o n e b r i e f o c c a s i o n .

T o t a l n e t p r i m a r y p r o d u c t i o n m e a s u r e d d u r i n g t h e 10 d a y s w a s 12.6 g C m -2, a n d h i g h e s t p r o d u c t i o n v a l u e s w e r e r e c o r d e d on the 21 A p r i l (2.4 g C m - 2 ) , c o n c o m i - t a n t w i t h an i n c r e a s e in i r r a d i a t i o n a n d

r o u g h l y 4% of P O C in t h e w a t e r c o l u m n .

S e d i m e n t - T r a p Material

D r y w e i g h t of t h e s e t t l e d m a t e r i a l a n d its o r g a n i c c a r b o n , p h y t o p l a n k t o n c a r b o n a n d c h l o r o p h y l l a e q u i v a l e n t c o n t e n t c o l - l e c t e d by the d i f f e r e n t t r a p s d u r i n g t h e 6 p e r i o d s a r e d e p i c t e d in Figs. 7 a n d 8.

A l l v a l u e s a r e in m g m - 2 d a y - 1 .

S e v e r a l s t r i k i n g f e a t u r e s r e g a r d i n g q u a n t i t y a n d q u a l i t a t i v e c o m p o s i t i o n of

the m a t e r i a l c o l l e c t e d a r e a p p a r e n t f r o m Figs. 7 a n d 8.

D i s t i n c t t i m e s e q u e n c e s in the a m o u n t c o l l e c t e d by the t r a p s at the two s t a - t i o n s a r e e v i d e n t . A t "Max", l o w s e d i m e n - t a t i o n r a t e s f r o m 10 to 20 A p r i l p r e - c e d e d a 2- to 3 - f o l d i n c r e a s e f r o m 20 A p r i l to 8 M a y , f o l l o w e d b y a d e c l i n e a f - ter 8 M a y . A t " M o r i t z " , on the o t h e r hand, b o t h t r a p s s h o w a s t e a d y i n c r e a s e in s e d i m e n t a t i o n r a t e f r o m 20 A p r i l o n - w a r d s , w i t h e x c e p t i o n a l l y h i g h v a l u e s f r o m 8 to 14 M a y . T h e l o w v a l u e s r e - c o r d e d b y " M o r i t z " 65 f r o m 2 to 8 M a y a r e a n e x c e p t i o n to this t r e n d .

(9)

v. Smetacek et al.: Phytoplankton Sedimentation 219

T h e l o w e s t t r a p s at b o t h s t a t i o n s c o l - the u p p e r trap. T h i s is i n d i c a t e d b y l e c t e d c o n s i d e r a b l y m o r e m a t e r i a l t h a n l o w e r P O C : P O N a n d P O C : c h l . a e q u i v , r a - the u p p e r t r a p s . T h i s a p p e a r s m o r e c l e a r - t i o s a n d a h i g h e r p e r c e n t a g e c o n t r i b u - ly in T a b l e 2, w h e r e t o t a l q u a n t i t i e s of t i o n of P P C to POC. T h e l o w e r P O C p e r - d i f f e r e n t p a r a m e t e r s f o r the e n t i r e p e r i - c e n t a g e o f d r y w e i g h t is p r o b a b l y d u e to od f r o m the d i f f e r e n t t r a p s a r e g i v e n .

A t " M o r i t z " , a c o n s i s t e n t d i f f e r e n c e in the q u a l i t y of the m a t e r i a l c o l l e c t e d by the t w o t r a p s is e v i d e n t (Fig. 9).

T h e p a r t i c u l a t e m a t e r i a l s e t t l i n g i n t o the l o w e s t t r a p ( " M o r i t z " 65) a p p e a r e d to b e " f r e s h e r " t h a n t h a t c o l l e c t e d b y

the r e l a t i v e l y l a r g e r n u m b e r of d i a t o m c e l l s a n d t h e i r r e m a i n s w h i c h c o n t r i b - u t e d i n o r g a n i c m a t t e r in the f o r m of s i l i c a f r u s t u l e s .

C o r r e l a t i o n s b e t w e e n d r y w e i g h t (DW) of the p a r t i c u l a t e m a t t e r a n d its o r g a n - ic c a r b o n (POC), p h y t o p l a n k t o n c a r b o n

4000 200' F60 4

MAX 32

/

0 0 0 " - 0

1500-

1000 -

500-

1500-

-1000 - +- Z

'E

> ,

6,X 47 300-

200-

1oo-

o

I1

M A X 60 300-

I

D~'y weight (m 9 m -2 day -1) D POC (mg m-2day -1) B PPC (mg Cm-2 day "] )

~] ChL _a equi~z {rag m-2day -1)

200-

0 -

o

A B D

-60

E F

(10.-14.Z3Z'.) (-14.-20,TV,) (20,-26.TV.) (26.Z-2?Z,) (2,-8.~.) (&-I4.Y.)

-90 -6

-60 -z,

I

30 -2

o-J-o

- 9 0 6

)

Fig. 7. Dry weight, particulate organic (POC) and phytoplankton (PPC) carbon and chlorophyll a equivalent of sedimented material collected by traps "Max" 32, "Max" 47 and "Max" 60 during 6 sam- pling intervals A - F. Water depth was 64 m

(10)

2 2 0 V. S m e t a c e k et al.: P h y t o p l a n k t o n S e d i m e n t a t i o n

1000

500-

2000-

1500-

4000- T

-o

5

>.

u3

~~176 I MORITZ 51 60

1

300-

200-

)

0

MORITZ 65

I o r y weight (m 9 m-2day -1) B POC (m s m-2day -1) BPPC (mg Cm-2day -1}

BCh[. a_ equiv. (mg m-2day -1)

A B C D E

(12.- 14.]3[.) (14.- 20.IZ.) (20,-26.TV.) (26.IE.-2.V.) (2. - 8.1/,) F (8- I & u

-'/20

-90

-60

s E

o -2

-8

9

4[

0

F i g . 8. D r y w e i g h t , p a r t i c u l a t e o r g a n i c ( P O C ) a n d p h y t o p l a n k t o n ( P P C ) c a r b o n a n d c h l o r o p h y l l a e q u i v - a l e n t o f s e d i m e n t e d m a t e r i a l c o l l e c t e d b y t r a p s " M o r i t z " 5 1 a n d " M o r i t z " 6 5 d u r i n g s a m p l i n g i n t e r - v a l s A - F . W a t e r d e p t h w a s 7 0 m

Table 2. Total quantities of sedimented material collected in traps for time period i0 April to 14 May, 1978. DW: Dry weight; Zoopl.: zooplankton; POC, PON: particulate organic carbon and nitrogen, respectively; PPC: phytoplankton carbon; chl. a equiv.: chlorophyll a equiv- alents

Trap no. and DW <300 ~m Zoopl. >300 Dm POC <300 ~m PON <300 ~m PPC chl. a equiv.

distance from (g m-2) (g C m -2) (g m-2) (g m-2) (g m-2) (g m-2) bottom

Max 32 (32 m) 11.30 0.58 2.274 0.301 0.392 0.o13

Max 47 (17 m) ii.48 a 1.38 2.697 0.317 0.357 O.030

Max 60 (4 m) 32.97 2.84 6.220 0.625 0.677 0.083

Moritz 51 (19 m) 9.86 1.67 2.671 0.289 0.369 O.O15

Moritz 65 (5 m) 25.04 0.44 3.403 O.410 0.984 0.037

asample "Max" 47 A not included.

(11)

V. Smetacek et al.: Phytoplankton Sedimentation 221

z,0"

30-

20.

10-

0

PPC as~ . . . N ~ x 47, POCI of P0C ... M n x G 0 - - - /C Ch[aequiv

%00

~ t - . ~..~ -300

sl/~

-200

~..-- .. . . 7 < 1

, / \ .... .A / /'. -too

~ i i i i o

A B C D E F

(10.-1417) (20 -20.]7i (2.-0.7") (14.-20.17) (26~7-77] (0.-14.7)

POC/ . . . Mox a 7 - - POCes%

/P0 N ... Max 6 0 " - " of [IW

lS 40

i llil. .'i i Z 1 - 3 0

'k .<"

0 i i i i i

A B C D E F

{10. q4.]7) (20~26E) (2.-8.V) -20

-10

0

(14-70.;7i (2617-2.Z) (0-127)

PPC ~s ~ - . - Mofitz 51 ~ P06/

DfPOC ... Moritz 6 5 - - - / Chl.el equiv.

40 i / 400

30- I I ... 9 / \ ,., 400

\ \ ,i

... .i /

' , ~ x

20 - " % ~ -200

'...

lo- ....:: ~.~./ / x -~00

"4

o i i i i i o

A 8 C O E F

(12.-1&.I~.) (20.-26.~.) (2.-8.V.I (14.-20.~) (2&-~-2.V.) (a.-l&.~.)

POC/

----

Moritz 5 1 ~ POCas~

/PO N ... Moritz 6 5 " - - of [}W

15 I / ' 0

10 \ \ ' \ 9 -- ' . \ / . . . .

A B C 0 E F

(12.-1417.) (20.-26.17) (7.-0.~) (14.-20~) (25.1V-77) (8.-Ill.V) Fig. 9. Ratios of some properties of sedimented matter from "Max" 47 and "Max" 60, "Moritz" 51 and "Moritz" 65. Phytoplankton carbon (PPC) as percentage of particulate organic carbon (POC), ratio of particulate organic carbon (POC) to chlorophyll a equivalent (chl. a equiv.), par- ticulate organic carbon to nitrogen ratio (POC/

PON), and particulate organic carbon (POC) as percentage of particulate dry weight (DW)

Table 3. Linear regression between dry weight (DW) and organic carbon (POC), phytoplankton car- bon (PPC) and chlorophyll a equivalent (chl. a equiv.) of material from the traps and from wa- ter column (seston) in same units, where r = re- gression coefficient, a = intercept, b = slope according to Y = a + b X

d i f f e r e n t g l a s s e s at d i f f e r e n t d e p t h s i n d i c a t e s a c o m m o n o r i g i n . P l a n k t o n a n d d e t r i t u s s e d i m e n t i n g o u t of t h e w a t e r c o l u m n as w e l l as p a r t i c u l a t e m a t t e r r e - s u s p e n d e d f r o m t h e s e d i m e n t s u r f a c e a r e t h e o n l y two p o t e n t i a l s o u r c e s if t e r - r e s t r i a l i n p u t is n e g l i g i b l e , w h i c h a p - p e a r e d to b e t h e c a s e h e r e .

S u r f a c e s e d i m e n t f r o m t h e B o r n h o l m B a s i n h a s an o r g a n i c c a r b o n a n d chl. a e q u i v , p e r c e n t a g e of D W of 3% a n d 0 . 0 1 % , r e s p e c t i v e l y ( P l a n k t o n G r o u p S F B 95, u n - p u b l i s h e d d a t a ) . T h e c o r r e s p o n d i n g v a l - u e s f r o m s e d i m e n t t r a p m a t e r i a l w e r e m u c h h i g h e r , a n d r a n g e d b e t w e e n 14 - 2 7 % a n d O . 1 2 - O . 2 6 % r e s p e c t i v e l y . F r o m t h e s e v a l u e s , a n d f r o m t h e c o m p a r i s o n b e t w e e n

X Y r a b n

Trap material DW:POC DW:PPC

DW:chl. a equiv.

Seston DW:POC DW:PPC DW:chl. a

0.90*** 22.7 0.144 29

0.88*** -1.8 0.033 29

0.77*** -0.15 0.002 29

0.76*** 22.3 O.199 iii

O.77"** -24.9 O.130 106 O.61"** 0.49 0.002 I19

***Correlations significant at o.1% level.

(PPC) a n d c h l o r o p h y l l a e q u i v a l e n t chl.

a e q u i v . ) p r o v e d to b e h i g h l y s i g n i f i - c a n t w h e n the c o n t e n t s of a l l the g l a s s e s

(n = 29) w e r e c o m p a r e d (Table 3). "Max"

47, 10 to 14 A p r i l , w a s n o t i n c l u d e d b e - c a u s e its u n u s u a l l y h i g h d r y w e i g h t w a s

c a u s e d b y i m p u r i t i e s . T h i s r e l a t i v e h o m o - f r o m t h e w a t e r c o l u m n is m o s t p r o b a b l y g e n e i t y of t h e m a t e r i a l c o l l e c t e d b y t h e d u e to the f a i r l y l a r g e q u a n t i t i e s of

s e d i m e n t t r a p m a t e r i a l a n d s e s t o n f r o m the e n t i r e w a t e r c o l u m n in T a b l e 3, it is o b v i o u s t h a t p a r t i c u l a t e m a t t e r c o l - l e c t e d b y the t r a p s w a s i n d e e d s e s t o n f r o m t h e w a t e r c o l u m n , s i n c e e v e n a m i n o r a d d i t i o n of r e s u s p e n d e d m a t t e r w o u l d h a v e s i g n i f i c a n t l y a l t e r e d the c o m - p o s i t i o n of the m a t e r i a l in t h e t r a p s . B e s i d e s , the u p p e r t r a p s w e r e o u t of r e a c h of r e s u s p e n d e d m a t e r i a l b e c a u s e of the p y c n o c l i n e , b u t t h e y n e v e r t h e l e s s c o l l e c t e d e s s e n t i a l l y t h e s a m e m a t e r i a l as t h e l o w e r t r a p s , s i t u a t e d o n l y 5 m a b o v e the b o t t o m .

It c a n b e s e e n f r o m T a b l e 3 t h a t the s l o p e s of t h e r e g r e s s i o n l i n e s f o r D W : c h l . a f r o m s e s t o n a n d t r a p m a t e r i a l a r e v e r y s i m i l a r , a l t h o u g h m u c h m o r e chl. a e q u i v , w a s p r e s e n t in t h e g l a s s e s t h a n c o u l d be a c c o u n t e d for b y c e l l c o u n t s , i n d i c a t i n g a h i g h e r p e r c e n t a g e of p h y t o d e t r i t u s to t o t a l D W in t h e g l a s s e s c o m p a r e d to s e s t o n in the w a t e r c o l u m n . S i m i l a r l y , the l o w e r P O C c o n t e n t of D W in the t r a p s c o m p a r e d to t h e v a l u e

e m p t y d i a t o m f r u s t u l e s c o l l e c t e d b y t h e t r a p s .

T h e s p e c i e s c o m p o s i t i o n of p h y t o p l a n k - ton c o l l e c t e d in the t r a p s r e m a i n e d f a i r - ly c o n s t a n t t h r o u g h o u t t h e 5 w e e k s , a n d w a s m u c h the s a m e as t h a t r e c o r d e d in the w a t e r c o l u m n . T h e d i a t o m S k e l e t o n e m a costatum, w i t h c h a i n s c o n t a i n i n g u p to 8 c e l l s , w a s b y far the m a j o r c o n t r i b u - t o r to the b i o m a s s , a l t h o u g h l a r g e r c e n - t r i c d i a t o m s w e r e a l s o of i m p o r t a n c e .

A l t h o u g h t h e m a t e r i a l c o l l e c t e d by the t r a p s w a s r e l a t i v e l y h o m o g e n e o u s , the t e m p o r a l v a r i a t i o n s in the r a t i o s for P O C : P O N , P P C : P O C , P O C : c h l . a e q u i v . a n d D W : P O C f o l l o w d i s t i n c t t r e n d s , as s h o w n b y i n d i v i d u a l g l a s s e s of the d i f -

(12)

229 v. Smetacek et al. : Phytoplankton Sedimentation

f e r e n t traps, i n d i c a t i n g s t e a d y c h a n g e s c a t e d a l m o s t c o n t i n u o u s l y in the o x y g e n - in the c o m p o s i t i o n of the m a t e r i a l col- d e f i c i e n t layer b e l o w the h a l o c l i n e , zoo- l e c t e d by the traps d u r i n g the i n v e s t i g a - p l a n k t o n c o l l e c t e d h e r e was p r o b a b l y the tion period. F r o m Fig. 9 it can be seen

that the r a t i o s for P O C : P O N , POC:chl. a equiv., and for POC as p e r c e n t a g e of DW s h o w the same t r e n d s and are i n v e r s e l y r e l a t e d to PPC p e r c e n t a g e of POC. This r e l a t i o n s h i p and the c o n s i s t e n c y of the t r e n d s at the d i f f e r e n t p o s i t i o n s is m o s t c l e a r l y seen in the c u r v e s r e p r e - s e n t i n g the l o w e s t traps.

A t "Max", low P O C : P O N r a t i o s f r o m 14 to 26 A p r i l c o i n c i d e w i t h the o n s e t of i n c r e a s e d s e d i m e n t a t i o n , w h e r e a s the v e r y h i g h r a t i o s f r o m 2 to 14 May are r e l a t e d to a s t a b i l i z a t i o n and d e c l i n e

r e s u l t of n a t u r a l m o r t a l i t y . The m a n g l e d and p a r t l y d e c o m p o s e d c o n d i t i o n of the c o r p s e s c o m p a r e d to t h o s e from o t h e r traps s u p p o r t e d this s u p p o s i t i o n . The s a m p l e c o l l e c t e d from 2 to 8 May also p r o v e d e x c e p t i o n a l w i t h r e g a r d to zoo- p l a n k t o n , d i s p l a y i n g a v a l u e h i g h e r than in o t h e r samples. In all, a total of 0.44 g C m -2, e q u i v a l e n t to 10% of sedi- m e n t e d POC, was c o l l e c t e d in the f o r m of

z o o p l a n k t o n c o r p s e s (-95% P s e u d o c a l a n u s elongatus) by "Moritz" 65 d u r i n g the en- tire period. This value, a l t h o u g h a lit- tle h i g h b e c a u s e of the h i g h v a l u e from in s e d i m e n t a t i o n . P r e s u m a b l y , m a j o r sedi- 2 to 8 May, can be r e g a r d e d as r e a l i s t i c . m e n t a t i o n of p a r t i c u l a t e m a t t e r p r o d u c e d

d u r i n g the s p r i n g b l o o m s t a r t e d d u r i n g the p e r i o d 14 to 20 April, w i t h P O C : P O N and POC:chl. a equiv, r a t i o s s i m i l a r to those r e c o r d e d f r o m the w a t e r column.

T h e r e a f t e r , w i t h the d e c l i n e of the s p r i n g bloom, the c h a r a c t e r i s t i c symp- toms of a p r o g r e s s i v e l y d e t e r i o r a t i n g p h y t o p l a n k t o n p o p u l a t i o n w e r e o b s e r v e d in the m a t e r i a l c o l l e c t e d by s u b s e q u e n t glasses. The d e c r e a s e in p h y t o p l a n k t o n p e r c e n t a g e of POC was a c c o m p a n i e d by in- c r e a s i n g P O C : P O N , POC:chl. a equiv, and D W : P O C ratios, the l a t t e r b e i n g p r e s u m - ably d u e to the c o r r e s p o n d i n g d e c l i n e in d i a t o m f r u s t u l e s .

A t "Moritz", m o d e r a t e s e d i m e n t a t i o n of p a r t i c u l a t e m a t t e r f r o m the s p r i n g b l o o m s t a r t e d f r o m 14 A p r i l onwards, w i t h m a j o r s e d i m e n t a t i o n t a k i n g p l a c e d u r i n g the l a s t p e r i o d (8 to 14 May). A d e c l i n e phase, s i m i l a r to t h a t r e c o r d e d at "Max" was not o b s e r v e d here, p r e s u m - ably b e c a u s e m a j o r s e d i m e n t a t i o n c o n t i n -

It s h o u l d be p o i n t e d o u t t h a t a r i g o r - ous s t a t i s t i c a l a n a l y s i s of the d a t a ob- t a i n e d f r o m s e d i m e n t traps is h a m p e r e d c o n s i d e r a b l y by the low n u m b e r of sam- ples s e c u r e d b y t h e s e i n s t r u m e n t s . Our m u l t i s a m p l e traps as s h o w n here, p e r m i t

a m u c h i m p r o v e d t e m p o r a l r e s o l u t i o n of s e d i m e n t a t i o n p r o c e s s e s . S o u t a r et al.

(1977) a r g u e the case for o b s e r v a t i o n s o b t a i n e d f r o m s e d i m e n t traps c o m p a r e d to d i s c r e t e w a t e r - c o l u m n m e a s u r e m e n t s . T h e y state: "An a l t e r n a t i v e to i n c r e a s i n g the n u m b e r of m e a s u r e m e n t s to g a i n s u f f i - c i e n t d a t a is to e n l a r g e the s c a l e of each m e a s u r e m e n t , m a k i n g each o b s e r v a - tion r e p r e s e n t a t i v e of a r e l a t i v e l y large area and s i g n i f i c a n t p e r i o d of time." The m a t e r i a l c o l l e c t e d by traps is e q u i v a l e n t to i n f o r m a t i o n i n t e g r a t e d over time and, to a c e r t a i n e x t e n t if h y d r o g r a p h i c a l d a t a are a v a i l a b l e , a l s o over space. H o w e v e r , the r e p r o d u c i b i l i t y of i n d i v i d u a l v a l u e s is still a m a t t e r of c o n j e c t u r e . As our d a t a r e f l e c t dis-

ued a f t e r 14 May. t i n c t c o n s i s t e n t trends and do not ap-

T h e m a t e r i a l c o l l e c t e d at "Moritz" 65 p e a r h a p h a z a r d , w e feel an i n t e r p r e t a - from 2 to 8 May d e v i a t e d b o t h q u a l i t a - tion of these r e s u l t s to be justified.

t i v e l y and q u a n t i t a t i v e l y from the t r e n d In this c o n n e c t i o n , a d i s c u s s i o n of the t y p i c a l for this trap. The d e e p e n i n g of s a m p l i n g e f f i c i e n c y of traps is a p r e - the h a l o c l i n e was r e c o r d e d d u r i n g this r e q u i s i t e to u n d e r s t a n d i n g such results.

period, and w a s a c c o m p a n i e d by a s u b s t a n -

tial i n c r e a s e in the c u r r e n t speeds t y p i - s a m p l i n g E f f i c i e n c y o f ~ e Sediment Traps cal for this depth. The e n v i r o n m e n t

a r o u n d "Moritz" 65 was s i m i l a r to that The p a r t i c u l a t e m a t t e r c o l l e c t e d by a a r o u n d "Moritz" 51 d u r i n g 5 days of this s e d i m e n t t r a p is f r e q u e n t l y r e g a r d e d as 6-day p e r i o d and the m a t e r i a l c o l l e c t e d q u a l i t a t i v e l y and q u a n t i t a t i v e l y r e p r e - by b o t h traps was s i m i l a r in b o t h q u a n - s e n t a t i v e of the n e t v e r t i c a l flux of

tity and c o m p o s i t i o n (Figs. 8 and 9). p a r t i c l e s a c t u a l l y s i n k i n g t h r o u g h the The large n u m b e r s of z o o p l a n k t e r s col- w a t e r a d j a c e n t to the trap (= a c t u a l l e c t e d b y the traps w e r e g e n e r a l l y in s e d i m e n t a t i o n rate). H o w e v e r , r e s u l t s good c o n d i t i o n . T h e y s e e m e d to h a v e ac-

t i v e l y e n t e r e d the traps and then b e e n k i l l e d and p r e s e r v e d by the c h l o r o f o r m in the g l a s s e s . A t "Max", t h e i r n u m b e r s also i n c r e a s e d w i t h depth, a p h e n o m e n o n m o s t p r o b a b l y r e l a t e d to t h e i r n o r m a l v e r t i c a l d i s t r i b u t i o n a b o v e the h a l o - cline. H o w e v e r , as "Moritz" 65 was io-

g a i n e d from e x p e r i m e n t a l w o r k show t h a t in the p r e s e n c e of h o r i z o n t a l w a t e r m o v e - ment, the q u a n t i t y of p a r t i c l e s d e p o s -

ited into a s e d i m e n t trap is d e p e n d e n t on a v a r i e t y of factors p e r t a i n i n g to shape and e n v i r o n m e n t of the trap

(Br~ckel, 1975; G a r d n e r , 1977; S t a r e - sinic et al. 1977) .

(13)

v. Smetacek e t a l . : Phytoplankton Sedimentation 223

G a r d n e r (1977) has s h o w n t h a t m o s t p h e n o m e n o n has a l s o b e e n o b s e r v e d e l s e - p a r t i c l e s e v e n t u a l l y s e t t l i n g into a w h e r e ( P a r s o n s e t a l . , 1977), and r e s u s - s e d i m e n t t r a p do n o t "fall" t h r o u g h the p e n s i o n of s e d i m e n t has b e e n r e g a r d e d as o p e n i n g but, b e c a u s e of t h e i r low s i n k - an i m p o r t a n t r e a s o n for a n o m a l o u s c o l - ing r a t e c o m p a r e d to h o r i z o n t a l c u r r e n t l e c t i o n of m a t e r i a l by t r a p s in the s a m e s p e e d s c h a r a c t e r i s t i c for m a r i n e e n v i r o n - w a t e r c o l u m n . As s h o w n a b o v e , r e s u s - m e n t s , e n t e r the t r a p in the p r o c e s s of

w a t e r e x c h a n g e w i t h t h e o u t s i d e . H i s r e - s u l t s i n d i c a t e t h a t the a m o u n t c o l l e c t e d by a n y s e d i m e n t t r a p w i l l d e p e n d on t h e i n t e r r e l a t i o n s h i p b e t w e e n (I) the r a t e of w a t e r e x c h a n g e b e t w e e n the trap a n d its e n v i r o n m e n t , a n d (2) t h e q u a n t i t y a n d s i n k i n g r a t e s of the p a r t i c l e s c o m - p r i s i n g the s e s t o n load in the w a t e r e n t e r i n g the trap. It is b e s t to d i s c u s s the c a u s e s a n d e f f e c t s of t h e s e two fac- tors i n d i v i d u a l l y , as t h e y a r e i n d e p e n - d e n t of e a c h o t h e r .

R a t e of W a t e r E x c h a n g e b e t w e e n T r a p a n d E n v i r o n m e n t

T h e r a t e of w a t e r e x c h a n g e b e t w e e n t h e t r a p a n d its s u r r o u n d i n g s is in t u r n d e - p e n d e n t on: (a) the o p e n i n g (cm 2) to v o l u m e r a t i o (cm 3) of t h e trap; (b) the i m m e d i a t e p h y s i c a l e n v i r o n m e n t ( c u r r e n t s p e e d s , d e n s i t y s t r a t i f i c a t i o n a n d tur- b u l e n c e s p e c t r u m ) a r o u n d the traps, t h e s e b e i n g p a r t l y the r e s u l t of h y d r o - d y n a m i c a l c h a r a c t e r i s t i c s of the traps.

(a) G a r d n e r (1977) f o u n d t h a t r e s u l t s o b t a i n e d f r o m o p e n f u n n e l s are a l w a y s u n d e r e s t i m a t e s of a c t u a l s e d i m e n t a t i o n . T h i s is p r o b a b l y b e c a u s e e x c h a n g e r a t e s and, t h e r e f o r e , t u r b u l e n c e levels, a r e

p e n d e d s e d i m e n t c o u l d n o t h a v e b e e n of i m p o r t a n c e in t h e p r e s e n t study.

L a t e r a l t r a n s p o r t of a l l o c h t h o n o u s p h y t o p l a n k t o n in d e e p e r l a y e r s t h a t b y - p a s s e d u p p e r t r a p s b u t r e a c h e d the l o w e r o n e s c a n a l s o be r u l e d out, p a r t i c u l a r l y in the c a s e of " M o r i t z " 65, w h i c h w a s s i t u a t e d in the s t a g n a t i n g w a t e r b e l o w the p y c n o c l i n e . T h e r e f o r e , the p h y t o - p l a n k t o n a n d its b r e a k d o w n p r o d u c t s col- l e c t e d in the l o w e r t r a p s m u s t h a v e r e a c h e d t h e s e t r a p s b y s i n k i n g o u t of the e u p h o t i c zone a n d t h r o u g h the p y c n o - c l i n e , p r e s u m a b l y p a s t the u p p e r t r a p s w i t h o u t s e t t l i n g into them. This w o u l d i n d i c a t e u n d e r e s t i m a t i o n of the a c t u a l s e d i m e n t a t i o n r a t e b y the u p p e r t r a p s , or an o v e r e s t i m a t i o n by t h e l o w e r ones.

R e m o v a l of a c c u m u l a t e d s e d i m e n t f r o m t h e t r a p s b y r e s u s p e n s i o n d u e to r a p i d cur- r e n t s as d e s c r i b e d b y B r ~ c k e l (1975) c a n d e f i n i t e l y be r u l e d o u t as w e l l , s i n c e the t r a p s w e r e d e s i g n e d s p e c i f i c a l l y to c o u n t e r a c t this e f f e c t , e v e n at c u r r e n t s p e e d s a b o v e 40 cm sec-1.

It is p o s s i b l e t h a t g r e a t e r a v e r a g e c u r r e n t s p e e d s a r o u n d the u p p e r t r a p s c o m p a r e d to the l o w e r o n e s i n c r e a s e d t h e r a t e of w a t e r e x c h a n g e b e t w e e n the t r a p s a n d t h e i r s u r r o u n d i n g s w h i c h , in this case, d i m i n i s h e d s e d i m e n t a t i o n into h i g h e r in s u c h v e s s e l s t h a n in b o t t l e s , t h e s e traps. H o w e v e r , as h y d r o g r a p h i c a l O u r t r a p s -- c o v e r e d f u n n e l s w i t h an o p e n - f e a t u r e s of the w a t e r s u r r o u n d i n g the ing to r i m - d i a m e t e r r a t i o of 1:2 a n d a t r a p s s o m e t i m e s c h a n g e d d r a s t i c a l l y d u r - s u r f a c e of o p e n i n g (cm 2) to v o l u m e (cm 3)

r a t i o of 1:4 - c a n n o t be c o m p a r e d w i t h o p e n f u n n e l s . G a r d n e r (1977) s t a t e s t h a t

" c o n t a i n e r s w i t h b o d y d i a m e t e r s g r e a t e r t h a n m o u t h o p e n i n g s o v e r t r a p s e d i m e n t b y a f a c t o r w h i c h d e p e n d s on the m o u t h to b o d y r a t i o , the c o n c e n t r a t i o n of p a r t i c - u l a t e m a t t e r a n d the g e o m e t r y of the t r a p . " T h i s a g a i n is d u e to l o w e r t u r b u - l e n c e l e v e l s in s u c h traps. T h e o p e n i n g to v o l u m e r a t i o ( G a r d n e r ' s m o u t h to b o d y ratio) of o u r t r a p s is e q u i v a l e n t to a c y l i n d e r w i t h a h e i g h t to w i d t h r a t i o of

ing t h e 6 - d a y c o l l e c t i o n p e r i o d , it is d i f f i c u l t to a s c e r t a i n the d i r e c t i n f l u - e n c e of i n d i v i d u a l h y d r o g r a p h i c a l e v e n t s on s e d i m e n t a t i o n r a t e s as d e t e r m i n e d by the traps. F r o m the o n e c a s e w h e r e an u n - u s u a l h y d r o g r a p h i c a l e v e n t c o i n c i d e d w i t h s u c h a p e r i o d ( " M o r i t z " 65, 2 to 8 May), a d i r e c t e f f e c t of e n v i r o n m e n t on s e d i m e n t a t i o n r a t e s is i n d i c a t e d .

In s p i t e of the u n c e r t a i n t y i n v o l v e d in c o m p a r i n g h y d r o g r a p h i c a l a n d s e d i m e n - t a t i o n r a t e data, it is c l e a r t h a t d i f - f e r e n c e s in c u r r e n t s p e e d s a l o n e w i l l 4:1, w h i c h is c o n s i d e r a b l y less t h a n n o t s u f f i c e to e x p l a i n the d i s t i n c t t e m - t h a t of the c o n t a i n e r s ( g e n e r a l l y b o t t l e - p o r a l s e q u e n c e s in the q u a l i t y a n d q u a n - shaped) t e s t e d b y G a r d n e r a n d o b s e r v e d t i t y of m a t e r i a l c h a r a c t e r i s t i c of all to o v e r t r a p s e d i m e n t . W e t h e r e f o r e f e e l

t h a t o u r t r a p s c a n n o t be r e g a r d e d p e r s e

as h a v i n g e i t h e r u n d e r e s t i m a t e d or e x a g - g e r a t e d a c t u a l s e d i m e n t a t i o n rates, as t h e y do n o t fall into e i t h e r of t h e c a t - e g o r i e s t e s t e d b y G a r d n e r .

(b) O u r d a t a d e m o n s t r a t e t h a t i d e n t i - cal t r a p s c o l l e c t e d as m u c h as 2 to 3 t i m e s m o r e m a t e r i a l w i t h i n c r e a s i n g d e p t h in the s a m e w a t e r c o l u m n . This

t r a p s at b o t h "Max" and " M o r i t z " . T e m p o - ral f l u c t u a t i o n s in t h e v e r t i c a l f l u x of p a r t i c l e s f r o m t h e e u p h o t i c zone m u s t be r e g a r d e d as the d e c i s i v e f a c t o r .

Q u a n t i t y a n d S i n k i n g R a t e s of P a r t i c l e s S e t t l i n g - O u t of E u p h o t i c Zone

H e r e a g a i n 2 m a j o r c o m p o n e n t s c a n be s i n g l e d out: (a) the a m o u n t of p a r t i c u -

Referenzen

ÄHNLICHE DOKUMENTE

Physical oceanography silicate, of dissolved inorganic carbon and alkalinity, of particulate organic carbon (POC) and of phytoplankton pigments such as chlorophyll, of isotopes

These algae form biomass (particulate organic carbon, POC), but unlike other phytoplankton they also form CaCO 3 (particulate inorganic carbon, PIC).. By mediating the depth export

Here, an ocean circulation, biogeochemical model that exploits the existing large sets of hydrographic, oxygen, nutrient and carbon data is presented and results for the

Any mechanism leading to CO 2 -dependent changes in the C:N ratios of sinking particles as simulated in our example study may counteract the predicted decreasing anthropogenic CO

Thus, for marine particle export uxes higher than Redeld and depth dependent carbon to nutrient ratios should be applied in biogeochemical mo- dels to achieve a more reliable

One of the most prominent anthropogenic perturbations, the pro- gressive increase in atmospheric CO 2 , affects the marine biota in various ways: indirectly through rising mean

(1998), who reported a systematic relationship between ␧ p and ␮ /[CO 2,aq ] (with different slopes but identical y-intercepts) in three eukaryotic microalgae, we observed

It is the main goal of our study to quantify the effect of variable growth rate on stable carbon isotopic frac- tionation at constant [COZ,nq] and compare p-depen-