• Keine Ergebnisse gefunden

A new method to generate and reduce one-loop amplitudes in OpenLoops 2

N/A
N/A
Protected

Academic year: 2022

Aktie "A new method to generate and reduce one-loop amplitudes in OpenLoops 2"

Copied!
37
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

A new method to generate and reduce one-loop amplitudes in OpenLoops 2

M. F. Zoller

in collaboration with F. Buccioni and S. Pozzorini

PSI, Villigen - Theoretical Particle Physics Seminar - 04/10/2017

(2)

Outline

I. Numerical amplitude generation in OpenLoops

II. New colour and helicity treatment

III. On-the-fly Reduction

IV. Numerical stability

V. Summary and Outlook

(3)

I. Numerical amplitude generation in OpenLoops

• Fully automated numerical algorithm for tree and one-loop amplitudes (h = helicity configuration): W0 = X

h

X

col

|M0(h)|2, W1 = X

h

X

col

2 Re

M0(h)M1(h)

, W1loop-ind = X

h

X

col

|M1(h)|2 Tree level and one-loop amplitudes are sums of Feynman diagrams

M0 = X

d

M(d)0 , M1 = X

d

M(d)1

• hybrid tree-loop recursion ⇒ high CPU efficiency and numerical stability

• NLO QCD and NLO EW corrections fully implemented

• OpenLoops is interfaced to Sherpa, Powheg, Herwig, Whizard, Geneva, Munich, Matrix

(4)

• OpenLoops 1 publicly available at openloops.hepforge.org [Cascioli, Lindert, Maierhöfer, Pozzorini]

Third party tools for the tensor integral reduction to scalar MIs:

Cuttools 1.9.5 [Ossola, Papadopoulos, Pittau ’08], OneLoop 3.6.1 [van Hameren ’10], Collier 1.2 [Denner, Dittmaier, Hofer ’16]

High tensor rank in loop momentum q ⇒ high complexity Stability in the IR region is challenging for 2 → 4 processes

Long-term goal: NNLO automation for 2 → 2 and 2 → 3 processes

2 loop amplitude construction and reduction needed ⇒ avoid high tensor rank complexity Numerical stability at NLO for 2 → 4 is crucial

• OpenLoops 2 to be published soon [Buccioni, Lindert, Maierhöfer, Pozzorini, M.Z.]

Amplitude construction and integrand reduction merged ⇒ On-the-fly Reduction

⇒ tensor rank ≤ 2 at all times

Stability issues addressed in a targeted way

(5)

Tree level amplitudes

M0 = X

d

M(d)0

Each diagram factorizes into a colour factor and a colour stripped amplitude M(d)l = Cl(d) A(d)l .

colour stripped A(d)0 are split into subtrees by cutting an internal line:

w

a

w

b for example

⇒ Numerical merging of subtrees performed recursively:

σa wa = σa

wb

wc

waα(ka, ha) = X

βγα (kb,kc)

ka2−m2a wbβ(kb, hb) wcγ(kc, hc)

with momentum ka =kb+kc and for all possible helicity configurations ha = hb+hc.

⇒ Once computed subtrees used in multiple Feynman diagrams at tree and loop level

(6)

One-loop amplitude

A(d)1 = Z dDq Tr

"

N(q, h)

#

D¯0D¯1· · ·D¯N−1 =

wN−1 wN

w1 w2

D0

D1

D2

DN−1

q cut open at D¯0

−−−−−−−−−−−→

"

N(q, h)

#βN

β0

=

wN

w1 βN

β0

propagators Di = (q +pi)2 m2i, spinor/Lorentz indices βi trace: contraction with δββ0

N, helicity configurations of subtree wi: hi helicity configurations of A(d)1 : h= h1 +. . .+hN

Numerator factorizes into segments:

"

N(q, h)

#βN

β0

=

" N

Y

i=1

Si(q, hi)

#βN

β0

=

"

S1(q, h1)

#β1

β0

"

S2(q, h2)

#β2

β1

· · ·

"

SN(q, hN)

#βN

βN−1

In the SM a segment (external subtree(s) + one loop vertex + propagator) is a q-polynomial of rank r 1:

3-point segment:

"

Si(q, hi)

#βi

βi−1

= βi1

wi

ki

Di

βi

=

"

Yσi

i

#βi

βi−1

+

"

Zν;σi

i

#βi

βi−1

qν

wiσi(ki, hi)

4-point segment:

"

Si(q, hi)

#βi

βi−1

= βi−1

wi1 wi2

ki1 ki2

D

βi

=

"

Yσi

1σ2

#βi

βi−1

wσi11(ki1, hi1)wiσ22(ki2, hi2) (hi = hi1 +hi2)

(7)

The OpenLoops dressing step

define partially dressed numerator Nn(q, ˆhn) = S1(q, h1)· · ·Sn(q, hn) (ˆhn = Pn

i=1hi)

β0

w

1

D

1

w

2

D

2

w

k

D

k

βk

w

k+1

D

k+1

w

N1

D

N1

w

N

D

0

βN

| {z }

dressed segments

| {z }

undressed segments

dressing step Nn(q,hˆn) = Nn−1(q,hˆn−1)Sn(q, hn) with initial condition N0 = 11 (rank Rn) performed numerically for the tensor coefficients in

N(q,hˆn) =

R

X

r=0

Nµ1...µrhn)qµ1 · · ·qµr,

"

Nµ1...µrhn)

#βn

β0

=

"

Nµ1...µrhn−1)

#βn−1

β0

"

Yσn

n

#βn

βn−1

+

"

Nµ2...µrhn−1)

#βn−1

β0

"

Zµn

1n

#βn

βn−1

wnσn(kn, hn)

(8)

Colour, helicity and diagram sums in OpenLoops 1

• for each diagram d and global helicity h configuration construct Tr

NN(d)(q, h)

• colour sum with Born: VN(d)(q, h) = 2

X

col

M0(h)C(d)

Tr

NN(d)(q, h)

• helicity sum: VN(d)(q) = X

h

VN(d)(q,h)

• sum same topology diagrams, reduce and evaluate integrals: Z dDq X

d

Tr

VN(d)(q,0)

D¯0, . . . ,D¯N−1

⇒ parent-child trick (recycling of colour-stripped partially dressed numerators)

NN−2 =

w1 wN2

−→

w1 wk wk+1 wk+2

= NN−2 SN−1 SN w1 wk wk+1 wk+2

= NN−2 S˜N−1

New idea: formulate the OpenLoops recursion directly for

the colour-helicity summed interference with the Born amplitude VN(d)(q,0).

(9)

II. New colour and helicity treatment

consider color-helicity summed numerator VN(q,0) = X

h

2

X

col

M0(h)C

NN(q,h) = X

h1...hN

2

X

col

M0(h)C

| {z }

=V0(h)

S1(q,h1)· · ·SN(q,hN)

and formulate recursion for partially dressed numerator with nested helicity sums Vn(q,ˇhn) = X

hn

. . . X

h2

X

h1

V0(h)S1(q,h1)

S2(q,h2)· · ·

Sn(q,hn) ∀ hˇn = hn+1 + · · · + hN

= X

h1...hn

X

col

wk+1

wN

w1 wk

LO ×

wk+1

wN

w1 wk

NLO

and a dressing step as Vn(q,ˇhn) = X

hn

Vn−1(q,ˇhn−1)Sn(q, hn)

⇒ Remaining helicity dof are those of the undressed segments!

Parent-child trick not possible (different colour factors) ⇒ OpenLoops Merging instead

(10)

The OpenLoops Merging

Sum partially dressed open loops Vn(q,hˇn) = P

αVn(α)(q,hˇn) with

• the same topology D¯0, . . . , D¯N−1

• the same undressed segments Sn+1, . . . , SN

since

P

α

Vn(α) Sn+1···SN−1

D¯0D¯1···D¯N−1

=

Vn¯ Sn+1···SN−1

D0D¯1···D¯N−1

Example:

N(1)

e1 e2 e3

Dn

wn+1

Dn+1

wN

D0

+

N(2)

e1 e2 e3

Dn

wn+1

Dn+1

wN

D0

+

N(3)

e3 e1 e2

Dn

wn+1

Dn+1

wN

D0

+

N(4)

e3 e1 e2

Dn

wn+1

Dn+1

wN

D0

=

N

e1 e2 e3

Dn

wn+1

Dn+1

wN

D0

B dressing steps for Sn+1, . . . , SN performed only once for the merged object B crucial for combination with on-the-fly integrand reduction (see later)

(11)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1

2

3

4

5

6

7

(12)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5

(13)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5

15

(14)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5

15

35

(15)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5

15

35

70

(16)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5

15

35

70

126

(17)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5

15

35

70

126

210

(18)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5 15 35 70 126 210 OpenLoops 330

complexity grows exponentially with tensor rank

(19)

Amplitude generation and tensor reduction in OpenLoops 1

Example:

n: # of attached external legs

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5 15 35 70 126 210 OpenLoops 330

complexity grows exponentially with tensor rank

Collier CutTools

Numerical tensor integral reduction to scalar MI

(20)

III. On-the-fly Reduction

Use reduction identities valid at integrand level [del Aguila, Pittau ’05]

qµqν = Aµν + Bλµνqλ

= Aµν−1 + Aµν0 D0 +

B−1,λµν + X3

i=0 Bi,λµνDi

qλ, Di = (q + pi)2m2i in order to reduce the factorized open loop integrand:

VN(q)

D0 · · ·DN = S1(q)S2(q)· · ·Sn(q)· · ·SN(q) D0D1D2D3 · · ·DN1

.

(21)

III. On-the-fly Reduction

Use reduction identities valid at integrand level [del Aguila, Pittau ’05]

qµqν = Aµν + Bλµνqλ

= Aµν−1 + Aµν0 D0 +

B−1,λµν + X3

i=0

Bi,λµνDi

qλ, Di = (q + pi)2m2i in order to reduce the factorized open loop integrand:

VN(q)

D0· · ·DN = S1(q)S2(q)· · ·Sn(q)· · ·SN(q) D0D1D2D3 · · ·DN1

integrand reduction applicable after n steps n 2 (independently of future steps!)

⇒ Vµν qµqν

D¯0 · · ·D¯N−1 = V−1µ qµ + V−1

D¯0 · · ·D¯N−1 + X3

i=0

Viµqµ + Vi

D¯0 · · ·D¯i−1D¯i+1 · · ·D¯N−1

q-dependence reconstructed in terms of 4 propagators ⇒ new topologies with pinched propagators

Aµν, Bλµν depend on external momenta p1, p2, p3

⇒ Compute with momentum space basis lµ = pµα pµ, lµ = pµα pµ, l , ll , l , l2 = 0

(22)

Amplitude generation and tensor reduction in OpenLoops 2

Example:

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5

15

35

70

126

210

330

(23)

Amplitude generation and tensor reduction in OpenLoops 2

Example:

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5 15 35 70 126 210 330

4 pinched subtopologies

(24)

Amplitude generation and tensor reduction in OpenLoops 2

Example:

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5 15 35 70 126 210 330

4 pinched subtopologies

(25)

Amplitude generation and tensor reduction in OpenLoops 2

Example:

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5 15 35 70 126 210 330

4 pinched subtopologies

4 double pinched subtopologies

(26)

Amplitude generation and tensor reduction in OpenLoops 2

Example:

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5 15 35 70 126 210 330

4 pinched subtopologies

4 double pinched subtopologies

OpenLoops + OFR

complexity associated with tensor rank remains small!

(27)

Amplitude generation and tensor reduction in OpenLoops 2

Example:

1 2 3 4 5 6 7 n

# of tensor coefficients rank

1 2 3 4 5 6 7

5 15 35 70 126 210 OpenLoops 1 330

4 pinched subtopologies

4 double pinched subtopologies

OpenLoops + OFR

complexity associated with tensor rank remains small!

(28)

Problem: huge proliferation of topologies due to pinching of propagators

Vµν qµqν

D¯0· · ·D¯N−1 =

V−1µ +

3

X

i=0

ViµD¯i

qµ

| {z }

rank 1

+V−1 +V0D¯0

| {z }

rank 0

+ V˜−1q˜2

| {z }

rational term

1

D¯0· · ·D¯N−1

w1 w2

∼ Vµνqµqν

w3 wN

=

w1 w2 w3 wN

V−1µqµ+ ˜V−1q˜2

+

w1 w2 w3 wN

V1µqµ

+

w1 w2 w3 wN

V2µqµ

+

w1 w2 w3 wN

V3µqµ

+

w1 w2 w3 wN

V0µqµ

⇒ factor ∼ 5 higher complexity after each reduction step!

(29)

Solution: OpenLoops Merging

• Contract pinched propagator between dressed segments

wi

Di

wi+1

Di+1

−→

wi wi+1

Di+1

• Merge with all (pinched and unpinched) diagrams with same topology and undressed segments

N(1)

wn wn+1

Dn+1

wn+2 wN

N(2)

wn wn+1

Dn+1

wn+2 wN

−→

N

wn wn+1

Dn+1

wn+2 wN

• No extra cost for pinched topologies after merging

• Algorithm:

Start with highest point diagrams → merging with lower point diagrams

OpenLoops 2 recursion step: dress one segment → reduce if necessary → merge

(30)

Technicalities

• Important: Cutting rule , i.e. choice of D¯0.

wN−1

wN

w1 w2

D0

D1

D2

DN−1

q

β0

w1

D1

w2

D2

wk

Dk

βk

wk+1

Dk+1

wN1

DN1

wN

D0

βN

⇒ One specific external particle always in w1.

⇒ Unique rule for dressing direction based on external particles in w2 and wN.

• Treatment of pinches of D¯0 = (q2m20) (p0 = pN = 0) w1

k1

wn+1 wN1

kN1

wN

kN

pN= 0

shift cut

−−−−→

wN

kN

w1

k1

wn+1 wN1

pN−1= 0 kN1

dress SN

−−−−→

wN

kN

w1

k1

wn+1 wN1

pN1= 0 kN1

contract

−−−−→

wN w1

kN k1

wn+1 wN−1

pN−1= 0 kN1

(31)

Final integral reduction

• reduce bubbles, rank-1 triangles and boxes with integral level identities [del Aguila, Pittau ’05]

• reduce rank-1 and rank-0 integrals with N ≥ 5 propagators to scalar boxes via simple OPP relations [Ossola, Papadopoulos, Pittau ’07]

V + Vµqµ

D¯0D¯1 · · ·D¯N−1 = NX−1

i0<i1<i2<i3

d(i0i1i2i3) D¯i0D¯i1D¯i2D¯i3

• use Collier 1.2 [Denner, Dittmaier, Hofer ’16] for scalar boxes, triangles, bubbles, tadpoles

(32)

IV. Numerical Stability

qµqν = Aµν−1 + Aµν0 D0 +

B−1,λµν + X3

i=0

Bi,λµνDi

qλ

Aµνi , Bi,λµν computed from reduction basis li(p1, p2) with i = 1,2,3,4 and third momentum p3

Aµνi = 1

γaµνi , Bi,λµν = 1

γ2

b(1)i,λ

µν

+ 1 γ

b(2)i,λ

µν

γ = γ(p1, p2) = 4 ∆(p1,p2)

p1p2±

∆(p1,p2) with ∆ = (p1p2)2p21p22

Severe numerical instabilities for γ ∝ ∆(p1, p2) → 0

• Freedom to choose two momenta from p1, p2, p3

⇒ maximize γ in on-the-fly reduction with N ≥ 4 propagators.

⇒ avoid small Gram determinants until triangle reduction

• For N = 3: identify problematic kinematic configurations and use targeted expansions.

(33)

Problematic kinematic configuration: t-channel diagrams with

q p1

q + p1

p2 p1 q + p2

p2

p21 = −p2 < 0,

p22 = −p2(1 + δ), 0 δ 1, (p2 p1)2 = 0,

= p2 2 δ

γ = −p2δ2

⇒ expand basis momenta li, reduction formula and scalar integrals in δ, e.g. massless rank 1:

Cµ = 2 δ2p2

B0(−p2,0,0)[−pµ1(1 + δ) +pµ2] +B0−p2(1 + δ),0,0[(pµ1 pµ2)(1 + δ)]

+1

δC0−p2,−p2(1 + δ),0,0,0[−pµ1(1 + δ) + pµ2]

= pµ1 + pµ2 2p2

−B0(−p2,0,0) + 1

+δ pµ1 + 2pµ2 6p2

B0(−p2,0,0)

+O(δ2) with C0(p1, p2, m0, m1, m2) Z dDq 1

D¯0D¯1D¯2 and B0(p1, m0, m1) Z dDq 1 D¯0D¯1

Implemented: direct expansions for the full reduction of rank ≤ 3 triangles to scalars for all relevant mass configurations up to and including O(δ2) [soon O(δ4)].

(34)

CPU performance: OpenLoops 1 + Collier/Cuttools vs OpenLoops 2

Runtimes (10−3s) per phase-space point

Last column: timing ratio between the fastest OL1+reduction library and OL2

OL1 (Collier) OL1 (Cuttools) OL2 OL1/OL2

uu¯ → tt¯ 0.2355 0.4034 0.2385 0.99

uu¯ → tt g¯ 4.259 7.066 3.490 1.2

uu¯ → tt g g¯ 1.154 · 102 1.612 · 102 0.7505 · 102 1.5

ggtt¯ 1.408 2.486 1.019 1.4

ggtt g¯ 35.03 50.23 22.93 1.5

ggtt g g¯ 1.330 · 103 1.519 · 103 0.6010 · 103 2.2

ud¯→ W+g 0.2972 0.6274 0.3255 0.91

ud¯→ W+g g 5.690 11.30 5.222 1.1

ud¯→ W+g g g 1.787 · 102 2.380 · 102 1.078 · 102 1.7

uu¯ → W+ W 0.2622 0.4140 0.1756 1.5

uu¯ → W+ W g 8.528 12.04 7.011 1.2

uu¯ → W+ W g g 2.441 · 102 2.817 · 102 1.278 · 102 1.9

Factor 2 speedup wrt OpenLoops 1 for nontrivial processes!

(35)

Stability of OpenLoops 1 and 2 in double precision: 2 → 3 processes (at √ ˆ

s = 1 TeV)

Probability of relative accuracy A or less (wrt OL1 + Cuttools in quad precision, 106 uniform random points)

Quadruple Precision OpenLoops1 + Collier OpenLoops1 + Cuttools OpenLoops2

-15 -10 -5 0 5

10- 6 10- 5 10- 4 0.001 0.010 0.100 1

accuracy

fractionofpoints(cumulative)

gg tt+g

Quadruple Precision OpenLoops1 + Collier OpenLoops1 + Cuttools OpenLoops2

-15 -10 -5 0 5

10- 6 10- 5 10- 4 0.001 0.010 0.100 1

accuracy

fractionofpoints

(c)umulative

udW++2g

• Hard cuts: pT > 50GeV and ∆Rij => 0.5 for final state QCD partons

(∆Rij = qiηj)2 + (φi φj)2, φi azimuthal angle, ηi rapidity)

• Behaviour in the tails crucial for real-life applications

• 1 to 3 orders of magnitude improvement wrt OL1 + Cuttols and Collier in DP

Excellent stability thanks to on-the fly reduction and minimal ∆-expansions Soft region under investigation ⇒ important for real-virtual part of NNLO

(36)

Stability of OpenLoops 1 and 2 in double precision: 2 → 4 processes (at √ ˆ

s = 1 TeV)

Probability of relative accuracy A or less (wrt OL1 + Cuttools in quad precision, 106 uniform random points)

Quadruple Precision OpenLoops1 + Collier OpenLoops1 + Cuttools OpenLoops2

-15 -10 -5 0 5

10- 6 10- 5 10- 4 0.001 0.010 0.100 1

accuracy

fractionofpoints(cumulative)

ggtt+2g

preliminary

Quadruple Precision OpenLoops1 + Collier OpenLoops1 + Cuttools OpenLoops2

-15 -10 -5 0 5

10- 6 10- 5 10- 4 0.001 0.010 0.100 1

accuracy

fractionofpoints

(cumulative)

udW++3g

preliminary

• Same hard cuts as for 2 → 3

• Orders of magnitude improvement wrt Cuttools and similar or better stability wrt Collier

• Further improvements in the tail under investigation

Very good stability thanks to on-the fly reduction and minimal ∆-expansions

(37)

V. Summary and Outlook

• New algorithm for construction and reduction of 1-loop ampitudes in a single recursion

• Drastic reduction of complexity at all stages of the calculation (rank ≤ 2)

• New colour and helicity treatment + OpenLoops merging ⇒ significant gain in CPU efficiency

• Same level of automation and same interface as OpenLoops 1

• Dedicated stability analysis possible in a single dressing and reduction tool

⇒ Simple targeted expansions provide excellent numerical stability in the hard regions

• future projects:

improvement of stability in real-virtual NNLO contributions (soft region) extension to 2 loops

Referenzen

ÄHNLICHE DOKUMENTE

Growth paths for twelve variables are exogenously specified as part of the model closure (Section 3.1), including seven flow variables (foreign direct investment inflows,

Introduction: The objective of this paper is to introduce a new population-based (stochastic) heuristic to search the global optimum of a (continuous) multi-modal

When 2-ethynyl pyridine was used as the starting alkyne, allenylidene complexes (10a,b, 11a,b) were obtained in which the terminal carbon atom of the chain forms part of

In a second step, as a special case of neighbourhood, a concept of reduction can be defined on the basis of the explanation of phenomena: a physical theory can be regarded as reduced

Scenario 3 demonstrated that the merger of a relatively poor (in terms of income per capita) two-individual population with a relatively rich (in terms of

Artur Mas, the Catalan premier, met Prime Minister Mariano Rajoy and failed to win support for a referendum or for fiscal autonomy (along the lines of the Basque Country

We observed significantly reduced sAA levels and heart rate increases in the PROP group in response to stress, with no effects of the drug on systolic or diastolic blood

The goal of the interface proposed in this paper is different as it was designed to facilitate standardised evaluation of object databases in terms of benchmarking or as a format