• Keine Ergebnisse gefunden

Das KIT - Medien - Presseinformationen - Archiv Presseinformationen - Farbspiele mit Graphen

N/A
N/A
Protected

Academic year: 2022

Aktie "Das KIT - Medien - Presseinformationen - Archiv Presseinformationen - Farbspiele mit Graphen"

Copied!
3
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

www.kit.edu

Monika Landgraf Pressesprecherin

Kaiserstraße 12 76131 Karlsruhe

Tel.: +49 721 608-47414 Fax: +49 721 608-43658 E-Mail: presse@kit.edu

Weiterer Kontakt:

Saskia Kutscheidt

Presse, Kommunikation und Marketing

Tel.: +49 721 608 - 48120 Fax: +49 721 608 - 43658

E-Mail: Saskia.Kutscheidt@kit.edu

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Seite 1 / 3

Eine optische Mikrokavität besteht aus zwei halbdurchlässigen Metallspiegeln, deren Abstand voneinander die Farbe des von Graphen erzeugten Lichts bestimmt. (Bild:

KIT)

Graphen besteht aus einer Lage von Kohlenstoffatomen, die wabenartig angeordnet sind – das besonders dünne und stabile Material birgt für Anwendungen in der Optoelektronik großes Potenzial. Forscher vom Karlsruher Institut für Technologie, der TU Darmstadt, der University of Cambridge und IBM haben nun optoelektronische Bauteile auf Basis von Graphen entwickelt. Mit ihnen können informationstechnische Systeme langfristig kleiner und leistungsfähiger werden. In der Zeitschrift Nature Communications stellen die Forscher ihre Ergebnisse vor.

Graphen kommt im Alltag vor: Das Material steckt beispielsweise – in milliardenfach übereinanderstapelten Schichten – in den Minen herkömmlicher Bleistifte aus Graphit. Als einzelne, atomare Schicht ist Graphen ein außergewöhnlich stabiles Material, welches Hitze und Strom besonders gut leitet und zugleich Licht aufnehmen (ab- sorbieren) und abgeben (emittieren) kann. Damit bietet das Material

Farbspiele mit Graphen

Forschern ist es gelungen, eine Lage von Kohlenstoffatomen an einen Hohlraum für Licht zu kop- peln und zum Leuchten anzuregen – KIT-Wissenschaftler sind an dem Projekt beteiligt

Presseinformation

Nr. 103 | sk | 20.06.2012

(2)

Presseinformation Nr. 103 | sk | 20.06.2012

www.kit.edu Seite 2 / 3

für Anwendungen in der Optoelektronik großes Potenzial. Die Opto- elektronik befasst sich mit der Wandlung von elektrischen in opti- sche Signale (Licht) und umgekehrt. Langfristiges Ziel der For- schung ist es, optoelektronische Komponenten wie Leuchtdioden, die als Schnittstelle zwischen elektrischen und optischen Kompo- nenten wirken, auf immer kleinere Dimensionen zu schrumpfen.

Dadurch können informationstechnische Systeme langfristig deutlich kleiner und leistungsfähiger werden.

Die aktuelle Arbeit des Forscherteams um Professor Ralph Krupke vom Karlsruher Institut für Technologie (KIT) und der TU Darmstadt, Professor Hilbert von Löhneysen (KIT), Professor Andrea Ferrari von der University of Cambridge und Dr. Phaedon Avouris vom For- schungslabor der Firma IBM zeigt, dass optoelektronische Bauteile, die Licht unterschiedlicher Wellenlängen selektieren, auch mit Gra- phen realisierbar sind.

Die technische Herausforderung für die Forscher lag darin, zwi- schen Graphen und Elektroden einen Kontakt herzustellen und das Material zugleich in eine optische Mikrokavität zu integrieren. Eine optische Mikrokavität ist eine Struktur im Mikrometerbereich, die aus durch zwei für Licht unterschiedlicher Wellenlängen halbdurchlässi- ge Spiegel mit einem genau definierten Abstand besteht. Mit dem genau festgelegten Spiegelabstand ist die Mikrokavität durchlässig für Licht einer bestimmten Farbe. Hierfür übertrug Dr. Antonio Lom- bardo (UC) Graphen auf das Zielsubstrat. Anschließend konnte der Physiker Michael Engel (KIT) durch komplexe Fabrikationsverfahren im Nano- und Mikrobereich Graphen mit Elektroden verbinden und zwischen zwei Silberspiegeln mit nur einigen Nanometer Abstand zueinander platzieren.

Durch das Anlegen einer elektrischen Spannung gelang es Dr. Ma- thias Steiner (IBM) und Michael Engel (KIT) Graphen zu erhitzen.

Ähnlich wie eine Glühbirne beginnt das Material, bei hohen Tempe- raturen Licht zu emittieren. Die Farbe des emittierten Lichts ist je- doch, im Gegensatz zum Weißlicht einer Glühbirne, nun durch die umgebende Mikrokavität bestimmt.

Das DFG-Zentrum für funktionelle Nanostrukturen hat die Arbeit unterstützt.

Literatur:

Michael Engel, Mathias Steiner, Antonio Lombardo, Andrea C. Ferrari,

(3)

Presseinformation Nr. 103 | sk | 20.06.2012

www.kit.edu Seite 3 / 3

Hilbert v. Löhneysen, Phaedon Avouris, and Ralph Krupke: Light–

matter interaction in a microcavity-controlled graphene transistor. Na- ture Communications, published online 19 Juni 2012 (DOI:

10.1038/ncomms1911).

Die online-Version des Artikels ist abrufbar unter:

http://www.nature.com/ncomms/journal/v3/n6/full/ncomms1911.html

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.

Diese Presseinformation ist im Internet abrufbar unter: www.kit.edu

Das Foto steht in druckfähiger Qualität auf www.kit.edu zum Download bereit und kann angefordert werden unter: presse@kit.edu oder +49 721 608-47414. Die Verwendung des Bildes ist ausschließlich in dem oben genannten Zusammenhang gestattet.

Referenzen

ÄHNLICHE DOKUMENTE

Ein interdisziplinäres Forscherteam des Karlsruher Instituts für Technologie (KIT) und des vom KIT gegründeten Helmholtz- Instituts Ulm (HIU) forciert die

„,DemocraCITIES‘ spielt auf ein bei der New Yorker Weltausstellung von 1939/40 präsentiertes Diorama an, das eine utopische Stadt der Zukunft darstellte: die ‚Democracity‘“,

Das Karlsruher Institut für Technologie (KIT) gehört zu den Ge- winnern im Wettbewerb „Forscher-Alumni-Strategien“ 2014: Mit seiner Projektidee zur Einbindung ehemaliger

In einer Messkampagne in Berlin wenden sie ihre Messmethode erstmals an: Mit fünf um die Stadt verteilten bodengebundenen Fernerkundungsinstrumenten messen sie sowohl die

In den letzten Jahren wurden verschiedene physikalische Tarnkappen entwickelt; optische Tarn- kappen beispielsweise lassen Gegenstände unsichtbar erscheinen,

Das neu entwickelte künstliche Knochenmark, das grundlegende Eigenschaften natürlichen Knochenmarks nachbildet, erlaubt es den Wissenschaftlern nun, die Wechselwirkungen

„Durch diese ‚Chipkarten-Föderation‘ können die Kunden der beiden größten Karlsruher Bibliotheken alle Dienstleistungen beider Einrich- tungen in vollem Umfang nutzen“, so

Das Karlsruher Kooperationsmodell geht davon aus, dass die Um- stellung der Lehrerbildung auf Bachelor- und Masterstudiengänge polyvalente Studienangebote ermöglicht,