• Keine Ergebnisse gefunden

Sensitivity to Uncertainty in a Phytoplankton-Oxygen Model for Lowland Streams

N/A
N/A
Protected

Academic year: 2022

Aktie "Sensitivity to Uncertainty in a Phytoplankton-Oxygen Model for Lowland Streams"

Copied!
27
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

SENSITIVITY TO UNCERTAINTY IN A PHYTOPLANKTON-OXYGEN MODEL FOR LOWLAND STREAMS

Gerrit van Straten Bart de Boer

April 1979 WP-79-28

Working P a p e r s are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily repre- sent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

A-2361 Laxenburg, Austria

(2)

GERRIT VAN STRATEN i s w i t h Twente U n i v e r s i t y of Technology, Enschede,

The N e t h e r l a n d s . A t p r e s e n t , h e i s a r e s e a r c h s c i e n t i s t a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems A n a l y s i s , S c h l o s s Laxenburg, 2361 Laxenburg, A u s t r i a .

BART DE BOER i s w i t h t h e P r o v i n c i a l Waterboard, Arnhem, The N e t h e r l a n d s .

(3)

PREFACE

During t h e p a s t d e c a d e , t h e r e h a s been c o n s i d e r a b l e i n t e r e s t i n t h e d e v e l o p - ment o f models f o r r i v e r and l a k e e c o l o g i c a l s y s t e m s . Much of t h i s i n t e r e s t h a s been d i r e c t e d t o w a r d s t h e c o n s t r u c t i o n of p r o g r e s s i v e l y l a r g e r and

more complex d e t e r m i n i s t i c s i m u l a t i o n models. However, w h i l e o u r e x p e r i e n c e i s growing, we b e g i n t o r e a l i z e t h a t o u r c o m p u t a t i o n a l c a p a b i l i t i e s

exceed by f a r t h e l e v e l of o u r knowledge o f , t h e complex p r o c e s s e s i n t h e r e a l world. F u r t h e r m o r e , i n e c o l o g i c a l modeling we seldoxn, i f e v e r , en- c o u n t e r d a t a of s u f f i c i e n t amount a n d a c c u r a c y t o a l l o w f o r a r i g i d c a l i - b r a t i o n o f o u r models. IIASA's R e s o u r c e s a n d Environment Area t a s k on Models f o r Environmental Q u a l i t y C o n t r o l and Management r e c o g n i z e s t h e problems o f c o p i n g w i t h model, d a t a , and p a r a m e t e r u n c e r t a i n t i e s a s a

c h a l l e n g i n g i s s u e f o r f u t u r e r e s e a r c h . T h i s p a p e r c a n be s e e n a s a p r e l i m i n a r y and modest c o n t r i b u t i o n i n t h i s d i r e c t i o n .

The s t u d y was done a t IIASA i n a l i m i t e d amount of t i m e and was f i n a l i z e d d u r i n g a s h o r t s t a y o f t h e second a u t h o r a t t h e I n s t i t u t e . The r e s u l t s were a l s o p r e s e n t e d a t t h e j o i n t colloquium o f t h e Commission f o r t h e S t u d y o f Water Management i n t h e P r o v i n c e o f G e i d e r l a n d , t h e N e t h e r l a n d s , and t h e S p e c i a l R e s e a r c h Area 79 o f t h e F e d e r a l Republic of Germany (Hannover Univer- s i t y of Technology) h e l d a t Wageningen, The N e t h e r l a n d s , from 14

-

1 6

F e b r u a r y 1979.

(4)
(5)

ABSTRACT

The a p p l i c a b i l i t y of water q u a l i t y models depends upon t h e q u a l i t y of t h e parameter e s t i m a t e s . A phytoplankton-oxygen model developed f o r c a n a l i z e d

lowland streams i s t e s t e d a g a i n s t data from a l i m i t e d plug following measure- ment program. The accuracy of t h e parameter e s t i m a t e s i s l i m i t e d by t h e

inaccuracy of t h e BOD measurement i n t h e presence of a l g a e . Other s o u r c e s of parameter u n c e r t a i n t i e s a r e : ( i ) s i t e dependency of parameters lumping complex subsystems, such a s t h e BOD decay r a t e c o e f f i c i e n t , having a higher value d i r e c t l y a f t e r a waste discharge, and ( i i ) time dependency of

lumped parameters, such a s t h e a l g a l death r a t e c o e f f i c i e n t . A s e n s i t i v i t y a n a l y s i s , based on t h e s o l u t i o n of t h e s e n s i t i v i t y equations of t h e model,

i s then performed t o provide some i n s i g h t i n t o t h e e f f e c t s of parameter u n c e r t a i n t i e s on model r e s u l t s . I t appears t h a t t h e growth and d e a t h r a t e s of algae dominate t h e phytoplankton, BOD and oxygen behaviour, and t h a t a s e p a r a t e e s t i m a t e i n t h e absence of a c c u r a t e BOD measurements i s d i f f i c u l t t o o b t a i n without a d d i t i o n a l information.

(6)
(7)

INTRODUCTION

The development o f d e c i s i o n making t o o l s i n t h e f i e l d of w a t e r q u a n t i t y a s w e l l a s q u a l i t y i s t h e p r i n c i p a l aim o f t h e i n t e g r a t e d r e g i o n a l w a t e r management s t u d y , c o n d u c t e d i n r e c e n t y e a r s by t h e Committee f o r t h e S t u d y o f Water Management i n t h e P r o v i n c e o f G e l d e r l a n d , t h e N e t h e r l a n d s (CWG).

The i n c l u s i o n o f w a t e r q u a l i t y problems i n t h e s t u d y was i n p a r t due t o t h e r e a s o n i n g t h a t a p o s s i b l e l i n k e x i s t s between s u r f a c e w a t e r q u a l i t y and i t s s u i t a b i l i t y f o r d r i n k i n g w a t e r p u r p o s e s . But even i f s u r f a c e w a t e r i s n o t t o b e u s e d , ground w a t e r b e i n g i n s u f f i c i e n t s u p p l y , t h e r e i s s t i l l a s t r o n g i n c e n t i v e t o s t u d y w a t e r q u a l i t y i n r e l a t i o n t o q u a n t i t y problems, s i n c e q u a l i t y i s a f f e c t e d by w a t e r management i n s e v e r a l ways

(van S t r a t e n , 1979)

.

The development of t h e w a t e r q u a l i t y m o d e l l i n g e l e m e n t i n t h e i n t e g r a t e d s t u d y i s b a s e d on s e v e r a l y e a r s of f i e l d r e s e a r c h i n t h e G e l d e r l a n d a r e a (mainly conducted a s s t u d e n t p r o j e c t s ) . T h i s work h a s f i n a l l y l e d t o t h e computer package GELQAM ( G e l d e r l a n d Water Q u a l i t y A n a l y s i s Model), a major p r o d u c t of t h e w a t e r q u a l i t y work. The package w i l l b e a v a i l a b l e f o r

i n t e r e s t e d u s e r s . GELQMI f o c u s e s on d i s s o l v e d oxygen a s r e l e v a n t

c h a r a c t e r i s t i c o f w a t e r q u a l i t y . A d e t a i l e d d e s c r i p t i o n o f GELQAM and i t s u n i q u e n u m e r i c a l f e a t u r e s i s g i v e n e l s e w h e r e ( d e Boer, 1 9 7 8 ) .

T h i s p a p e r d i s c u s s e s some o f t h e problems and d i f f i c u l t i e s m e t , and p a r t l y overcome, d u r i n g t h e s t u d y . I t i s o u r aim t o h i g h l i g h t u n c e r t a i n t i e s which are s t i l l a s s o c i a t e d w i t h r i v e r w a t e r q u a l i t y m o d e l l i n g nowadays. We d e v e l o p t h e i s s u e i n two ways: f i r s t w e d e a l w i t h u n c e r t a i n t i e s i n t h e e v a l u a t i o n o f model p a r a m e t e r s , and s e c o n d l y w e d i s c u s s t h e consequences o f s i m p l i f i c a t i o n s i n t h e p r o c e s s d e s c r i p t i o n . The e f f e c t o f inadequacy o f t h e d a t a i s a l s o i l l u s t r a t e d . We t h e n f o c u s on s e n s i t i v i t y a n a l y s i s a s a h e l p f u l t o o l i n t h e a p p r e c i a t i o n o f model r e s u l t s under t h e

u n c e r t a i n t i e s g i v e n .

SYSTEM CHARACTERISTICS

The r i v e r s and b r o o k s i n t h e G e l d e r l a n d a r e a a r e lowland streams, which are t y p i c a l o f r e l a t i v e l y f l a t a r e a s . Most o f them have been c a n a l i z e d f o r r e a s o n s o f w a t e r l e v e l c o n t r o l , mainly f o r a g r i c u l t u r a l p u r p o s e s . Only

(8)

some o f t h e u p p e r b r a n c h e s have r e t a i n e d t h e i r o r i g i n a l , more n a t u r a l shape.

From t h e h y d r o b i o l o g i c a l p o i n t o f view c a n a l i z a t i o n b r i n g s c o n s i d e r a b l e

changes. Water p l a n t s and s e s s i l e a l g a e c h a r a c t e r i z e t h e s h a l l o w , r e l a t i v e l y f a s t f l o w i n g n a t u r a l b r o o k s . I n t h e c a n a l i z e d s e c t i o n s less f a v o u r a b l e

c o n d i t i o n s p r e v a i l b e c a u s e of t h e h i g h e r l i g h t a t t e n u a t i o n i n t h e d e e p e r w a t e r column. I n s t e a d , e s s e n t i a l l y h i g h e r r e s i d e n c e t i m e s a l l o w f o r a n o t o r i o u s development o f p l a n k t o n i c a l g a e , e s p e c i a l l y d u r t n g d r y summer p e r i o d s . A l s o , a r e m a r k a b l e change o f macrophauna h a s been o b s e r v e d

(Tolkamp, 1975)

.

For s e v e r a l r e a s o n s t h e q u a l i t y work h a s been r e s t r i c t e d mainly t o t h e c a n a l i z e d s t r e a m s e c t i o n s o f b r o o k s and r i v e r s o f m o d e r a t e s i z e . One i m p o r t a n t j u s t i f i c a t i o n i s t h a t t h o s e s e c t i o n s a r e p r o b a b l y o f more

s i g n i f i c a n c e f o r p o t e n t i a l w a t e r u s a g e f u n c t i o n s t h a n t h e s m a l l e r , n a t u r a l brooks.

I n many r e s p e c t s c a n a l i z e d r i v e r s e c t i o n s behave s i m i l a r t o l a k e s . I t s h o u l d b e p o i n t e d o u t , however, t h a t t h e r i v e r system i s more s e n s i t i v e t o hydrodynamical v a r i a t i o n s . During s t o r m w a t e r p e r i o d s t h e c o n t e n t s of t h e r i v e r may b e r e f r e s h e d w i t h i n a few d a y s o r even h o u r s , s o t h a t t h e p l a n k t o n i c a l g a e a r e washed o u t . During s u b s e q u e n t d r i e r p e r i o d s a new d e v e l o p m e n t w i l l s t a r t , b u t t h e p o p u l a t i o n may b e d i f f e r e n t due t o a d i f f e r e n t s e e d f l u s h e d i n from t h e u p s t r e a m w a t e r c o u r s e s .

SHORT MODEL DESCRIPTION

I n g e n e r a l terms t h e r e s u l t s of o u r f i e l d s t u d i e s d i d n o t deny t h e p a t t e r n u s u a l l y r e p o r t e d f o r t h e oxygen b e h a v i o u r i n s t r e a m s . Thus, p r o c e s s e s i n f l u e n c i n g t h e d i s s o l v e d oxygen c o n t e n t a r e : decay o f b o t h c a r b o n a c e o u s and n i t r o g e n e o u s o x i d i z a b l e m a t t e r , consumption by t h e sediment l a y e r ,

consumption by a l g a l r e s p i r a t i o n , r e a e r a t i o n a n d , d u r i n g d a y l i g h t , p r o d u c t i o n by p h o t o s y n t h e s i s . C o n s e q u e n t l y , t h e s t a t e v a r i a b l e s i n t h e model a r e

d i s s o l v e d oxygen, C-BOD, N-BOD and a l g a e ( e x p r e s s e d a s c h l o r o p h y l l - a ) . I n a d d i t i o n , s o l u b l e r e a c t i v e phosphorus h a s been i n c l u d e d i n t h e s t a t e v e c t o r b e c a u s e of i t s dominant r o l e i n t h e c o n t r o l of a l g a l blooms. The pathways

f o l l o w e d i n t h e development o f t h i s s t r u c t u r e a r e o u t l i n e d i n van S t r a t e n (1977) and w i l l n o t b e r e p e a t e d h e r e .

(9)

The b a s i c e q u a t i o n s a r e g i v e n i n T a b l e 1. The model combines e l e m e n t s o f u s u a l d i s s o l v e d oxygen r i v e r models ( e . g . , O'Connor and D i T o r o , 19701,

w i t h e l e m e n t s frcm well-known a l g a l dynamics models f o r l a k e s ( e . g . , D i T o r o , O'Connor a n d Thomann, 1 9 7 4 ) .

The model a c c o r d i n g t o T a b l e 1 c o n s t i t u t e s a s e t o f s e c o n d o r d e r p a r t i a l d i f f e r e n t i a l e q u a t i o n s . The l o n g i t u d i n a l d i s p e r s i o n term i s n o t shown b u t h a s been i n c l u d e d , b e c a u s e d i s p e r s i o n e f f e c t s c a n b e s i g n i f i c a n t e s p e c i a l l y d u r i n g low f l o w c o n d i t i o n s . A more d e t a i l e d a n a l y s i s o f t h e r o l e o f d i s p e r - s i o n c a n b e f o u n d i n van S t r a t e n ( 1 9 7 9 ) .

The n u m e r i c a l s o l u t i o n o f t h e s e t o f e q u a t i o n s r e q u i r e s s p e c i a l a t t e n t i o n . D i s c r e t i z a t i o n i n b o t h t i m e a n d s p a c e i s n e c e s s a r y . U s u a l d i f f e r e n c e schemes w i t h f i x e d t i m e a n d s p a c e g r i d a p p e a r less p r o f i t a b l e f o r r i v e r s y s t e m s . The r e a s o n i s t h a t t h e r e l a t i v e l y low d i s p e r s i o n ( a s opposed t o e s t u a r i e s ) r e q u i r e s a n u n e c o n o m i c a l number o f g r i d p o i n t s f o r a c c u r a t e r e s u l t s . T h e r e f o r e , f o r GELQAM, a moving c e l l method h a s b e e n d e v e l o p e d

( d e Boer, 1977, 1 9 7 9 ) . The b a s i c f e a t u r e o f t h i s i s a c o o r d i n a t i o n t r a n s - f o r m a t i o n i n s u c h a way t h a t t h e s y s t e m i s s o l v e d a l o n g t h e s t r e a m - f l o w t r a j e c t o r i e s . I n o t h e r words, t h e model f o l l o w s a number o f c o n s e c u t i v e

' p l u g s ' o f w a t e r o n t h e i r t r a v e l downstream.

PARAMETER ESTIMATION

B e f o r e t h e model c a n b e u s e d it i s n e c e s s a r y t o h a v e estimates f o r t h e p a r a m e t e r s . F o r most o f them a f i r s t o r d e r e s t i m a t e c a n b e o b t a i n e d from t h e l i t e r a t u r e . However, p a r a m e t e r s f o r which t h e model i s v e r y s e n s i t i v e h a v e t o b e e v a l u a t e d i n t h e f i e l d . Sometimes it i s p o s s i b l e t o i s o l a t e p a r t o f t h e p r o c e s s e s b y d e s i g n i n g s p e c i a l e x p e r i m e n t s . An example o f t h i s

i s t h e well-known d a r k a n d l i g h t b o t t l e e x p e r i m e n t . H e r e r e a e r a t i o n , v e r t i c a l m i x i n g a n d , i n t h e d a r k b o t t l e s , p h o t o s y n t h e s i s are e x c l u d e d . The v e r t i c a l p r o f i l e o f t h e n e t oxygen p r o d u c t i o n i n t h e b o t t l e s e n a b l e s t h e i d e n t i f i c a t i o n o f t h e a l g a l g r o w t h s y s t e m a n d t h e e s t i m a t i o n o f i t s p a r a m e t e r s ( i . e . , I o r I a n d t h e p r o d u c t Ycakpa. Note t h e u n c e r t a i n t y

s k

i n t h e g r o w t h r a t e i t s e l f as a c o n s e q u e n c e o f t h e wide r a n g e o f oxygen y i e l d Yca: from 50 t o 250 mg oxygen p e r mg c h l o r o p h y l l - a , c f . van S t r a t e n , 1978)

.

(10)

-

algae C-BOD

N-93D dissolved

OSYgen

a l g a l a l g a l algal C-DOD N-EOD

respiration death dea?f d~%ay reaeration Sedirrrent

interaction

phosphorus

Oxygen l i m i t f u n c t i o n

Ck + C

L i g h t f u n c t i o n

e x t i n c t i o n a n d s e l f s h a d i n g : k = ko + at

I ( t ) = I o ( t ) e x p ( - keH) A

d a i l y l i g h t p a t t e r n :

s i n ( 2 n ( t d l - 1 2 ) / 4 8 ) + s i n ( 2 n ( t - 6 1 / 2 4 ) I ( t ) = 0 . 5 I

tot 48 c o s ( 2 n ( l 2 - t ) / 4 8 ) + tdl s i n ( 2 n ( t . -12)/48)

2n d l a1

where tdl = d a y l e n g t h ( h )

and Itot = daysum o f t o t a l r a d i a t i o n ( ~ / c m ~ ) Phosphorus l i m i t f u n c t i o n Pm =

-

Pk P + P

R e a e r a t i o n k r = c r Dm4 (Q/A)' H-3/2 ( 1 . 0 2 4 ) ~ - ~ '

where Q = f l o w r a t e ( m 3 / h ) 2 A = c r o s s s e c t i o n a l a r e a ( m ) H = d e p t h (m)

T e m p e r a t u r e f u n c t i o n s

S = S ( 1 . 0 6 5 ) ~ - ~ ' 20

C = 13.97 e x p ( - 0.021 T) where T = t e m p e r a t u r e (C)

TABLE 1 . hlodc 1 d e s c r i p t i o n

;?'st of si/mbols (:I:' parameter values given i n Table 2

(11)

In addition, information about the processes and the parameters can be obtained by following the course of the state variables in a plug of water moving downstream, a method most profitable if dispersion is relatively low.

If the system is simple, such as in the case of the classical BOD-DO model without algae, the evaluation of some of the parameters is straightforward.

For instance, the BOD-balance reduces to dL -

=

-kbL

d'r

where

'r

is the travel time, and k follows simply from b

LT

=

L o e x p (-kb'r)

However, if algae are present these simple relationships no longer hold firstly because the algae contribute to the measured BOD and secondly because detritus produced by the death of algae constitutes an additional term in the mass balance. Therefore, essentially, the ultimate parameter estimates are obtained by tuning the model to the measurements.

River Berkel Example

A

data set is available for the Berkel River in the eastern Gelderland area where a plug following program was conducted from 21st-25th June, 1976

(Hiemstra, 1978). Starting fromknownvalue ranges for the parameters, obtained from earlier measurements in other Gelderland regions, and with additional information from a dark and light bottle experiment, a parameter set was found that could explain the experimental results. Table

2

lists the full parameter set, with the appropriate changes to accommodate slight differences in model description between Table 1 and Hiemstra's original mode 1,

The River Berkel is a canalized river. The study reach covered two sections between weirs and was about 5.8

km

long.

A

discharge of mechanically treated sewage water (approx. 15 kg c-bod/h) is located

1

km

upstream from the study reach. Table

3

summarizes the main character-

istics. For reasons pointed out below, travel time and distance are

(12)

Nominal

Value U n i t

No P a r a m e t e r

growth r a t e a l g a e

Michaelis-Menton c o e f f i c i e n t f o r P

Pk e x t i n c t i o n c o e f f i c i e n t k

0

s e l f - s h a d i n g c o e f f i c i e n t

a

o p t i m a l l i g h t i n t e n s i t y I

S

a l g a l r e s p i r a t i o n r a t e c o e f f i c i e n t

a l g a l d e a t h r a t e c o e f f i c i e n t

k d a C-BOD decay r a t e c o e f f i c i e n t

kb 20 Michaelis-Menton c o e f f i c i e n t

gen Ck

d e t r i t u s p r o d u c t i o n e f f i c i e n c y

.,

A

BOD/algae y i e l d Y

l a n i t r i f i c a t i o n r a t e

kn 20

N/algae y i e l d Y

na

r e a e r a t i o n f a c t o r c

r 0 / a l g a e y i e l d

2

0 /ammonium y i e l d 2

s e d i m e n t oxygen consumption

S20 P / a l g a e y i e l d

P r e c y c l i n g e f f i c i e n c y X P P s e d i m e n t a t i o n r a t e c o e f f i c i e n t k

s f r a c t i o n P t h a t might s e d i m e n t X

P*

- - - - - -

TABLE 2 .

P m m e t z r description and nominal values for BerkeZ River simulation

(13)

c o u n t e d from t h e b e g i n n i n g o f t h e d i s c h a r g e s e c t i o n , i . e . t h e s e c t i o n

b e f o r e

t h e s t u d y r e a c h .

c r o s s e c t i o n d e p t h

3

t r a v e l t r a v e l r e a l t i m e

l o c a t i o n (m 1 (m) d i s t a n c e (m) t i m e ( h ) d a t e t i m e

w e i r 2/3 36 1.5 0 0 19-6 18.20

S TP 2050 26.5 20-6 20.50

53 2.0

w e i r 3/4 3090 42.7 21.6 13.00

55 . 1.9

7 0 2.3

w e i r 4/5

14 5380 84.7 23-6 7.00

1 . 2

w e i r 5/6 29 2.0 8920 105.9 24-6 4.20

TABLE 3.

C h a r a c t e r i s t i c s River BerkeZ/pZug foZZowing program

A q u a l i t a t i v e i d e a of t h e goodness o f f i t o b t a i n e d i n t h e p a r a m e t e r c a l i b r a t i o n p h a s e g i v e s F i g . 1 f o r a l g a e and F i g . 2 f o r d i s s o l v e d oxygen. C l e a r l y , q u i t e

l a r g e d i s c r e p a n c i e s between model and measurements e x i s t , s e e f o r i n s t a n c e t i m e 86h f o r a l g a e and t i m e 68h f o r d i s s o l v e d oxygen. I t i s i n t e r e s t i n g t o n o t e t h a t v e r y low f l o w c o n d i t i o n s p r e v a i l e d d u r i n g t h e measurement week, s u g g e s t i n g t h e p o s s i b i l i t y of o n l y l i m i t e d v e r t i c a l mixing e s p e c i a l l y

i n s t r e t c h e s f a r away from t h e w e i r . T h i s might e x p l a i n t h e h i g h oxygen c o n t e n t o b s e r v e d a t 68h, i . e . 14.00h c l o c k t i m e , b e c a u s e t h e sample i s t a k e n from t h e s u r f a c e where d u r i n g t h e day t h e h i g h e s t oxygen p r o d u c t i o n t a k e s p l a c e .

P a r a l l e l t o t h e p l u g f o l l o w i n g program an i n d e p e n d e n t i n p u t - o u t p u t program was a l s o done f o r 24 h o u r s . T h i s e n a b l e d t h e t e s t i n g o f t h e p a r a m e t e r s e t by comparing t h e o b s e r v e d o u t p u t t i m e series w i t h t h e o n e p r e d i c t e d by t h e model u s i n g t h e i n p u t series a s i n i t i a l c o n d i t i o n s . The r e s u l t was r e a s o n a b l e , a l t h o u g h i n t h e end t h e p r e d i c t e d c h l o r o p h y l l - a , and c o n s e q u e n t l y t h e d i s s o l v e d oxygen, were t o o high.

UNCERTAINTY

The B e r k e l R i v e r example i s a l s o s u i t a b l e f o r i l l u s t r a t i n g some u n c e r t a i n t i e s i n r i v e r q u a l i t y m o d e l l i n g . For t h i s p u r p o s e w e t a k e a l o o k a t b o t h model

(14)

BERKEL R I V E R MODEL

T R A V E L T I M E ( H I

F i g u r e 1.

Measurements (dots') and simulation for phytoplankton Arrow: waste discharge point

Bars

:

w e i r s

BERKEL R I V E R MODEL

T R A V E L T I M E ( H I

F i g u r e 2 .

Measurements ( d o t s ) and simulation for d i s s o l v e d oxygen

(15)

and measurement r e s u l t s f o r carbonaceous BOD ( F i g . 3 ) . An immediate d i f f i c u l t y a r i s e s : what i s (C-)BOD? The model r e q u i r e s t h e u l t i m a t e BOD o f a l l o x i d i z a b l e o r g a n i c m a t t e r e x c e p t l i v i n g a l g a e . I n p r a c t i c e a 2?-day BOD-test was done. A p e r i o d of 20 days i s s u f f i c i e n t t o approach t h e BOD u l t i m a t e , b u t t h e r e s u l t i n c l u d e s b o t h t h e ammonium o x i d a t i o n a n d , p e r h a p s o n l y p a r t l y , t h e oxygen demand r e s u l t i n g from a l g a e d y i n g and r e s p i r i n g d u r i n g t h e t e s t . I n o r d e r t o e x c l u d e t h e a l g a e a BOD

2 0 f o r f i l t e r e d samples was a l s o done. However, t h i s p r o c e d u r e a l s o e x c l u d e s n o n - a l g a l p a r t i c u l a t e o x i d i z a b l e o r g a n i c m a t t e r . Thus, a l l t h a t can b e s a i d i s t h a t t h e a c t u a l BOD must be somewhere between t h e v a l u e s f o r t h e f i l t e r e d and u n f i l t e r e d samples, a s i n d i c a t e d by t h e open c i r c l e s i n F i g . 3 . A c o r r e c t i o n f o r t h e n i t r i f i c a t i o n was made by

m u l t i p l y i n g t h e measured ammonium n i t r o g e n c o n c e n t r a t i o n w i t h 4.3 (mg 0 p e r mg N) and s u b t r a c t i n g t h i s v a l u e from t h e BOD t e s t r e s u l t

2

( a g a i n i n t r o d u c i n g some u n c e r t a i n t y ) .

B E R K E L R I V E R MODEL

TRAVEL TINE ( H I

~ i g u r e 3.

Measurements for f i l t e r e d (lower c i r c l e ) and

t o t a l carbonaceous

BOD

(upper c i r c l e ) and

two simulation r e s u l t s (see t e x t )

(16)

The model s i m u l a t i o n r e s u l t s ( s o l i d l i n e s F i g . 3 ; t h e o r i g i n o f t h e two c u r v e s i s e x p l a i n e d below) s u g g e s t a c l e a r i n c r e a s e i n c a r b o n a c e o u s BOD, c a u s e d by p r o d u c t i o n o f d e t r i t u s due t o a l g a l d e a t h . Although t h e

i n c r e a s e i s n o t v e r y c l e a r i n t h e measurements t h e t r e n d i s a l s o o b s e r v e d i n t h e i n p u t - o u t p u t r e s u l t s , where t h e C-BOD a t t h e o u t p u t i s s i g n i f i c a n t l y h i g h e r t h a n a t t h e i n p u t . S i m u l t a n e o u s l y t h e r e i s a r e m a r k a b l e d e c l i n e i n c h l o r o p h y l l - a ( F i g . 1 ) i n s p i t e of v e r y f a v o u r a b l e w e a t h e r c o n d i t i o n s f o r a l g a l growth, l i k e w i s e p o i n t i n g towards an u n u s u a l l y a c t i v e d e a t h p r o c e s s .

The a c c u r a c y o f t h e measurements d o e s n o t a l l o w f o r a p r e c i s e e v a l u a t i o n of t h e p a r a m e t e r s . L e t u s , t h e r e f o r e , f o r t h e t i m e b e i n g , a d o p t t h e p a r a m e t e r s e t o f T a b l e 2. Now, i f t h i s i s t h e v a l i d s e t , it must b e p o s s i b l e t o e x t r a p o l a t e t h e s i m u l a t i o n backward i n t i m e t o see whether a c c e p t a b l e v a l u e s a r e o b t a i n e d i n t h e d i s c h a r g e s e c t i o n b e f o r e t h e measurement s e c t i o n s . Doing t h i s it a p p e a r s t h a t t h e C-BOD j u s t b e f o r e

t h e w a s t e d i s c h a r g e must have been n e g a t i v e i n o r d e r t o p r o d u c e t h e r e s u l t s i n t h e measurement s e c t i o n s . T h i s , o f c o u r s e , i s i m p o s s i b l e , d e m o n s t r a t i n g t h a t an a c c e p t a b l e p a r a m e t e r s e t c a n become n o n - a c c e p t a b l e i f e x t r a p o l a t i o n s a r e made t o o t h e r s e c t i o n s o r o t h e r t i m e s .

An e x p l a n a t i o n c a n b e found by n o t i n g t h a t t h e BOD decay r a t e c o e f f i c i e n t r e p r e s e n t s a lumped p r o c e s s , c o v e r i n g a complex of b a c t e r i a l s u b p r o c e s s e s . O b s e r v a t i o n s i n d i f f e r e n t r i v e r s i n t h e G e l d e r l a n d a r e a i n d i c a t e t h a t t h e r a t e c o n s t a n t i s BOD d e p e n d e n t , a s i l l u s t r a t e d i n T a b l e 4.

BOD BOD2 C-BOD

Brook o r R i v e r f i l z g r e d t o t a ? c a l c u l a t e d

Groenlose S l i n g e 1972 40-180 15-130 1.5-2

Oude IJssel 1974 20-40 20- 60 5- 25 < O . 05

Oude I J s s e l 1975 8-15 20- 35 10- 25 0.1-0.6

B e r k e l 1974 10-20 20- 40 0 . 3

B e r k e l 1978 15-20 20- 25 0- 8 0.1-0.2

Eem ( U t r e c h t ) 1977 20-25 25- 40 0.1-0.2

TABLE 4. BOD

decay r a t e and a s s o c i a t e d BOD-ranges ( r e f . van S t r a t e n

and d e Boer,

1 9 7 9 )

(17)

Obviously, t h e BOD decay r a t e c o e f f i c i e n t i s h i g h e r i n more p o l l u t e d s t r e a m s b e c a u s e u n t r e a t e d w a s t e w a t e r i s more e a s i l y d e g r a d a b l e t h a n e f f l u e n t s from sewage t r e a t m e n t p l a n t s . T h e r e f o r e , it may be h y p o t h e s i s e d t h a t t h e decay r a t e c o e f f i c i e n t h a s been h i g h e r i n t h e s e c t i o n d i r e c t l y a f t e r t h e w a s t e d i s c h a r g e t h a n i n t h e r e s t o f t h e r i v e r s t r e t c h .

S i m i l a r arguments a p p l y t o t h e d e a t h r a t e o f a l g a e . Again t h i s c o e f f i c i e n t lumps a v a r i e t y of u n d e r l y i n g p r o c e s s e s s u c h a s r e s p i r a t i o n , n a t u r a l d e a t h and d e a t h by zooplankton g r a z i n g . The l a t t e r p r o c e s s e s p e c i a l l y ,

i n t r o d u c e s a h i g h v a r i a b i l i t y o f t h e d e a t h r a t e i n t i m e . I n f a c t , i t i s known t h a t zooplankton was p r e s e n t d u r i n g t h e measurement p e r i o d . F o r t - n i g h t l y r o u t i n e measurements r e v e a l e d t h a t t h e measurement p e r i o d c o i n c i d e d w i t h t h e l o w e s t c h l o r o p h y l l - a (and t h e h i g h e s t p h e o p h y t i n e ) c o n c e n t r a t i o n i n t h e e n t i r e summer p e r i o d , and t h a t a s h a r p d e c l i n e had o c c u r r e d from a b o u t 140 pg c h l o r o p h y l l - a / l t o 50 p g / l w i t h i n t h e two p r e c e e d i n g weeks. Combined w i t h t h e low flow r a t e it i s most l i k e l y t h a t t h e zooplankton r e a c h e d i t s peak c o n c e n t r a t i o n s i n o r a f t e r t h e measurement week, r e s u l t i n g i n a s t i l l i n c r e a s i n g d e a t h r a t e c o e f f i c i e n t d u r i n g t h e measurement p e r i o d .

For d e m o n s t r a t i o n p u r p o s e s a s i m u l a t i o n was r u n based on t h e s e two h y p o t h e s i s . I t was assumed t h a t t h e a l g a l d e a t h r a t e was o n l y h a l f o f i t s nominal v a l u e d u r i n g t h e f i r s t 27 h o u r s , and t h a t t h e BOD decay r a t e was f o u r t i m e s i t s nominal v a l u e i n t h e r i v e r s e c t i o n between t h e d i s c h a r g e p o i n t and t h e f i r s t weir. The r e s u l t f o r C-BOD i s g i v e n i n F i g . 3 , where t h e z e r o i n i t i a l c o n d i t i o n i s t h e u l t i m a t e p o s s i b l e , though s t i l l n o t a s a t i s f a c t o r y assumption. I n F i g . 4 t h e e f f e c t on t h e a l g a l p a t t e r n i s shown.

The h y p o t h e s i s a s s u m p t i o n s s e r i o u s l y a f f e c t t h e b e h a v i o u r b e f o r e t h e measurement s e c t i o n . Whether o r n o t t h i s i s r e a l i s t i c c o u l d o n l y b e s a i d

i f d a t a had been a v a i l a b l e , a l t h o u g h t h e new i n i t i a l condition f o r a l g a e i s more l i k e l y . Note t h a t i n t h e absence o f d a t a , . numerous o t h e r

assumptions can b e made ( f o r i n s t a n c e , a lower e f f i c i e n c y of a l g a e i n t o BOD t r a n s f e r , p a r a m e t e r X , would l e a d t o e s s e n t i a l l y l e s s BOD produced by a l g a l d e c a y ) .

The problem o f i n a p p r o p r i a t e model d e s c r i p t i o n a s compared t o t h e complex r e a l i t y , d e m c n s t r a t e d by t h e r a t h e r academic e x e r c i s e s above, i s a funda- mental problem o f any m o d e l l i n g a c t i v i t y . S i n c e t h e model i s always a

s i m p l i f i c a t i o n one can e x p e c t t h a t t h e model p a r a m e t e r s a r e f u n c t i o n s

(18)

BERKEL RIVER MODEL

TRAVEL TINE (HI

~ i g u r e 4 .

E f f e c t o f parameter v a r i a b i l i t y on p h y t o p l a i k t o n simulation - constant parameters variable decay and death r a t e

c o e f f i c i e n t s ( s e e t e r t l

of time and space due t o t h e v a r i a b i l i t y i n t h e unobserved underlying processes.

A n a t u r a l way t o solve t h i s d i f f i c u l t y would be t o d e t a i l t h e d e s c r i p t i o n f u r t h e r , a s soon a s knowledge permits one t o do s o , i n t h e hope t h a t t h e new parameters a r e l e s s time and space v a r i a n t . However, t h i s implies a t t h e same time more s t a t e v a r i a b l e s and a considerable i n c r e a s e i n parameters t o be estimated. For t h i s reason such an approach i s not always t h e d e s i r a b l e one, e s p e c i a l l y not i f management problems have t o be solved. For i n s t a n c e ,

(19)

modelling zooplankton would c e r t a i n l y improve t h e p r e d i c t i o n of a l g a l minima, a t t h e expense of a considerable measurement e f f o r t , b u t would do l i t t l e f o r t h e a l g a l peaks. I f a l g a l peaks a r e t h e main concern of t h e management a model with a conservative estimate f o r t h e death r a t e , o r an empirical time function, could be very well acceptable.

Generally, it i s very u s e f u l f o r f u r t h e r model development t o examine t h e consequences of parameter u n c e r t a i n t i e s f o r t h e c e r t a i n t y o r u n c e r t a i n t y of model p r e d i c t i o n s . One way of doing t h i s i s by a s e ~ i s i t i v i t y anal.ysis.

SENSITIVITY ANALYSIS

An i n t e r e s t i n g way of analyzing t h e model s e n s i t i v i t y i s based on t h e s o l u t i o n of t h e s e n s i t i v i t y equations. Let t h e system equations be w r i t t e n i n s t a t e space form a s

where c i s t h e n-dimensional s t a t e vector ( v e c t o r of system v a r i a b l e s ) ,

-

p t h e r-dimensional parameter v e c t o r , u t h e m-dimensional input v e c t o r

- -

( f o r c i n g f u n c t i o n s ) and T t h e time. The i n i t i a l conditions a r e

Let

be defined a s t h e t r a j e c t o r y s e n s i t i v i t y vector of t h e s t a t e v e c t o r

-

c with r e s p e c t t o t h e parameter p around t h e nominal parameter s e t p 0

.

Note t h a t

j

-

t h e elements of s a r e time funcions. Then taking t h e t o t a l d e r i v a t i v e t o -j

p and interchanging t h e o r d e r of d i f f e r e n t i a t i o n l e a d s t o t h e so-called s e n s i t i v i t y equations (note: v e c t o r d i f f e r e n t i a l e q u a t i o n s ) :

(20)

w i t h

c f . F r a n k ( 1 9 7 8 ) . I t i s i n t e r e s t i n g t o n o t e t h a t t h e s e n s i t i v i t y system i s always l i n e a r , even i f t h e model f i s n o n l i n e a r . T h e r e f o r e , i n t h e c a s e of r e l a t i v e l y s i m p l e models such a s t h e S t r e e t e r - P h e l p s model, a n a l y t i c a l s o l u t i o n s f o r t h e s e n s i t i v i t y system c a n o f t e n be o b t a i n e d ( e . g . R i n a l d i and S o n s i n i - S e s s a , 1 9 7 7 ) . Formore complex models a n u m e r i c a l s o l u t i o n i s n e c e s s a r y b u t n o t d i f f i c u l t t o a c h i e v e .

The method was a p p l i e d t o t h e R i v e r B e r k e l example from t h e p r e v i o u s

s e c t i o n . A manageable s t a t e s p a c e form i s o b t a i n e d , a s b e f o r e , by c o n s i d e r - i n g o n l y one p l u g of w a t e r and n e g l e c t i n g d i s p e r s i o n e f f e c t s . I n t h i s a p p l i c a t i o n t h e J a c o b i a n m a t r i c e s a f / a c

- -

and a f / a p

- -

were d e r i v e d a n a l y t i c a l l y . The s o l u t i o n o f t h e s e n s i t i v i t y system i s done s i m u l t a n e o u s l y w i t h t h e

system e q u a t i o n s ( i n v o l v i n g t h e n u m e r i c a l s o l u t i o n of a system of n * ( r

+

1) s i m u l t a n e o u s d i f f e r e n c e e q u a t i o n s ) .

The r e s u l t s a r e shown f o r a l g a e i n Fig.5. The s e n s i t i v i t y on t h e v e r t i c a l a x i s h a s been t r a n s f o r m e d such t h a t t h e a b s o l u t e change of t h e s t a t e v a r i a b l e t o a r e l a t i v e i n c r e a s e of 1 0 % i n t h e p a r a m e t e r v a l u e i s shown. I n t h i s way t h e r e a d i n g s have t h e dimension o f c o n c e n t r a t i o n and can b e compared

d i r e c t l y w i t h F i g s . 1-4. The c u r v e s s e l e c t e d r e p r e s e n t t h e most s i g n i f i c a n t s e n s i t i v i t y f u n c t i o n s .

From F i g . 5 it i s s e e n t h a t b o t h t h e growth r a t e (Curve 1) and t h e d e a t h r a t e (Curve 7 ) govern t h e a l g a l system. The day and n i g h t p a t t e r n i s

a l s o r e f l e c t e d i n t h e s e n s i t i v i t y . The jump i n t h e d e a t h - r a t e s e n s i t i v i t y a t 27 h i s caused by t h e d o u b l i n g o f t h i s p a r a m e t e r beyond t h i s t i m e a s

mentioned p r e v i o u s l y . Note t h a t an i n c r e a s e of o n l y 1 0 % i n t h e d e a t h r a t e would c a u s e t h e a l g a l c o n c e n t r a t i o n t o d r o p by 0.8 mg dw/l a t t h e end of t h e s t u d y r e a c h , i . e . f 40% of t h e a c t u a l c o n c e n t r a t i o n . However, t h e e f f e c t could b e c o u n t e r b a l a n c e d by a n i n c r e a s e i n growth r a t e o f a b o u t 12%. Because t h e s e n s i t i v i t y p a t t e r n of t h e growth r a t e and t h e d e a t h r a t e c o e f f i c i e n t s a r e s i r i l a r , a p p a r e n t l y more t h a n one combination o f b o t h p a r a m e t e r s w i l l d e s c r i b e t h e o v e r a l l a l g a l p a t t e r n . T h i s i s t o be e x p e c t e d s i n c e t h e a l g a l e q u a t i o n r e a d s

(21)

S E N S I T I V I T Y BERKEL RIVER MODEL

TRAVEL TIME (HI

Figure

5. S e n s i t i v i t y functions for phytoplankton

2 =

growth r a t e c o e f f i c i e n t k

'

Pa

3 =

e x t i n c t i o n c o e f f i c i e n t k

0

5 =

s a t u r a t i o n l i g h t i n t e n s i t y I s

7 =

death r a t e c o e f f i c i e n t kiia

so that in fact K =

k

F

- k

is the rate constant of interest, and a Pa da

separation of

k

and

k

on the basis of observations of the algae

Pa da

concentration alone will be practically impossible. This demonstrates how sensitivity analysis can help in indicating the principal components in parameter space, which is extremely useful for parameter estimation procedures.

(22)

F i g . 6 shows t h e s e n s i t i v i t y p l o t f o r d i s s o l v e d oxygen. The m i t i g a t i n g e f f e c t of t h e w e i r s on t h e d e f i c i t i s r e f l e c t e d i n t h e c u r v e s a s a r e d u c t i o n i n s e n s i t i v i t y d i r e c t l y a f t e r t h e w e i r . Not s u r p r i s i n g l y d i s s o l v e d oxygen i s s e n s i t i v e t o e s s e n t i a l l y t h e same p a r a m e t e r s a s t h e a l g a e . The s e n s i t i v i t y t o t h e BOD decay r a t e and n i t r i f i c a t i o n r a t e c o e f f i c i e n t s i s i n t h e o r d e r o f -0.1 mg 0 /1 p e r 1 0 % i n c r e a s e , and t o t h e

2

r e a e r a t i o n r a t e a p p r o x i m a t e l y 0 . 1 mg 0 /1 p e r 1 0 % i n c r e a s e ( n o t shown). '

2

T h i s d e m o n s t r a t e s t h e dominant r o l e of t h e a l g a l system i n t h e o v e r a l l oxygen b e h a v i o u r .

By comparing F i g s . 5 and 6 it can b e s e e n t h a t a s i m u l t a n e o u s 10% i n c r e a s e o f b o t h t h e growth and d e a t h r a t e c o e f f i c i e n t s w i l l l e a d t o somewhat l o w e r a l g a e c o n c e n t r a t i o n s and somewhat h i g h e r d i s s o l v e d oxygen c o n t e n t . T h i s i s b e c a u s e t h e growth o f a l g a e and t h e p r o d u c t i o n o f oxygen a r e d i r e c t l y c o u p l e d , whereas t h e d e a t h of a l g a e r e s u l t s i n BOD p r o d u c t i o n f i r s t , w i t h o n l y r e t a r d e d oxygen consumption. I n t h i s c o n n e c t i o n a comparison w i t h F i g . 7 , showing t h e C-BOD s e n s i t i v i t y i s i n t e r e s t i n g . A h i g h e r a l g a l d e a t h r a t e c o e f f i c i e n t (Curve 7 ) would i n i t i a l l y l e a d t o a h i g h e r BOD, b u t i n t h e l o n g r u n t o l e s s a l g a e and t h e r e b y t o a lower BOD c o n t r i b u t i o n from d e t r i t u s p r o d u c t i o n . Thus, a change i n t h e d e a t h c o e f f i c i e n t e f f e c t s t h e

shape o f t h e BOD c u r v e i n t i m e . A s i m i l a r argument a p p l i e s t o t h e e f f e c t o f t h e growth r a t e (Curve 1 ) : i n i t i a l l y t h e r e i s no e f f e c t , a s e x p e c t e d . b u t l a t e r t h e h i g h e r a l g a e c o n c e n t r a t i o n l e a d s t o more d e a t h and t h e r e b y t o more BOD p r o d u c t i o n .

The BOD i s a l s o q u i t e s e n s i t i v e t o t h e amount of BOD r e l e a s e d p e r u n i t d y i n g a l g a e ( X and Y Curve A ; t h e y have t h e same s e n s i t i v i t y b e c a u s e t h e y

l a '

a p p e a r a s a p r o d u c t ) . The e f f e c t on t h e d i s s o l v e d oxygen b a l a n c e i s i n t h e same o r d e r o f magnitude a s t h e e f f e c t s of t h e BOD decay r a t e

c o e f f i c i e n t ( n o t shown). The jump i n t h e s e n s i t i v i t y t o t h e BOD d e c a y r a t e c o e f f i c i e n t ( F i g . 7 , Curve 8 ) i s c a u s e d by t h e a s s u m p t i o n of a h i g h e r r a t e i n t h e s e c t i o n d i r e c t l y a f t e r t h e w a s t e d i s c h a r g e p o i n t .

From a l l g r a p h s it i s a p p a r e n t t h a t t h e s e n s i t i v i t y h a s s t i l l an i n c r e a s i n g t r e n d a t t h e end of t h e measurement r e a c h . T h i s i m p l i e s t h a t s m a l l e r r o r s i n p a r a m e t e r e s t i m a t e s o b t a i n e d from t h i s l i m i t e d measurement p e r i o d may l e a d t o c o n s i d e r a b l e p r e d i c t i o n e r r o r s i f e x t r a p o l a t i o n s a r e b e i n g made.

T h i s s u g g e s t s t h a t t h e measurement p e r i o d s h o u l d have been l o n g e r f o r more a c c u r a t e p a r a m e t e r e s t i m a t e s .

(23)

SENSITIVITY BERKEL RIVER MODEL

TRAVEL T I M E ( H I

F i g u r e 6.

S e n s i t i v i t y functions for dissolved oxygen parameters a s i n Figure

5 .

SENSITIVITY BERKEL RIVER MODEL

-

1-00 T

F i g u r e

TRAVEL T I M E (H)

7 .

S e n s i t i v i t y functions for

C-BOD

Additional parameters:

8 = BOD

decay r a t e c o e f f i c i e n t kbZo

A = BOD

released per u n i t dying algae

X

or

Y

l a

(24)

L i m i t a t i o n s

C l e a r l y , s e n s i t i v i t y a n a l y s i s l e a d s t o c o n s i d e r a b l e i n s i g h t i n t o t h e systems b e h a v i o u r . However, we s h o u l d l i k e t o p o i n t o u t some of t h e

l i m i t a t i o n s o f t h e a p p l i c a t i o n above. One o f t h e s e i s t h a t t h e e f f e c t s o f p a r a m e t e r changes on t h e s t a t e v a r i a b l e s a r e compared on t h e b a s i s of

e q u a l p a r a m e t e r v a r i a t i o n s . T h e r e f o r , f o r u n c e r t a i n t y a n a l y s i s t h e method must b e extended t o cope w i t h d i f f e r e n t d e g r e e s of u n c e r t a i n t y i n t h e p a r a m e t e r s i n v o l v e d . For example, t h e e f f e c t o f v a r i a t i o n s i n t h e

e x t i n c t i o n c o e f f i c i e n t on a l g a e and d i s s o l v e d oxygen ( F i g s . 5 and 6 , Curve 3 ) can be even more d r a m a t i c t h a n s u g g e s t e d i n t h e g r a p h s , because t h e

e x t i n c t i o n c o e f f i c i e n t may v a r y by 50-100% r a t h e r t h a n 10%. S i m i l a r arguments a p p l y , o f c o u r s e , t o every p a r a m e t e r . I t s h o u l d a l s o be n o t e d t h a t t h e l i n e a r e x t r a p o l a t i o n of t h e s t a t e a c c o r d i n g t o Ac = s Ap. i s

j I o n l y allowed f o r s m a l l e x c u r s i o n s from t h e nominal p a r a m e t e r v a l u e s , because t h e s y s t e m s model i s n o n - l i n e a r . F i n a l l y , t h e system i s a l s o

s e n s i t i v e t o i n i t i a l c o n d i t i o n s and f o r c i n g f u n c t i o n s ; however, t h e s e c o u l d b e handled i n a s i m i l a r f a s h i o n w i t h o u t d i f f i c u l t y .

CONCLUSIONS

-

Models such a s GELQAM c a n produce a f a i r d e s c r i p t i o n o f t h e oxygen and p h y t o p l a n k t o n b e h a v i o u r i n ( c a n a l i z e d ) lowland s t r e a m s .

-

Due t o u n c e r t a i n t y i n t h e u n d e r l y i n g p r o c e s s e s it may be e x p e c t e d t h a t p a r a m e t e r s a r e s i t e dependent ( e . 9 . BOD decay r a t e c o n s t a n t ) o r time dependent ( e . g . r a t e c o e f f i c i e n t f o r a l g a l d e a t h ) . I t i s n o t p o s s i b l e t o d e t e c t t h e s e f u n c t i o n a l r e l a t i o n s h i p s by measurements i n a l i m i t e d r i v e r s t r e t c h and f o r a s h o r t time.

-

An a c c u r a t e measurement o f one of t h e model s t a t e v a r i a b l e s , carbonaceous BOD, i s n o t p o s s i b l e . T h i s u n c e r t a i n t y r e d u c e s t h e p r e c i s i o n of p a r a m e t e r e s t i m a t e s .

-

A s e n s i t i v i t y a n a l y s i s i s a u s e f u l element i n t h e e v a l u a t i o n o f t h e e f f e c t s of p r o c e s s and p a r a m e t e r u n c e r t a i n t y . I n s i t u a t i o n s w i t h e x t e n s i v e a l g a l growth and moderate o r g a n i c waste d i s c h a r g e , t h e growth and d e a t h p r o c e s s e s of a l g a e govern t h e oxygen b e h a v i o u r . The s e n s i t i v i t y a n a l y s i s a l s o

r e v e a l s t h e d i f f i c u l t y of e s t i m a t i n g t h e growth and d e a t h r a t e c o e f f i c i e n t s i n d e p e n d e n t l y , i f no a c c u r a t e d a t a a r e a v a i l a b l e .

(25)

- The inadequacy of the model caused by lumping complex processes poses

the problem of predictive power, a fundamental difficulty of any model

activity. It is worthwhile to investigate the use of sensitivity analysis

in connection with a parameter variability study in assigning a 'reliability

factor' to the effectiveness of management decisions expected from the model.

(26)

REFERENCES

d e B o e r , B. ( 1 9 7 7 ) - A moving c e l l s i m u l a t i o n model o f t h e dynamics o f d i s s o l v e d oxygen and r e l a t e d q u a l i t y v a r i a b l e s i n r i v e r s and b r o o k s . M i t t e i l u n g e n f u e r W a s s e r w i r t s c h a f t , H y d r o l o g i e und L a n d w i r t s c h a f t l i c h e n Wasserbau d e r T e c h n i s c h e U n i v e r s i t a e t Hannover, TUH 4 1 , 417-430.

d e B o e r , B. ( 1 9 7 9 ) . A moving c e l l method of t h e d i s s o l v e d oxygen and

p h y t o p l a n k t o n dynamics i n r i v e r s , H y d r o l o g i c a l S c i e n c e s B u l l e t i n 2 4 ( 1 ) .

-

D i T o r o , D.M., O'Connor, D . J . , Thomann, R.V. ( 1 9 7 4 ) . A dynamic model o f t h e p h y t o p l a n k t o n p o p u l a t i o n i n t h e Sacramento-San J o a q u i n D e l t a . Advances i n C h e m i s t r y , S e r i e s No. 106, 131-180

F r a n k , P.M. ( 1 9 7 8 ) . I n t r o d u c t i o n t o System S e n s i t i v i t y Theory. Academic P r e s s I n c . (New York)

.

H i e m s t r a , P. ( 1 9 7 8 ) . A model f o r t h e p h y t o p l a n k t o n a n d oxygen h o u s h o l d i n a r i v e r , M a s t e r s t h e s i s , Dept. o f Chemical E n g i n e e r i n g , Twente

U n i v e r s i t y o f Technology ( i n D u t c h ) .

O'Connor, D . J . , D i Toro, D.M. ( 1 9 7 0 ) . P h o t o s y n t h e s i s and oxygen b a l a n c e i n s t r e a m s . J. S a n i t . Eng. Div., ASCE, (SA2), 547-571.

R i n a l d i , S . , S o n s i n i - S e s s a , R. ( 1 9 7 7 ) . S e n s i t i v i t y a n a l y s i s o f S t r e e t e r - P h e l p s models. R e s e a r c h R e p o r t 77-1, I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s .

van S t r a t e n , G. ( 1 9 7 7 ) . P h y t o p l a n k t o n and oxygen models f o r b r o o k s and r i v e r s . M i t t e i l u n g e n f u e r W a s s e r w i r t s c h a f t , H y d r o l o g i e und L a n d w i r t - s c h a f t l i c h e n Wasserbau d e r T e c h n i s c h e U n i v e r s i t a e t Hannover, TUH 4 1 , 175-197.

van S t r a t e n , G. ( 1 9 7 8 ) . The e v a l u a t i o n o f p h o t o s y n t h e t i c p a r a m e t e r s from d a r k and l i g h t b o t t l e e x p e r i m e n t s . T e c h n i c a l n o t e CT78/036/1315, Chem. Eng. Dept., Twente U n i v e r s i t y o f Technology.

v a n S t r a t e n , G . ( 1 9 7 9 ) . H y d r o l o g i c a l a s p e c t s o f oxygen b e h a v i o u r and a l g a l blooms i n r i v e r s y s t e m s , Committee f o r H y d r o l o g i c a l R e s e a r c h TNO,

P r o c e e d i n g s and I n f o r m a t i o n s N0.35.

(27)

van S t r a t e n , G., d e Boer, B., van den B e l d , H. ( 1 9 7 9 ) . Model oxygen dynamics. B a s i s r e p o r t . Committee f o r t h e s t u d y o f Water Management i n t h e P r o v i n c e o f G e l d e r l a n d ( i n D u t c h ) .

Tolkamp, H . H . ( 1 9 7 5 ) . Judgement o f h y d r o b i o l o g i c a l q u a l i t y o f b r o o k s i n t h e s o u t h e r n A c h t e r h o e k r e g i o n on t h e b a s i s o f macrophauna r e s e a r c h . A g r i c u l t u r a l U n i v e r s i t y Wageningen, LH/NB No. 269 ( i n D u t c h ) .

Referenzen

ÄHNLICHE DOKUMENTE

This model, which qs being yointly developed-by IIASA and the Operational Research Services of the UK Department of Health and Social Security (DHSS), is designed to predict

In a typical modelling procedure first a model is postulated, usually based on some a priori knowledge about the system under study; then, an attempt is made to estimate a unique

Simply imposing a new set of formal laws and institutions without understanding how the customary traditional system works, as has largely been the case in Liberia, may not work:

The functional organization of one level of the cortex is governed by the interplay of earli- er and later representational stages of the sensory processing stream.. In mammals,

The choral groups [khoroi] that cities used to send [to Delos] for the performances of songs sacred to the god (Apollo) used to sail in [to the harbor of Delos] in a

At this point the ‘historical mission’ of capitalist firms, as it was seen by classical political economists, has to be remembered: To increase labor

[HSS09] devise an algorithm that sym- bolically executes a program according to its control flow graph, thereby joining states with the same program counter using an

The development of a least-cost policy for the highly polluted Nitra River, a second order sub- basin of the Danube in Slovakia (watershed area is about 5000 km2) is the