• Keine Ergebnisse gefunden

Triple Higgs coupling as a probe of the twin-peak scenario

N/A
N/A
Protected

Academic year: 2022

Aktie "Triple Higgs coupling as a probe of the twin-peak scenario"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Triple Higgs coupling as a probe of the twin-peak scenario

Amine Ahriche

a,b,c,

, Abdesslam Arhrib

d

, Salah Nasri

e

aDepartmentofPhysics,UniversityofJijel,PB98OuledAissa,DZ-18000Jijel,Algeria

bTheAbdusSalamInternationalCentreforTheoreticalPhysics,StradaCostiera11,I-34014,Trieste,Italy cFakultätfürPhysik,UniversitätBielefeld,33501Bielefeld,Germany

dUniversitéAbdelMalekEssaadi,FacultédesSciencesetTechniques,B.P416,Tangier,Morocco ePhysicsDepartment,UAEUniversity,POB17551,AlAin,UnitedArabEmirates

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received22November2014

Receivedinrevisedform16February2015 Accepted24February2015

Availableonline26February2015 Editor:J.Hisano

Keywords:

Higgs Singlets

di-Higgsproduction

Inthisletter,weinvestigatethecaseofatwinpeakaroundtheobserved125GeVscalarresonance,using di-HiggsproductionprocessesatbothLHCande+eLinearColliders.WehaveshownthatbothatLHC andLinearColliderthetripleHiggscouplingsplayanimportantroletoidentifythisscenario;andalso thatthisscenariocanbedistinguishablefromanyStandardModelextensionbyextramassiveparticles whichmightmodifythetripleHiggscoupling.Wealsointroduceacriterionthatcanbeusedtorule out thetwinpeakscenario.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

In July2012, ATLAS andCMS Collaborations[1,2] have shown theexistence ofaHiggs-likeresonancearound 125 GeVconfirm- ing thecornerstone of theHiggs mechanismthat predicted such particlelongtime ago. AllHiggscouplingsmeasured so farseem to be consistent, to some extent, with the Standard Model (SM) predictions.Moreover, inorderto establishtheHiggs mechanism asresponsibleforthephenomenaofelectroweaksymmetrybreak- ingonestillneedstomeasuretheselfcouplingsoftheHiggsand thereforetoreconstructitsscalarpotential.

RecentmeasurementsattheLHCshowthatthereisstilluncer- taintyontheHiggsmass;mh=125.3±0.4(stat.)±0.5(syst.)GeV for CMS [3] and mh=125.0.5 GeV for ATLAS [4] from the diphoton channel and mh=125.0.37(stat.)±0.18(syst.)GeV fromcombined channels.Despitethisrelativelylarge uncertainty, ascenariooftwodegeneratescalars around125.5 GeVresonance isneitherexcludednorconfirmed[5].

Inthe twin peak scenario (TPS); itis assumed that there are twoscalars h1,2 withalmost degeneratemassesaround 125 GeV.

Toourknowledge, there isno indication fromexperimental data whichdisfavorthisscenario.ThecouplingsofthetwinpeakHiggs toSMparticlesghiX X aresimplyscaledwithrespecttoSMrateby

*

Correspondingauthor.

E-mailaddresses:aahriche@ictp.it(A. Ahriche),aarhrib@ictp.it(A. Arhrib), snasri@uaeu.ac.ae(S. Nasri).

cosθ (forh1) andsinθ (for h2), whereθ isa mixingangle,such thatwehavethefollowingapproximatesumrule:

g2

h1f¯f

+

g2

h2f¯f

g2

hSMf¯f

,

gh2

1V V

+

g2h

2V V

gh2

SMV V

,

(1)

where f canbeanyoftheSMfermionsandV =W,Z vectorbo- son. Infact,thebranching ratiosoftheHiggs toSM particlesare SM-likeonlyiftheHiggsinvisibleisverysuppressedorkinemati- callyforbiddenaswillbeconsideredinourexample.Consequently, the single Higgs production such as gluon–gluon fusion at LHC, Higgs-strahlung,Vector BosonFusions, andtt H at¯ LHCande+e LinearColliders(LC)willobeythesamesumrule.Thesummation ofeventnumbers(bothforproductionanddecay)ofthetwopos- siblecases will be identicalto SM casesince cos2θ+sin2θ=1.

However, for processes with di-Higgs final states (pp(ee+)hh+X ),thetripleHiggscouplingsmayplayanimportantrole,and thereforetheseprocessescanbeusefultodistinguishbetweenthe cases ofone scalar ortwo degenerate ones around theobserved 125 GeVresonance.

ItiswellknownthatthetripleHiggscouplingscanbe,inprin- ciple, measured directly at the LHC with highluminosity option through double Higgs production ppgghh [6]. Such mea- surement is rather challenging at the LHC, and for this purpose several parton level analysis have been devoted to this process.

It turns out that hhbb¯

γ γ

[7],hhbb¯

τ

+

τ

[7,8] and hhbbW¯ +W[8,9]finalstatesareverypromisingforHighluminosity.

http://dx.doi.org/10.1016/j.physletb.2015.02.062

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Recently,CMSreported apreliminaryresultonthesearchforres- onantdi-Higgsproductioninbb¯

γ γ

channel[10].

The LC has also the capability of measuring with better pre- cision: theHiggsmass andsomeof theHiggscouplings together with the self coupling of the Higgs [11]. Using recoil technique fortheHiggs-strahlungprocess, theHiggsmasscanbe measured with an accuracy of about 40 MeV [11]. We note that at LHC withhighluminosity wecanmeasuretheHiggsmasswithabout 100 MeVuncertaintywhichisquitecomparabletoe+e colliders.

The triple Higgscoupling can be extractedfrom e+eZhZhh at 500 GeV andeven better from e+e

νν

h

νν

hh at

s>800 GeV.Inthisregard,theLHCande+eLCmeasurements arecomplementary[12].

InRef.[13],theauthorshaveprovidedatooltodistinguishthe two-degeneratestatesscenariofromthesingleHiggsone.Theap- proachof [13] applies only tomodels which enjoy modifications ofh

γ γ

ratewithrespecttotheSM.However,accordingtothe latestexperimentalresults,bothforATLASandCMSthedi-photon channel seem to be rather consistent with the SM [3,4]. In this workweproposeanewapproachtodistinguishtheTPS.Thisap- proachis basedon the di-Higgs productionwhich issensitive to the tripleHiggs coupling,that is modified inthe majorityof SM extensions.

Here,asanexample,weconsider,theTwo-SingletsModelpro- posedin[14],wheretheSMisextendedwithtworealscalarfields S0 and

χ

1; each oneis oddunder adiscrete symmetry Z(20) and Z(21)respectively.Thefield

χ

1 hasanon-vanishing vacuumexpec- tationvalue,whichbreaks Z(21) spontaneously,whereas,S0 =0;

andhence,S0 isadarkmattercandidate.BothfieldsareSMgauge singletsandhencecaninteractwiththe‘visible’particlesonlyvia theHiggsdoubletH .Thespontaneousbreakingoftheelectroweak andthe Z(21) symmetriesintroduces the two vacuumexpectation values

υ

and

υ

1 respectively. ThephysicalHiggsh1 andh2,with masses m1 and m2 m1, are related to the excitations of the neutral component of the SM Higgs doublet field, Re(H(0)), and the field

χ

1 through rotation with a mixing angle θ and, with a specific choice in the parameter space, could give rise to two degenerate scalars around 125 GeV. In what follows, we denote byc=cosθ ands=sinθ.Thequarticandtriplecouplingsofthe physicalfieldshi aregivenintheappendicesin[15].

Inouranalysiswerequirethat1:(i) allthedimensionlessquar- tic couplings to be 4

π

for the theory to remain perturbative, (ii) thetwoscalareigenmassesshouldbeinagreementwithrecent measurements [3,4]: we have checked that for the Two-Singlets model,thesplittingbetweenm1 andm2 couldbe oftheorderof 40 MeV.(iii) thegroundstatestability tobeensured;and(iv) we allowtheDMmassm0 tobeaslargeas1 TeV.

In our work, we consider di-Higgs production processes at the LHC and e+e LC, whose values of the cross section could be significant, namely,

σ

L H C(hh) and

σ

L H C(hh+t¯t) at 14 TeV;

σ

LC(hh+Z) at500 GeV and

σ

LC(hh+Emiss) at1 TeV.All these processesinclude,atleast,oneFeynmandiagramwithtripleHiggs coupling. For the TPS, the total cross section gets contributions fromthefinal statesh1h1, h1h2 andh2h2.Therefore thequantity tobecomparedwiththestandardscenariocanbeexpressed as:

σ

TPS

(

hh

+

X

) = σ (

h1h1

+

X

) +

2

σ (

h1h2

+

X

) + σ (

h2h2

+

X

) ,

(2) whichcanbeparameterizedas:

σ

TPS

= σ

aar1

+ σ

abr2

+ σ

bb

,

(3)

1 Actually,weconsideredthatallquarticcouplingstobeoforderunity;andthe singletvevυ1= χ1 =202000 GeV.

Fig. 1. Numericalvaluesoftheparametersriin(4)for600benchmarksthatfulfill theabovementionedrequirements.

with

σ

aa+

σ

ab+

σ

bb=

σ

SM(hh+X)and

σ

aa,

σ

bb and

σ

ab corre- spondtothecrosssectioncontributionscomingfromtripleHiggs diagrams (a), non-triple Higgs diagrams(b) and the interference termintheamplitude,respectively.Thecoefficientsri aredimen- sionlessparameters,thatreceivecontributionsfromthefinalstates hihj, which depend on the mixing angle θ and the Higgs triple couplingsλ(i jk3).

In the TPS, the amplitudes for di-Higgs production processes haveSMFeynmandiagramswheretheHiggsfieldh isreplacedby hi.Tocomputetheparametersri,wefirstestimatehowdoeseach amplitudegetmodifiedwithrespecttothecorrespondingSM one for each case hihj. For example,in the case ofh1h1 production, there aretwo typesof diagrams:(1) The onesthat involvetriple scalarinteractionsh1h1h1 andh2h1h1,withcouplingsequaltothe one ofa SM timesa factorof(1113)SMhhh and(1123)SMhhh, respec- tively. We denotethe total amplitude of thesetwo contributions byM(a).(2) TheoneswithnotripleHiggscouplings.Theirampli- tude,denotedbyM(b),isgivenbytheoneoftheSM scaledbya factorof c2.Therefore,theamplitudes M(a,b) (where a (b)stand fortriple Higgs(non-tripleHiggs) Feynman diagrams) forthedi- Higgs productioncan be written in terms oftheir corresponding SMvaluesas:

h1h1: M(a)= [(cλ(1113) +sλ(1123))/λSMhhh]MSM(a), M(b)=c2MSM(b),

h2h2: M(a)= [(cλ(1223) +sλ(2223))/λSMhhh]MSM(a), M(b)=s2MSM(b),

h1h2: M(a)= [(cλ(1123) +sλ(1223))/λSMhhh]MSM(a), M(b)=csMSM(b),

whereλSMhhhistheSM tripleHiggscouplingcalculatedatone-loop.

Thentheparametersriaregivenby:

r1

=

c2

(1113)2

+ λ

(1223)2

+

2

λ

(1123)2

] +

s2

(1123)2

+ λ

(2223)2

+

2

λ

(1223)2

] +

2cs

[ λ

(1113)

λ

(1123)

+

2

λ

(1123)

λ

(1223)

+ λ

(1223)

λ

(2223)

]

/

λ

SMhhh

2

,

r2

= {

c3

λ

(1113)

+

3c2s

λ

(1123)

+

3cs2

λ

(1223)

+

s3

λ

(2223)

}/λ

SMhhh

.

(4) Thus,thevaluesofri quantifybyhowmucheachdi-Higgsprocess deviatesfromtheSMcase.InFig. 1,weshowtheparametersrias afunctionofsinθ forabout600chosensetsofthemodelparam- eters withinthecondition (1).Weseethat forverysmallmixing angle ri’s are approximately equal to unity, while for sinθ >0.8 andsinθ <0.2,theparameterr1 becomeslargerthanunityand

(3)

Table 1

Differentcontributionstotheconsideredprocessescrosssections.NumbersforLHC aretakenfrom[16]atNLO.

σaa(fb) σab(fb) σbb(fb) σSM(fb)

hh 9.6649.9 70.1 29.86

hh+t¯t 3.3164×102 0.13952 0.84731 1.02 hh+Z 9.0206×103 4.6999×102 9.005×102 0.14607 hh+Emiss 5.1631×1020.20867 0.29708 0.14004

r2 acquires negative values. This behavior could lead to an en- hancement/reduction to the cross section depending on thesign oftheinterferencecontribution,

σ

ab,tothetotalcrosssection.This meansthatthemeasurementofthefollowingratio:

ξ (

hh

+

X

) = σ

TPS

pp

(

ee+

)

hh

+

X

σ

SM

pp

(

ee+

)

hh

+

X

,

(5) couldbeveryusefultoconfirmorexclude thisscenariobasedon thedeviationofanyoftheparametersri fromunity.Forinstance, theratioξ (hh+X)candeviatefromunityiftheSM isextended withmassiveparticles(SM+MP)thatcoupletotheHiggsdoublet andcontributetothetripleHiggscouplingaswelltheHiggsmass.

In this case, r1=(1+)2 and r2=1+, where represents therelativeenhancementofthetripleHiggscouplingduetoSM+ MP.As we will show later, our considered scenario forsmall or

largemixingcouldbedistinguishedfromthecaseofSM+MPby combiningtheratio(5)fordifferentprocesses.

In Table 1, we give the values of

σ

aa,

σ

ab and

σ

bb for the corresponding di-Higgs production processes. We note that their contributions to the LHC process pphh and to the LC one e+eZhh seem to be uncorrelated, which makes the Higgs triplecouplingusefultoprobethisscenarioanddistinguishitfrom (SM+MP).

For the benchmarksconsidered previously inFig. 1, we illus- trate in Fig. 2 the production cross section of di-Higgs at e+e LC andLHC and in Fig. 3 the ratio ξ. As it can be seen, in the TPS,thecrosssectionoftheprocessespphh, pphh+tt and¯ ee+hh+Emissaremostlyenhanced,whileforee+hh+Z itisenhancedjustforthemixingvalues0.5<sinθ <0.8.

Nowletusdiscussthepossibilityofdisentanglingthe TPS from the SM+MP. It is clear from Fig. 3 that for both LHC and LC processeswithlargemixing,0.35<cos2θ <0.65,theTPSmayco- incidewithSM+MP.However,fornon-maximalmixingvaluesthe TPSisclearlydifferentthanSM+MPwhereallbenchmarkshave thefollowingfeature

ξ

1T P S

+ ξ

2T P S

> ξ

1SM+MP

() + ξ

2SM+MP

() ,

(6) where ξiT P S the ratio in (5) for any LHC or LC processes and ξiSM+MP() is the same ratio due the existence of massive par- ticles. Therefore,when measuring the quantities (5)for both the LHC ande+e LC processes,and one finds that the criterion (6) is not fulfilled,then it is a certain exclusion for thisscenario. In

Fig. 2. The cross section values(2)for the di-Higgs production processes for the 600 benchmarks used previously. The solid lines correspond to the SM cross sections.

Fig. 3. Theratiosξgivenin(5)forthedi-Higgsproductionprocessesforthe600benchmarkusedpreviously.Thegreenbenchmarkscorrespondtothelargemixingcase where0.35<cos2θ <0.65,andthebluepointrepresentstheSM;andthesolidcurverepresentsthecaseofaSMextension,wherethenewphysicsaffectsthetripleHiggs couplingasλhhh=λSMhhh(1+);andthevalueoftherelativeenhancementcanbereadfromthepalette.(Forinterpretationofthereferencestocolorinthisfigurelegend, thereaderisreferredtothewebversionofthisarticle.)

(4)

Table 2

Differentvaluesoftheratios(4)and(5)forthethreechosenbenchmarks.

B1 B2 B3

sinθ 0.53555 0.901260.39802

r1 2.95386 2.88466 5.62286

r2 1.31634 0.281891.26011

ξ (hh) 1.10345 2.80975 6.27248

ξ hh+tt¯

2.69728 2.51821 4.66603

ξ (hh+Z) 1.22243 0.88532 0.55827

ξ (hh+Emiss) 1.24900 2.76488 6.07213

Table 3

Theeventsnumberforthedifferentprocesseswithintheluminosityvaluesmen- tionedabovefortheSMandthebenchmarksshowninTable 2.

Events number Channel SM B1 B2 B3

pphh 4b 966.75 1066.8 2716.3 6063.9

2b2τ 106.70 117.74 299.8 669.27 2b2γ 3.89 4.29 10.93 24.4

pphh+t¯t 4b 33.02 89.06 83.15 154.07

ee+hh+Z 4b 23.65 28.91 20.94 13.2

ee+hh+Emiss 4b 45.34 56.63 125.36 275.31

case where the criterion (6) is fulfilled, detailed analysis is re- quired forin order to identify the mixing angle, the parameters ri andthereforetheHiggstriplecouplings.Infact,bystudyingall thedi-HiggsproductionchannelsatbothLHCande+eLConenot onlyconfirm/excludethisscenario, butalsodistinguished it from models where only one type of processes gets modified by new physicssuch as:itmanifests asnewsourcesofmissingenergyin ee+hh+Emiss [17],new colored scalar singlets contribution to pphh (orhh+t¯t)[18],orthepresenceofaheavyresonant Higgs[19].

Inordertoshowwhetherthisscenariocanbetestedatcollid- ers,weconsiderthreebenchmarksthatmaybedistinguishedfrom SM+MP(i.e.,three redpoints fromFig. 3),andcomparethe di- Higgsdistribution(of thedi-Higgs invariantmassasan example) withtheSM one.Thecorrespondingvaluesofratiosri andξi are giveninTable 2,andinTable 3,wepresenttheexpectednumber ofeventsatboththeLHCandLC.Weseethatforbenchmark B2, theeventsnumberissignificantlylargerthantheSMforthechan- nelspp2b2

τ

attheLHCandee+4b+EmissatLC’s,whileit isreducedfortheprocesses pp4b+t¯t andee+4b+Z .For benchmark B1, the events number of the processes pp2b2

τ

andee+4b+Emiss is SM-like butit is reduced forthe pro- cesses pp4b+tt and¯ ee+4b+Z .Forbenchmark B3,the eventsnumberisreducedfortheconsideredprocesses.

InFig. 4,we illustratethedi-Higgs invariantmassdistribution (Mh,h)fortheprocess ee+hh+Emiss.Clearly,the TPS canbe easily distinguished from the SM, especially in the case of non- maximalmixing.However,thefullconfirmationofthe TPS requires theenlargementoftheinvestigationby takingintoaccount other di-Higgs productionchannels such ashhj j, hhW±,hh Z and hht j attheLHC[20]andthee+e LC[11].

In conclusion, we have investigated the caseof twin-peak at the 125 GeV observed scalar resonance by considering different di-HiggsproductionprocessesatbothLHCande+e LC.Wehave introduced acriterion whose violationexcludestheTPS scenario, otherwise thisscenario can be surely distinguished fromthe SM andSMextendedbymassivefieldsincaseofnon-maximalmixing.

Fig. 4. Normalizeddi-Higgsinvariantmassdistributionfortheprocessee+hh+ Emissforthebackground(BG)andtheconsideredbenchmarksinTable 2.

Last butnotleast, we should note that thisscenariocould be realized within SM+(real/complex) singlet scalar, or any larger scalar field content. Thisincludes neutralor chargedscalars that are members anymultiplets, wheretwo degenerate scalareigen- states h1,2 at 125 GeV, do couple to the SM gauge fields and fermions by more than ∼90%, i.e., the sum rule (1) is fulfilled.2 Ifthe measurementofdi-Higgs processesatLHCand/or e+e LC turnouttobeconsistentwithSMpredictions,thenitwillbevery challengingtodistinguishthe TPS scenario.

If the measurement of the couplings hf ¯f and hV V become much more precise from the future experiment data, it may be possiblethatonecouldbesensitivetotheradiativecorrectionsef- fecttothesecouplings.Suchradiativecorrectionstohf¯f andhV V couplings ina variety ofextended Higgssector havebeen evalu- atedin[22–24].Theseone-loopeffectsare oftheorderof2–10%

andeven morein some specialcases.The presentLHC measure- mentsarenotyetsensitivetosucheffects.

Acknowledgements

WewouldliketothankA.DjouadiandR.Santosforthevalu- able comments; and E. Vryonidou for sharing with us her code and for manyuseful discussions. A. Ahriche is supported by the AlgerianMinistry ofHigher EducationandScientificResearch un- dertheCNEPRUProjectNo.D01720130042;andpartiallybyDAAD andICTP.A.ArhribissupportedinpartbytheMoroccanMinistry ofHigherEducationandScientificResearch:“projetdesdomaines prioritairesdelarecherchescientifiqueetdudeveloppementtech- nologique”.

References

[1]G.Aad,etal.,ATLASCollaboration,Phys.Lett.B716(2012)1.

[2]S.Chatrchyan,etal.,CMSCollaboration,Phys.Lett.B716(2012)30.

[3] S.Chatrchyan,etal.,CMSCollaboration,CMS-PAS-HIG-13-001.

[4]G.Aad,etal.,ATLASCollaboration,arXiv:1406.3827[hep-ex].

[5]Forexamplesee:M.Heikinheimo,A.Racioppi,M.Raidal,C.Spethmann,Phys.

Lett.B726(2013)781.

[6]A.Djouadi,W.Kilian,M.Muhlleitner,P.M.Zerwas,Eur.Phys.J.C10(1999)45;

E.W.N.Glover,etal.,Nucl.Phys.B309(1988)282;

T.Plehn,etal.,Nucl.Phys.B479(1996)46;

T.Plehn,etal.,Nucl.Phys.B531(1998)655(Erratum);

J.Baglio,etal.,J.HighEnergyPhys.1304(2013)151.

[7]U.Baur,T.Plehn,D.L.Rainwater,Phys.Rev.D69(2004)053004.

[8]M.J.Dolan,C.Englert,M.Spannowsky,J.HighEnergyPhys.1210(2012)112.

[9]A.Papaefstathiou,L.L.Yang,J.Zurita,Phys.Rev.D87(2013)011301.

[10] S.Chatrchyan,etal.,CMSCollaboration,CMS-PAS-HIG-13-032.

2 Inthe2HDM,twinpickscenariohasbeenstudiedin[21],butthestudycon- centratedonlyonthediphotonchannel.Accordingtothisstudy[21],thisscenario isnotruledout.

(5)

[11]D.M.Asner,etal.,arXiv:1310.0763[hep-ph];

A.Djouadi,W.Kilian,M.Muhlleitner,P.M.Zerwas,Eur.Phys.J.C10(1999)27.

[12]G.Weiglein,etal.,LHC/LCStudyGroupCollaboration,Phys.Rep.426(2006)47.

[13]J.F.Gunion,Y.Jiang,S.Kraml,Phys.Rev.Lett.110(2013)051801.

[14]A.Abada,D.Ghaffor,S.Nasri,Phys.Rev.D83(2011)095021;

A.Ahriche,S.Nasri,Phys.Rev.D85(2012)093007.

[15]A.Ahriche,A.Arhrib,S.Nasri,J.HighEnergyPhys.1402(2014)042.

[16]M.Spira,arXiv:hep-ph/9510347.

[17]A.Ahriche,S.Nasri,R.Soualah,Phys.Rev.D89(2014)095010.

[18]G.D.Kribs,etal.,Phys.Rev.D86(2012)095023;

Z.Heng,etal.,J.HighEnergyPhys.1402(2014)083;

T.Enkhbat,J.HighEnergyPhys.1401(2014)158.

[19]M.J.Dolan,C.Englert,M.Spannowsky,Phys.Rev.D87(2013)055002;

J.Cao,Z.Heng,L.Shang,P.Wan,J.M.Yang,J.HighEnergyPhys.1304(2013) 134;

U.Ellwanger,J.HighEnergyPhys.1308(2013)077;

A.Arhrib,R.Benbrik, C.-H.Chen,R. Guedes,R.Santos,J.HighEnergyPhys.

0908(2009)035.

[20]R.Frederix,etal.,Phys.Lett.B732(2014)142,arXiv:1401.7340[hep-ph].

[21]P.M.Ferreira,R.Santos,H.E.Haber,J.P.Silva,Phys.Rev.D87 (5)(2013)055009, arXiv:1211.3131[hep-ph].

[22]S.Kanemura,M.Kikuchi,K.Yagyu,Phys.Lett.B731(2014)27,arXiv:1401.0515 [hep-ph].

[23]M.Aoki,S.Kanemura,M.Kikuchi,K.Yagyu,Phys.Rev.D87 (1)(2013)015012, arXiv:1211.6029[hep-ph].

[24]A.Arhrib,M.CapdequiPeyranere,W.Hollik,S.Penaranda,Phys.Lett.B579 (2004)361,arXiv:hep-ph/0307391.

Referenzen

ÄHNLICHE DOKUMENTE

● Major source of Higgs boson events @ 125 GeV (e.g. for study of dedicated final states like VBF).. ● First single-channel, single-experiment observation of coupling

● Question: how can the symmetry be the source of electroweak interactions and at the same time elementary particle masses , which explicitly break this symmetry....

● Incorporation of spontaneous symmetry breaking in gauge field theory = Higgs mechanism:.. ● Leads to prediction of new particle: →

● Excitation of vacuum ground state leads to existence of a new particle, characterized by very peculiar coupling structure, needed to preserve the symmetry of the system:.

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS FACULTY 10/35.. SM

● Spin and CP studies need something to make spin of particles visible → spin analyzer.. ● Principle: angular momentum conservation in 2-body decay ( best high energetic or with

● We have discussed how gauge bosons obtain mass by a gauge that absorbs the Goldstone bosons in the theory. ● As a complex doublet has four degrees

cannot use QCD Lagrangian for perturbation theory anymore quarks and gluons form a plethora of hadrons?. protons and neutrons