• Keine Ergebnisse gefunden

The CMS experiment

N/A
N/A
Protected

Academic year: 2021

Aktie "The CMS experiment "

Copied!
42
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The CMS experiment

Stefanos Leontsinis

University of Zurich

Kern- und Teilchenphysik II

18

th

May 2018

(2)

S. Leontsinis 2

Overview

The CMS experiment

U. Zurich

LHC

• Collisions

• Basic principles of CMS

• CMS Higgs analysis overview

* for simplicity most numbers are approximate

(3)

S. Leontsinis 3

LHC in a nutshell - pt1

The CMS experiment

U. Zurich

• Goal at CERN’s Large Hadron Collider is to accelerate particles to high energies and make them collide

• producing new particles

• High mass particles → high energies (E=mc

2

)

• very important as in proton collisions quarks and

gluons entering the hard scattering carry a fraction

of the proton’s energy

(4)

S. Leontsinis 4

LHC in a nutshell - pt2

The CMS experiment

U. Zurich

• LHC accelerates protons at √s=13 TeV

• Collision frequency 40 MHz

• Current instantaneous luminosity at 
 CMS ~10

34

cm

-2

s

-1

• Effective year t = 10

7

s

• integrated luminosity L = 10

41

cm

-2

= 100 ]

-1

• LHC beams cross at the interaction point

• ~2.5k bunches per beam

~3x10

14

protons per bunch

• Inverse femtobarn (]

-1

) measures particle collision events per femtobarn (10

−43

m

2

)

1 ]

-1

~ 10

12

pp collisions

• Looking at a particular process (for now)

N

events

= L x σ

(5)

S. Leontsinis 5

How an event looks like

The CMS experiment

U. Zurich

(6)

S. Leontsinis 6

Another example

The CMS experiment

U. Zurich

(7)

S. Leontsinis 7

LHC in a nutshell - pt3

The CMS experiment

U. Zurich

• Coordinate system

• x-axis: point to the Interaction Point

• y-axis: upwards

• z-axis: along the beam axis

z x y

• instead of polar θ

• pseudo-rapidity η = -lntan(θ/2)

CMS/ATLAS coverage up to ~here

(8)

S. Leontsinis 8

From collisions to bytes

The CMS experiment

U. Zurich

• Trigger on physics is crucial

• LHC collision rate 40 MHz

• Hardware trigger (aka L1) ~100kHz

• Software trigger (aka HLT) ~1kHz

on lin e offline

• Here you can find raw data

• what does it contain?

(9)

S. Leontsinis 9

Basic principle of a HEP detector

The CMS experiment

U. Zurich

~10m

~15m

(10)

S. Leontsinis 10

Basic principle of a HEP detector

The CMS experiment

U. Zurich

(11)

S. Leontsinis 11

Basic principle of a HEP detector

The CMS experiment

U. Zurich

(12)

S. Leontsinis 12

Tracking is not easy!

The CMS experiment

U. Zurich

Where is the 50 GeV track?

(13)

S. Leontsinis 13

Tracking is not easy!

The CMS experiment

U. Zurich

(14)

S. Leontsinis 14

Basic principle of a HEP detector

The CMS experiment

U. Zurich

• In the transverse plane

Σp

T

= 0

• aka Missing Transverse Momentum

(MET)

(15)

S. Leontsinis 15

Basic principle of a HEP detector

The CMS experiment

U. Zurich

• 3 key characteristics of a good detector

• high efficiency

• good resolution

• low fake rate

• Big advantage of CMS

• high magnetic field (3.8 T)

• good pT resolution

• good separation of charged and neutral particles

perfect detector poor resolution poor resolution

+ low efficiency

(16)

S. Leontsinis 16

Basic principle of a HEP detector

The CMS experiment

U. Zurich

• Tracks and hits are turned into objects

electrons

muons

MET

photons

jets

J/ψ → ee J/ψ → μμ

(17)

S. Leontsinis 17

Pileup

The CMS experiment

U. Zurich

• Average condition per event

• ~27 vertices spread in ~20mm per bunch

crossing

(18)

S. Leontsinis 18

Pileup

The CMS experiment

U. Zurich

p

T

> 0.5 GeV

(19)

S. Leontsinis 19

Pileup

The CMS experiment

U. Zurich

p

T

> 2.0 GeV

(20)

S. Leontsinis 20

Pileup

The CMS experiment

U. Zurich

p

T

> 10 GeV

(21)

S. Leontsinis 21

From collisions to bytes

The CMS experiment

U. Zurich

• Trigger on physics is crucial

• LHC collision rate 40 MHz

• Hardware trigger (aka L1) ~100kHz

• Software trigger (aka HLT) ~1kHz

on lin e offline

• Here you can find raw data

• what does it contain? - now you know

• Data are reprocessed

• based on detector calibrations / alignments / other corrections

• preliminary samples ready ~1 week

• final re-processing O(months)

(22)

S. Leontsinis 22

From collisions to bytes - example of reprocessing The CMS experiment

U. Zurich

• Trigger on physics is crucial

• LHC collision rate 40 MHz

• Hardware trigger (aka L1) ~100kHz

• Software trigger (aka HLT) ~1kHz

on lin e offline

• Here you can find raw data

• what does it contain? - now you know

• Data are reprocessed

• based on detector calibrations / alignments / other corrections

• preliminary samples ready ~1 week

• final re-processing O(months)

(23)

S. Leontsinis 23

Data taking…

The CMS experiment

U. Zurich

• Events/year = 10

7

s x 1 kHz = 10

10

• Size of disk 10

10

x 1 MB = 10 PB

• Data storage and analysis based on

grid computing

(24)

S. Leontsinis 24

What can we do with the collisions recorded?

The CMS experiment

U. Zurich

• Standard Model

• W/Z production cross-sections

• WW/ZZ production cross-sections

• WWW/ZZZ production cross-sections

• New physics, beyond the Standard Model

• Supersymmetry

• Extra dimensions

• Dark matter

• Charged Higgs

Higgs physics as a prime example of a standard analysis (reminder N

events

= L x σ)

• Measurements

• cross-sections

• mass / lifetime

Searches

bump

• distributions - tails

(25)

S. Leontsinis 25

Higgs production at the LHC

The CMS experiment

U. Zurich

• Gluon gluon fusion

• σ = 19.3 pb √s=8 TeV

• loop dominated by top quark

• often accompanied by jets in the final state

dominant production mechanism

N

events

= L x σ = 20 ]

-1

x 19.3 pb = 4x10

5

(26)

S. Leontsinis 26

Higgs production at the LHC

The CMS experiment

U. Zurich

• Vector boson fusion

• σ = 1.6 pb √s=8 TeV

• 10x lower cross-section compared to ggF

Disting experimental signature

N

events

= L x σ = 20 ]

-1

x 1.6 pb = 3x10

4

(27)

S. Leontsinis 27

Higgs production at the LHC

The CMS experiment

U. Zurich

• Associated production with W/Z

• σ = 0.7 pb √s=8 TeV for WH

• σ = 0.4 pb √s=8 TeV for ZH

• very low cross-section

Very clean final state

N

events

= L x σ = 20 ]

-1

x 1.1 pb = 2x10

4

(28)

S. Leontsinis 28

Higgs production at the LHC

The CMS experiment

U. Zurich

• Associated production with top pair

• σ = 0.12 pb √s=8 TeV

very

2

low cross-section

Unique final state with 2 b-jets, 
 2 W bosons and a Higgs

N

events

= L x σ = 20 ]

-1

x 0.12 pb = 2x10

3

(29)

S. Leontsinis 29

Higgs decays at the LHC

The CMS experiment

U. Zurich

Highest branching ratio, but high QCD background

Not fully reconstructed state Impossible due to jet backgrounds Very difficult.. Poor performance of c jet tagging

H → gg and H → cc can be studied in ee collider

Only accessible final state with leptons

Fully reconstructed final state with excellent resolution

Fully reconstructed final state with

excellent resolution

(30)

S. Leontsinis 30

Higgs decays at CMS

The CMS experiment

U. Zurich

M(x,p,q) = N

s

/(N

s

+N

b

) S(x;p) + N

b

/(N

s

+N

b

) B(x;q) N

total

= N

s

+ N

b

N

events

= L x σ x B(H → ?) x B(? → ?’) x ε x A

for H → ZZ → 4l, e x A = (20-40)%

(31)

S. Leontsinis 31

Higgs decays at the LHC

The CMS experiment

U. Zurich

(32)

S. Leontsinis 32

Higgs decays at the LHC

The CMS experiment

U. Zurich

(33)

S. Leontsinis 33

H → ZZ → 4l simplified

The CMS experiment

U. Zurich

• Choose decay mode of the Z

Z qq

Z ee/μμ/ττ

Z νν

Η ΖΖ llll, l=e,μ is the easiest by far

• aka the golden mode

• high-pt leptons are clean!

• have high efficiency

• very good momentum resolution

• Select events containing

• 2electrons and 2muons OR

• 4 electrons OR

4 muons

• Various approaches on that.. Cut & count, MVA,

MELA, …

(34)

S. Leontsinis 34

H → ZZ → 4l simplified

The CMS experiment

U. Zurich

• Check that one of the di-lepton pair is consistent with a Z

• one is real, one is off-shell

• Check that the 4 leptons are compatible with the Higgs

(35)

S. Leontsinis 35

How to recover

The CMS experiment

U. Zurich

• Final state radiation recovery

• leptons radiate photons

• high energy photons can be

detected and recombined with

the muon

(36)

S. Leontsinis 36

Looking towards the future aka what you are going to work on The CMS experiment

U. Zurich

we are here

(37)

S. Leontsinis 37

Looking towards the future aka what your students will work on The CMS experiment

U. Zurich

• In case no new physics found

• would make sense to go to an e+e- collider

• make it a Higgs factory and study principles of the new

boson

(38)

S. Leontsinis 38

Basic principle of a HEP detector

The CMS experiment

U. Zurich

you can be here and see CMS

starting early 2019

(39)
(40)

S. Leontsinis 40

Diagram simplified

The CMS experiment

U. Zurich

p

p

(41)

S. Leontsinis 41

Diagram in reality

The CMS experiment

U. Zurich

p

p

(42)

S. Leontsinis 42

Significance of observation

The CMS experiment

U. Zurich

Referenzen

ÄHNLICHE DOKUMENTE

In Figure 9.13 the results for Sample 1 are shown. Subfigure 9.13a shows the in-time efficiency for three subsequent LV1 accept bins. The efficiency of a single bin must not

Since in a generic B 3 MSSM, the number of free parameters in the SUSY breaking sector is too large to perform a systematic study, we work in the B 3 constrained MSSM (B 3 cMSSM)

Das CERN ist nicht nur Heimat für Forscher und Ingenieure, son- dern hat sich auch zum Eldorado für Musik begeisterte und Klang- tüftler entwickelt und auf seine Art

The goal of this bachelor’s thesis is to map the activity of the border organization “Euregio Egrensis” within the purview of the project Ziel 3/Cíl 3.. The bachelor’s thesis

Limits on the production cross section of heavy composite vectors in the Fundamental Minimal Composite Higgs Model, SU (4)/Sp(4), and a first assessment of strong Vector

Active CMOS sensors serve as possible candidates for a cost effective pixel detector for the High Luminosity Large Hadron Collider.. II.Physik-UniGö-Diss-2016 /

As in the Standard Model the inclusive lepton production cross section at the LHC decreases with an increasing lepton multiplicity, searches for supersymmetry in events with a

Figure 7.8: Observed and expected upper limits on the production cross-section times t t ¯ branching ratio for the narrow (left) and wide (right) resonant states with a mass of m =