• Keine Ergebnisse gefunden

Pressure [hPa]Pressure [hPa]

N/A
N/A
Protected

Academic year: 2022

Aktie "Pressure [hPa]Pressure [hPa]"

Copied!
45
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

How permeable is the tropopause in the vicinity of the subtropical jet ?: Seasonal variability derived from model simulations

(CLaMS) and observations.

P. Konopka, G. G ¨unther, J.-U. Grooß, R. M ¨uller, C. M. Volk, C. Schiller, P. Hoor and L. L. Pan

P.Konopka@fz-juelich.de

http://www.fz-juelich.de/icg/icg-i/www export/p.konopka.

Research Center Juelich, ICG-I: Stratosphere, Germany

(2)

Extratropical tropopause - What is the challenge?

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111

Geophysica before take off, TROCCINOX, Brazil, 08.02.2005

(3)

Extratropical tropopause - What is the challenge?

Alt [km]

18.0

13.0

10.5

8.0

Equator North Pole

TROPICS

MID−LATITUDES

POLAR REGION

TTL

Subtropical Jet

Polar Jet 350

320

300 380

15.5

LOWERMOST

STRATOSPHERE

STRATOSPHERE (OVERWORLD)

Tropopause:

mixing layer rather than a surface Thickness depends on:

(-) thermal stability, position rela- tive to the jet..., e.g. Pan et al, JGR, 2007

(-) season, e.g. Hoor et al., JGR ,2002

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111

(4)

Extratropical tropopause - What is the challenge?

Alt [km]

18.0

13.0

10.5

8.0

Equator North Pole

TROPICS

MID−LATITUDES

POLAR REGION

TTL

Subtropical Jet

Polar Jet 350

320

300 380

15.5

DIABATIC ASCENT

LOWERMOST

STRATOSPHERE

DIABATIC DESCENT

CONVECTION

STRATOSPHERE (OVERWORLD)

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

Advective fluxes j u

maximum in winter, Appenzeller et al., JGR,

1996

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000

1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111 1111111

Geophysica before take off, TROCCINOX, Brazil, 08.02.2005

(5)

Extratropical tropopause - What is the challenge?

Alt [km]

18.0

13.0

10.5

8.0

Equator North Pole

TROPICS

MID−LATITUDES

POLAR REGION Subtropical Jet

Polar Jet 320

380

15.5

DIABATIC ASCENT

LOWERMOST

STRATOSPHERE

DIABATIC DESCENT

CONVECTION

STRATOSPHERE (OVERWORLD)

300

TTL 350

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

TWO−WAY MIXING TWO−WAY MIXING

Diffusive, mainly isentropic fluxes dominate transport !

j Dµ

2D - e.g. Hegglin et al, 2005 3D - e.g. Nakamura et al., 2005, Levine et al, 2007 (95% of STE occurs isentrop- ically)

(6)

Extratropical tropopause - What is the challenge?

Alt [km]

18.0

13.0

10.5

8.0

Equator North Pole

TROPICS

MID−LATITUDES

POLAR REGION Subtropical Jet

Polar Jet 320

380

15.5

DIABATIC ASCENT

LOWERMOST

STRATOSPHERE

DIABATIC DESCENT

CONVECTION

STRATOSPHERE (OVERWORLD)

300

TTL 350

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000

111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111 111111

TWO−WAY MIXING TWO−WAY MIXING

Diffusive, mainly isentropic fluxes dominate transport !

j Dµ

2D - e.g. Hegglin et al, 2005 3D - e.g. Nakamura et al., 2005, Levine et al, 2007 (95% of STE occurs isentrop- ically)

Partition into advective and diffusive fluxes strongly depends on the resolved scales in the model !

typically: CTMs - down to 50 km horizontally

Geophysica before take off, TROCCINOX, Brazil, 08.02.2005

(7)

Subtropical jet as a seasonal mixing barrier

Effective diffusivity at θ = 350 K

Haynes and Shuckburgh, JGR, 2000

(8)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

Subtropical jet as a seasonal mixing barrier

Effective diffusivity at θ = 350 K

Haynes and Shuckburgh, JGR, 2000 Strong transport barrier

for isentropic transport in winter

(9)

Subtropical jet as a seasonal mixing barrier

Effective diffusivity at θ = 350 K

Haynes and Shuckburgh, JGR, 2000 High permeabilty in summer

(10)

CLaMS-Model

Greenland from space shuttle (NASA) CLaMS - Lagrangian Chemistry Transport Model

Potential temperature/pressure as vertical coordinate in the stratosphere/troposphere Horizontal and vertical velocities from meteor. winds (ECMWF) and/or a radiation scheme Lagrangian mixing

Full stratospheric +

simplified tropospheric chemistry

Lagrangian particle sedimentation scheme parallelized code

McKenna et al., JGR, 2002, Konopka et al., JGR, 2004, Grooß et al., 2005, ACP, Konopka et al., ACP, 2007

Mixing Trajectory

Chemistry

Sedimentation

0000 00 1111 11 0000

00 1111 11 0000

00 1111 11 0000

00 1111 11

0000 00 1111 11

0000 00 1111 11

0000 00 1111 11 0000

00 1111 11

0000 00 1111 11

0000 00 1111 11 0000 00 1111 11

0000 00 1111 11

(11)

CLaMS with stratosphere and troposphere

Convection AND radiative forcing ⇒ Hybride ζ-coordinates, Mahowald et al., JGR, 2002

Vertical cross section of PV (ECMWF), Konopka et al., ACP, 2007

−50 0 50

Latitude [deg N]

100

Pressure [hPa]

−50 0 50

Latitude [deg N]

100

Pressure [hPa]

0.

3.

6.

9.

11.

14.

17.

20.

|PV| [PVU]

3

3 3

3

400 400

400 400

380 380

380 380

360

360 360

360 340

340

340 340

320320 300 320 300

300 280

280 250

200 100

(12)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

CLaMS with stratosphere and troposphere

Convection AND radiative forcing ⇒ Hybride ζ-coordinates, Mahowald et al., JGR, 2002

Vertical cross section of PV (ECMWF), Konopka et al., ACP, 2007

−50 0 50

Latitude [deg N]

100

Pressure [hPa]

−50 0 50

Latitude [deg N]

100

Pressure [hPa]

0.

3.

6.

9.

11.

14.

17.

20.

|PV| [PVU]

3

3 3

3

400 400

400 400

380 380

380 380

360

360 360

360 340

340

340 340

320320 300 320 300

300 280

280 250

200 100

above tropopause ζ = θ (pot. Temp.)

below tropopause ζ ∼ p (Pressure)

(13)

CLaMS with stratosphere and troposphere

Convection AND radiative forcing ⇒ Hybride ζ-coordinates, Mahowald et al., JGR, 2002

Vertical cross section of PV (ECMWF), Konopka et al., ACP, 2007

−50 0 50

Latitude [deg N]

100

Pressure [hPa]

−50 0 50

Latitude [deg N]

100

Pressure [hPa]

0.

3.

6.

9.

11.

14.

17.

20.

|PV| [PVU]

3

3 3

3

400 400

400 400

380 380

380 380

360

360 360

360 340

340

340 340

320320 300 320 300

300 280

280 250

200 100

above tropopause ζ = θ (pot. Temp.)

below tropopause ζ ∼ p (Pressure) above tropopause

dt =

dt

below tropopause

dt = Ω (ECMWF)

(14)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

CLaMS with stratosphere and troposphere

Convection AND radiative forcing ⇒ Hybride ζ-coordinates, Mahowald et al., JGR, 2002

Vertical cross section of PV (ECMWF), Konopka et al., ACP, 2007

−50 0 50

Latitude [deg N]

100

Pressure [hPa]

−50 0 50

Latitude [deg N]

100

Pressure [hPa]

0.

3.

6.

9.

11.

14.

17.

20.

|PV| [PVU]

3

3 3

3

400 400

400 400

380 380

380 380

360

360 360

360 340

340

340 340

320320 300 320 300

300 280

280 250

200 100

above tropopause ζ = θ (pot. Temp.)

below tropopause ζ ∼ p (Pressure) above tropopause

dt =

dt

below tropopause

dt = Ω (ECMWF) hor/vert resolution 100 km/200 m Sim. time: 2001-2006

Simplified chemistry for: CH4, N2O, CO2, CO, O3 (passive), In addition: H2O, Ice, Age of air

(15)

...Mixing in CLaMS...

“a new view on the

irreversibility”

(16)

Mixing in CLaMS

Hurricane Ivan from space shuttle (NASA)

Large-scale wind

Small-scale deformations

Filamentation

Mixing

(irreversibility)

(17)

Mixing in the vicinity of the subtropical jet

Subtropical jet

over Himalayas

(18)

Mixing in the vicinity of the subtropical jet

Hurricane Ivan from space shuttle (NASA)

Subtropical jet over Himalayas

Strong

deformations ...

(19)

Mixing in the vicinity of the subtropical jet

Subtropical jet over Himalayas

... and mixing !

Pan et al., 2006, JGR

(20)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

Lagrangian realization of Smagorinsky idea (1963) D ∼ ∇× u (i.e. D shear and strain rates)

Mixing in CLaMS is controlled by the critical defor-

mations which are driven by (local) vertical shear

and horizontal strain rates

(21)

...Validation of CLaMS...

(22)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

A case study

(23)

A case study

(24)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

A case study

Konopka et al., ACP, 2007

(25)

CO/O 3 correlations

SONEX observations in a tropopasue fold, Pan et al., 2006, JGR

Pure trajectory transport !!

40 60 80 100

CO[ppbv]

100 200 300 400

Ozone [ppbv]

A B

C

D Mixing lines

Initial corr.

0 10 20 30 40 50 60 70 80 90 100 Strat. Air [%]

Exp CLaMS

(26)

CO/O 3 correlations

SONEX observations in a tropopasue fold, Pan et al., 2006, JGR

40 60 80 100

CO[ppbv]

100 200 300 400

Ozone [ppbv]

A B

C

D Mixing lines

Initial corr.

0 10 20 30 40 50 60 70 80 90 100 Strat. Air [%]

Exp CLaMS

40 60 80 100

CO[ppbv]

100 200 300 400

Ozone [ppbv]

A B

C

D Mixing lines

Initial corr.

0 10 20 30 40 50 60 70 80 90 100 Strat. Air [%]

Exp CLaMS

CLaMS with mixing

(27)

Seasonality of CO/O 3 correlations

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

0.01 0.02 0.04 0.08 0.16 0.32 0.63 1.26 2.51 5.01 10.00 PDF (%)

February−2003

Correlation within the mixing layer:

northern hemisphere θ < 380 K

1 <PV< 3 PVU

(28)

Seasonality of CO/O 3 correlations

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

0.01 0.02 0.04 0.08 0.16 0.32 0.63 1.26 2.51 5.01 10.00 PDF (%)

February−2003

Correlation within the mixing layer:

northern hemisphere θ < 380 K

1 <PV< 3 PVU

340 < θ < 380 K

(29)

Seasonality of CO/O 3 correlations

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

0.01 0.02 0.04 0.08 0.16 0.32 0.63 1.26 2.51 5.01 10.00 PDF (%)

February−2003

Correlation within the mixing layer:

northern hemisphere θ < 380 K

1 <PV< 3 PVU

340 < θ < 380 K

0 20 40 60

Latitude [deg N]

100.

250.

300.

340.

360.

380.

420.

450.

Hybrid Pot. Temperature, ζ, [K]

0 20 40 60

Latitude [deg N]

100.

250.

300.

340.

360.

380.

420.

450.

Hybrid Pot. Temperature, ζ, [K]

0.10 0.16 0.25 0.40 0.63 1.00 1.58 2.51 3.98 6.31 10.00 PDF (%)

10

10 10

15

15

20

20

30 40

700 500 300 200 150 100 75

75

320

320

3 340

3 360

3 380

3

(30)

Seasonality of CO/O 3 correlations

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

0.01 0.02 0.04 0.08 0.16 0.32 0.63 1.26 2.51 5.01 10.00 PDF (%)

February−2003

Correlation within the mixing layer:

northern hemisphere θ < 380 K

1 <PV< 3 PVU

340 < θ < 380 K

0 < θ < 330 K

(31)

Seasonality of CO/O 3 correlations

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

0.01 0.02 0.04 0.08 0.16 0.32 0.63 1.26 2.51 5.01 10.00 PDF (%)

February−2003

Correlation within the mixing layer:

northern hemisphere θ < 380 K

1 <PV< 3 PVU

340 < θ < 380 K

0 < θ < 330 K

0 20 40 60

Latitude [deg N]

100.

250.

300.

340.

360.

380.

420.

450.

Hybrid Pot. Temperature, ζ, [K]

0 20 40 60

Latitude [deg N]

100.

250.

300.

340.

360.

380.

420.

450.

Hybrid Pot. Temperature, ζ, [K]

0.10 0.16 0.25 0.40 0.63 1.00 1.58 2.51 3.98 6.31 10.00 PDF (%)

10

10 10

15

15

20

20

30 40

700 500 300 200 150 100 75

75

320

320

3 340

3 360

3 380

3

(32)

Seasonality of CO/O 3 correlations

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

0.01 0.02 0.04 0.08 0.16 0.32 0.63 1.26 2.51 5.01 10.00 PDF (%)

February−2003

Correlation within the mixing layer:

northern hemisphere θ < 380 K

1 <PV< 3 PVU

340 < θ < 380 K

0 < θ < 330 K

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

20 40 60 80 100 120 140

CO (ppbv) 100

200 300 400 500

O3 (ppbv)

0.01 0.02 0.04 0.08 0.16 0.32 0.63 1.26 2.51 5.01 10.00 PDF (%)

August−2003

340 < θ < 380 K

0 < θ < 330 K

(33)

Example: START 2005

Pan et al., JGR, 2007

(34)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

...Mixing-driven transport

across the tropopause

(35)

Mixing intensity (Dec - Jan - Feb - Mar)

−50 0 50

Latitude, [deg N]

150.

250.

300.

340.

360.

380.

450.

500.

Hybrid Pot. Temperature, ζ, [K]

−50 0 50

Latitude, [deg N]

150.

250.

300.

340.

360.

380.

450.

500.

Hybrid Pot. Temperature, ζ, [K]

0.

4.

8.

12.

16.

20.

24.

28.

32.

36.

40.

44.

48.

52.

56.

60.

Mixed Air [%]

10

10

10

10 10

20

20

20

20 25

25 30

30 35

40

500

300 300

200 100

100 70

70

310

310 2

2

4

4 195

200

200

330 330

2 2

4

4 195

200

200 340 340

2 2

4

4 195

200

200

350

2 2

4

4 195

200

200 360

2 2

4

4 195

200

200

380

2 2

4

4 195

200

200

420

2 2

4

4 195

200

200

Summer Winter

(36)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

Mixing intensity (Dec - Jan - Feb - Mar)

−50 0 50

Latitude, [deg N]

150.

250.

300.

340.

360.

380.

450.

500.

Hybrid Pot. Temperature, ζ, [K]

−50 0 50

Latitude, [deg N]

150.

250.

300.

340.

360.

380.

450.

500.

Hybrid Pot. Temperature, ζ, [K]

0.

4.

8.

12.

16.

20.

24.

28.

32.

36.

40.

44.

48.

52.

56.

60.

Mixed Air [%]

10

10

10

10 10

20

20

20

20 25

25 30

30 35

40

500

300 300

200 100

100 70

70

310

310 2

2

4

4 195

200

200

330 330

2 2

4

4 195

200

200 340 340

2 2

4

4 195

200

200

350

2 2

4

4 195

200

200 360

2 2

4

4 195

200

200

380

2 2

4

4 195

200

200

420

2 2

4

4 195

200

200

Summer Winter

High local mixing intensity in CLaMS does not

necessarily implicate a permeable transport barrier

(37)

Mixing intensity (Dec - Jan - Feb - Mar)

−50 0 50

Latitude, [deg N]

150.

250.

300.

340.

360.

380.

450.

500.

Hybrid Pot. Temperature, ζ, [K]

−50 0 50

Latitude, [deg N]

150.

250.

300.

340.

360.

380.

450.

500.

Hybrid Pot. Temperature, ζ, [K]

0.

4.

8.

12.

16.

20.

24.

28.

32.

36.

40.

44.

48.

52.

56.

60.

Mixed Air [%]

10

10

10

10 10

20

20

20

20 25

25 30

30 35

40

500

300 300

200 100

100 70

70

310

310 2

2

4

4 195

200

200

330 330

2 2

4

4 195

200

200 340 340

2 2

4

4 195

200

200

350

2 2

4

4 195

200

200 360

2 2

4

4 195

200

200

380

2 2

4

4 195

200

200

420

2 2

4

4 195

200

200

Summer Winter

−50 0 50

Latitude, [deg N]

200.

250.

300.

340.

360.

380.

450.

−50 0 50

Latitude, [deg N]

200.

250.

300.

340.

360.

380.

450.

0.0 1.4 1.8 2.5 3.4 4.6 6.3 8.6 11.7 15.8 21.5 29.3 39.8 54.1 73.6 100.0 BT [%]

500

300 300

200

200 100

100

310

310

330 330

340 340

350 360 380 420

20

20

20

20

25

25

25

25

30 40

2 2

4 4

Zonally averaged signature of boundary layer tracer

after 4 month of transport: Dec - Jan - Feb - Mar

(38)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

Stratospheric ozone in the troposphere (500 hPa)

−50 0 50

Latitude

−50 0 50

Latitude

01.01.02 01.01.03 01.01.04 01.01.05 01.01.06

time

0.

8.

16.

24.

32.

40.

48.

56.

64.

72.

80.

88.

96.

104.

112.

120.

O3 (ppbv)

p ≈500 hPa

O3 passively transported O3 set to 0 in the boundary layer

(39)

Conclusions

Large isentropic, two-way diffusive fluxes dominate the transport across the extratropical tropopause.

These fluxes are mainly driven by seasonally variable permeability across the

(subtropical and polar) jets and by cross-tropopause gradients of the tracer gases:

j ∼ D∇µ, µ-mixing ratio

But, such fluxes depend on the considered species and can only be hardly validated ! On the other side, seasonality of the permeability of the jets can be described in terms of the observed tracer-tracer correlations (CO/O3, H2O/O3)

Such correlations can be used to validate transport within the models

Tracer distributions, tracer correlations and age spectrum are more important than the quantification of the fluxes

Example: highest values of stratospheric ozone at 500 hPa in late spring and summer

(40)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

−50 0 50

Latitude, [deg N]

200.

250.

300.

340.

360.

380.

450.

−50 0 50

Latitude, [deg N]

200.

250.

300.

340.

360.

380.

450.

0.0 1.4 1.8 2.5 3.4 4.6 6.3 8.6 11.7 15.8 21.5 29.3 39.8 54.1 73.6 100.0 BT [%]

500

300 300

200

200 100

100

310

310

330 330

340 340

350 360 380 420

20

20

20

20

25 25

25

25

30 40

2 2

4 4

Zonally averaged signature of

boundary layer tracer after 4 month of

transport

Dec - Jan - Feb - Mar

−50 0 50

Latitude, [deg N]

200.

250.

300.

340.

360.

380.

450.

Hybrid Pot. Temperature, ζ, [K]

−50 0 50

Latitude, [deg N]

200.

250.

300.

340.

360.

380.

450.

Hybrid Pot. Temperature, ζ, [K]

0.0 1.4 1.8 2.5 3.4 4.6 6.3 8.6 11.7 15.8 21.5 29.3 39.8 54.1 73.6 100.0 B. Layer [%]

500

300 300

200

200 100

100

310

310

330 330

340 340

350 360 380 420

20

20

20

20

25 25

25

25

30 40

2 2

4 4

No mixing !!

(41)

Summer versus winter

Equator 90 N

90 S

Summer Winter

Summer Winter

Convection

Convection ITCZ

ITCZ TTL

Cold trap

Transport Barrier

(42)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

CLaMS versus all Geophysica flights

(2003-2006)

(43)

CLaMS versus all Geophysica flights

(2003-2006)

(44)

Forschungszentrum Jülich

in der Helmholtz-Gemeinschaft

CLaMS with stratosphere and troposphere

−50 0 50

Latitude, [deg N]

50.

250.

340.

360.

380.

450.

500.

700.

1500.

Hybrid Pot. Temperature [K]

December 2003 December 2003

−50 0 50

Latitude, [deg N]

50.

250.

340.

360.

380.

450.

500.

700.

1500.

Hybrid Pot. Temperature [K]

−25.0

−12.5

−6.3

−3.2

−1.6

−0.8

−0.4

−0.2 0.2 0.4 0.8 1.6 3.2 6.3 12.5 25.0 dζ/dt [K]

10

10

10

10

10

20

20

20

20 30

30 30

−10

−10

−20

−20

−30 −40

800 500

300 200 100

100 50

50 30

30

10 10

5 5

320 320

340 360 380 450 700

2 2

4 4

zonally and monthly aver- aged vert. velocity,

Konopka et al., ACP, 2007

(45)

CLaMS with stratosphere and troposphere

−50 0 50

Latitude, [deg N]

50.

250.

340.

360.

380.

450.

500.

700.

1500.

Hybrid Pot. Temperature [K]

December 2003 December 2003

−50 0 50

Latitude, [deg N]

50.

250.

340.

360.

380.

450.

500.

700.

1500.

Hybrid Pot. Temperature [K]

−25.0

−12.5

−6.3

−3.2

−1.6

−0.8

−0.4

−0.2 0.2 0.4 0.8 1.6 3.2 6.3 12.5 25.0 dζ/dt [K]

10

10

10

10

10

20

20

20

20 30

30 30

−10

−10

−20

−20

−30 −40

800 500

300 200 100

100 50

50 30

30

10 10

5 5

320 320

340 360 380 450 700

2 2

4 4

zonally and monthly aver- aged vert. velocity,

Konopka et al., ACP, 2007

hor/vert resolution 100 km/200 m Sim. time: 2001-2006

Simplified chemistry for: CH4, N2O, CO2, CO, O3 (passive), In addition: H2O, Ice, Age of air

Referenzen

ÄHNLICHE DOKUMENTE

• systematic errors (very hard to assess) -&gt; comparison to measurements; leads to state estimation with formal error estimates... perturbation experiments

tur¨anderung ∆T soll entweder durch die Volumen¨anderung (mittels h 0 ) bei konstantem Gasdruck P 0 oder durch die Druck¨anderung (mittels ∆h) bei konstantem Volumen V 0

Monitoring of the fonnation of stable fluorescent nanoparticles from controlled mixing of a THF solution of poly(fluorene ethynylene)- block-poly( ethylene glycol) in a

When verbs like want are followed by another verb, they are usually followed by to...  I want to see

B) Put the words in the correct order to make questions. Then answer the questions. C) Match the comments on the left with the responses on the right. Bridget lives in the flat.

Annie forbidden Hector to marry has Hector's family. __Has Hector’s family forbidden Hector to

__Did Bridget advise Annie to buy some new clothes______ ? ___Yes, she did. C) Match the comments on the left with the responses on the right. Bridget lives in the flat. The girl

an animal never previously injected with hornet VSE: b on sequential injection of a uniform dose of VSE to a naive animal: con repeated injections of increasing and decreasing doses