• Keine Ergebnisse gefunden

Asymptotic Properties of the Nonparametric Part in Partial Linear Heteroscedastic Regression Models

N/A
N/A
Protected

Academic year: 2022

Aktie "Asymptotic Properties of the Nonparametric Part in Partial Linear Heteroscedastic Regression Models"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

ASYMPTOTICPROPERTIESOFTHE

NONPARAMETRICPARTINPARTIAL

LINEARHETEROSCEDASTIC

REGRESSIONMODELS

HuaLiang,WolfgangHardleandAxelWerwatz

AbstractThispaperconsidersestimationoftheunknownfunctiong()inthepartiallinearregressionmodelYi=XTi

+g(Ti)+"iwithheteroscedasticerrors.Werstconstructaclassofestimatesgnofgandprovethat,underappropriateconditions,gnisweak,meansquareerrorconsistent.Ratesofconvergenceandasymptoticnormalityfortheestimatorgnarealsoestablished.

Key W ords and Phrases:Key words and phrases:

Asymptoticnormality,consistency,heteroscedasticity,kernelestimation,ratesofconvergence,partiallinearmodel,semipara-metricmodels.

1INTRODUCTIONSemiparametricmodelscombinetheexibilityofnonparametricmodelingwithstructuralparametriccomponents.OnesuchmodelthathasreceivedalotofattentionintheliteratureisthesemiparametricpartiallinearregressionmodelYi=X Ti+g(Ti)+"ii=1:::n(1)HuaLiangisAssociateProfessorofStatistics,InstituteofSystemsScience,ChineseAcademyofSciences,Beijing100080,China.WolfgangHardleisProfessorofEconometrics,AxelWerwatzisDr.ofEconomics.BothoflatterareattheInstitutfurStatistikundOkonometrie,Humboldt-UniversitatzuBerlin,D-10178Berlin,Germany.ThisresearchwassupportedbySonderforschungsbereich373\QuantikationundSimu-lationOkonomischerProzesse".TherstauthorwassupportedbyAlexandervonHumboldtFoundation.TheauthorswouldliketothankMr.KnutBartelsforhisvaluablecommentswhichgreatlyimprovedthepresentationofthispaper.1

(2)

whereXandTare(possibly)multidimensionalregressors,avectorofunknownparame-ters,g()anunknownsmoothfunctionand"anerrortermwithmeanzeroconditionalonXandT:Well-knownapplicationsintheeconometricsliteraturethatcanbeputintheformof(1)arethehumancapitalearningsfunction(Willis(1986))andthewagecurve(BlanchowerandOswald(1994)).Inbothcases,log-earningsofanindividualarerelatedtopersonalcharacteristics(sex,maritalstatus)andmeasuresofaperson'shumancapitallikeschoolingandlabormarketexperience.Economictheorysuggestsanon-linearrelationshipbetweenlog-earningsandlabormarketexperience,whichthereforeplaystheroleofthevariableTin(1).Thewagecurveisobtainedbyincludingthelocalunemploymentrateasanadditionalregressor,withapossiblynon-linearinuence.RendtelandSchwarze(1995),forinstance,estimateg()asafunctionofthelocalunemploymentrateusingsmoothing-splinesandndaU-shapedrelationship.Undervariousassumptions,severalauthorshaveconsideredestimationofin(1)ataparametricrate.Chen(1988),Heckman(1986),Robinson(1988),Schick(1996)andSpeck-man(1988)constructed pn;consistentestimatorsof.Cuzick(1992a)studiedecientestimationofwhentheerrordensityisknown.Ecientestimationwhentheerrordistri-butionisofanunknownformistreatedinCuzick(1992b)andSchick(1993).Inthispaper,wewillinsteadfocusonderivingtheasymptoticpropertiesofanesti-matoroftheunknownfunctiong().Weconsideritsconsistency,weakconvergencerateandasymptoticnormality.Wewillderivetheseresultsforaspecicversionof(1)withnonstochasticregressors,heteroscedasticerrorsandTunivariate.Theremainderofthispaperisorganizedasfollows.Inthefollowingsectionwewilldescribemethodsforestimatingandg().Weproveconsistencyandasymptoticnormalityoftheestimatorofg()insections3and4.Weillustratetheusefulnessoftheestimatorandtherelevanceoftheasymptoticdistributionresultsforappliedworkbyasmall-scaleMonteCarlostudyandanempiricalillustrationinthenalsectionofthepaper.

2THEESTIMATORSpecically,weconsiderestimationofg()(and)inthefollowingpartiallinear,semipara-metricregressionmodel:Yi=X Ti+g(Ti)+"ii=1:::n(2)2

(3)

whereisanunknownpdimensionalparametervector,g()anunknown,smoothfunctionfrom01]toIR 1,(X1T1),(X2T2):::areknown,nonrandomdesignpointsand"1:::"nareindependentmeanzerorandomerrorswithnonconstantvariance.Weallowthevarianceof"todependonXandTinanarbitraryway.Previousworkinaheteroscedasticsettinghasfocusedonthenonparametricregressionmodel(i.e.=0).Mulleretal.(1987)proposedanestimateofthevariancefunctionbyusingkernelsmoother,andthenprovedthattheestimateisuniformlyconsistent.HallandCarroll(1989)consideredconsistencyofestimatesofg():Eubanketal.(1990)proposedtrigonometricseriestypeestimatorsgofg.Theyinvestigatedasymptoticapproximationsoftheintegratedmeansquarederrorandthepartialintegratedmeansquarederrorofg.Theheteroscedasticversionof(1)with6=0hasbeenconsideredinSchick(1996)butheconsidersweightedleastsquaresestimationof.Wefocusonnonparametricestimationofg()asafunctionofT.Supposeweknew:Thenwemayestimateg()bynonparametricregressionofYi;X Ti(thevariationinYinotaccountedforbythelinearcomponentX Ti)onTi:Intheliteratureonecanndvariousmethodsforestimatingg()nonparametrically,e.g.,kernel,nearestneighbor,orthogonalseries,piecewisepolynomialandsmoothingsplines.SeeHardle(1990)foranextensivediscussionoftheirstatisticalproperties.Alltheseestimatorsmaybewrittenasweightedlocalaveragesoftheobservedvaluesofthedependentvariablewiththeweightsdependingonthevaluesoftheexplanatoryvariables.Inourcase,wecanwrite(stillassumingthatisknown):^g(t)= nXi=1 !ni(t)(Yi;X Ti)(3)where!ni(t)=!ni(tT1T2:::Tn)areweightfunctionsthatdependontheobservationsT1:::Tn.Forinstance,aGasser-Muller-typekernelestimatortakes!ni(t)= 1h Zsis

i;1 K t;shn ds1infors0=0sn=1si= 12 (T(i)+T(i+1)):HereT(1):::T(n)aresampleorderstatistics,K()isthekernelfunctionandhdenotesthebandwidth.SeeRemark5belowfordetails.Giventheestimator^g(t)asdenedin(3)wemayestimatebytheleastsquaresregres-sionofYi=X Ti+^g(Ti)+i3

(4)

Yi; nXj=1 !nj(Ti)Yj= nXi; nXj=1 !nj(Ti)Xj oT+i

eYi= fX Ti+i(4)Thatis,weestimatebythegeneralizedleastsquaresestimatorLS=( fX T

fX) ;1

fX T

eY(5)where fX=( fX1::: fXn) Tand eY=( eY1::: eYn) Tarethepresmootheddesignandresponsevariables.Inthenalstepweobtainthefeasibleestimatorofg()bysubstitutingLSfortheunknownin(3):gn(t)= nXi=1 !ni(t)(Yi;X TiLS)(6)Furthermotivationfortheestimatorsdenedin(5)and(6)isgiveninSpeckman(1988)andGao,etal.(1995).NotethoughthatLSisnotanecientestimatorinthesenseofasymptoticnormality.Inthefollowingsectionwestateandprovetheweak,meansquareerrorconsistencyandgivetheratesofconvergenceofgn(t)undervariousassumptions.

3CONSISTENCYRESULTSAlltechnicalpreliminariesneededintheproofsofthefollowingresultsarecollectedinAppendix6aslemmas.Forconvenienceandsimplicity,wealwaysletCdenotesomepositiveconstantnotdependingonn:Wewillusethefollowingassumptions.

Assumption 1.

Thereexistcontinuousfunctionshj()denedon01]suchthateachelementofXisatisesxij=hj(Ti)+uij1in1jp(7)whereuijisasequenceofrealnumberswhichsatisfylimn!1 1n Pni=1ui=0andlimn!1 1n nXi=1 uiu Ti=B(8)isapositivedenitematrix,andlimsupn!1 1an max1kn kXi=1 ujim <1form=1:::p(9)

4

(5)

holdsforallpermutations(j1:::jn)of(12:::n)whereui=(ui1:::uip) Tan=n 1=2logn:

Assumption 2.

(a) Pni=1!ni(t)!1asn!1(b) Pni=1

j!ni(t)jCforalltandsomeconstantC(c) Pni=1

j!ni(t)jI(jt;Tij>a)!0asn!1foralla>0(d)supinj!ni(t)j=Of(logn) ;1

g:Denotent= n Pni=1! 2ni(t) o

;1:

Assumption 3.

(a)supn(nt)sup1inj!ni(t)j<1andnt=o(n)(b) pntsup1inj!ni(t)j=O(n ;=2)forsome1>>0(c) Pni=1! 2ni(t)E" 2i= 20=nt+o(1=nt)forsome 20>0:

Remark 1.

Assumption1isacommonrequirementforprovingconsistencyofinthepartiallinearmodel(1).Infact,(7)ofAssumption1isparalleltothecasehj(Ti)=E(xijjTi)anduij=xij;E(xijjTi) when(XiTi)arerandomvariables.(8)issimilartotheresultofthestronglawoflargenumbersforrandomerrors.(9)issimilartolawoftheiteratedlogarithm.MoredetaileddiscussionsmaybefoundinSpeckman(1988)andGaoetal.(1995).

Theorem 1.

UnderAssumptions1and2Efgn(t)g!g(t)asn!1ateverycontinuitypointofthefunctiong:

Pro of.

Decomposethedierencegn(t);g(t)asfollowsbydirectcalculation.gn(t);g(t)= nXj=1 !nj(t)fg(Ti)+"i;X Ti( fX T

fX) ;1

fX T

eg(T);X Tj( fX T

fX) ;1

fX T

e"g;g(t)

whereeg(T)=feg(T1):::eg(Tn)g Tandeg(Ti)=g(Ti); Pnj=1!nj(Ti)g(Tj)ande"justlike fX:ItfollowsthatEfgn(t)g;g(t)= nnXi=1 !ni(t)g(Ti);g(t) o

; nXi=1 !ni(t)X Ti( fX T

fX) ;1

fX T

eg(T)(10)

5

(6)

ThersttermtendstozerobyLemmaA.1(i).BylemmasA.2andA.1(i)andCauchy-Schwarzinequality,weknowthateveryelementof( fX TfX) ;1fX T

eg(T)iso(n ;1=2),i.e.,

n( fX T

fX) ;1

fX T

eg(T) oj =o(n ;1=2)forj=1:::p(11)Itsucestoshowthateveryelementof Pni=1!ni(t)XiisO(n 1=2).Observethatn

Xi=1 !ni(t)xij= nXi=1 !ni(t)fhj(Ti)+uijgSincehj()iscontinuous, Pni=1!ni(t)hj(Ti)convergestoh(t)onthecontinuitypointofh(t)bythesameproofasoneforLemmaA.1(i).Moreover,byAbel'sinequalityandAssumption2(d),

nXi=1 !ni(t)uij sup1in j!ni(t)jmax1kn kXi=1 ujim =O(n 1=2)Thusn

Xi=1 !ni(t)xij=O(n 1=2)(12)andwecompletetheproofofTheorem1.

#

Theorem1showsthatgn(t)isanasymptoticallyunbiasedestimatorofg(t)ateverycontinuitypointofg(t).Thenextresult,Theorem2,willdemonstratethatgn(t)isalsomeansquare-errorconsistent.

Theorem 2

AssumetheconditionsofTheorem1holdexceptAssumption2(d)whichisreplacedbysupinj!ni(t)j=of(logn) ;1

g:ThenEfgn(t);g(t)g 2

!0asn!1:

Pro of.

ItfollowsfromtheCr;inequalitywithr=2thatEfgn(t);g(t)g 2

CE

nXi=1 !ni(t)g(Ti);g(t) 2+CE nXi=1 !ni(t)"i 2

+CE

nXi=1 !ni(t)( fX T

fX) ;1

fX T

eg(T)

2+CE

nXi=1 !ni(t)X Ti( fX T

fX) ;1

fX T

e"

2(13)IntheproofofTheorem1weobtainedthattherstandthirdtermsof(13)convergetozeroasntendstoinnity.Thesecondcanbeshowntobeordero(1)bydirectcalculation.Weshallnowprovethefourthtermalsoconvergestozero.Denote( fX TfX) ;1fX T=(ji)pn:E nXi=1 !ni(t)X Ti( fX T

fX) ;1

fX T"

2=E nnXi=1 !ni(t) pXk=1 nXl=1 xikkl"l o2

= nXl=1 nXi=1 pXk=1 !ni(t)xikkl 2 2l

6

(7)

Itfollowsfromtheargumentsfor(12)thatthisequalstoO(n) Pnl=1 2kl.Since Pnl=1 2klandtheelementsofthek;throwof( fX TfX) ;1havethesameorderO(n ;1).ItfollowsthatE

nXi=1 !ni(t)X Ti( fX T

fX) ;1

fX T"

2=o(1):(14)Furthermore,wecaneasilyshowthatE nXi=1 !ni(t)X Ti( fX T

fX) ;1 nXk=1 fXk nnXl=1 !nl(Tk)"k o 2=o(1):(15) Combining(14)and(15)ensuresthatthefourthtermof(13)iso(1),andthuscompletestheproofofTheorem2.

#

Thefollowingresultgivestheweakconvergencerateofgnunderstrongerassumptionsonf!ni(t)gthanthosegiveninAssumption2.Herewelisttheseassumptions.

Assumption 2'.

Theweightfunctions!ni(t)satisfy:(a)suptj Pni=1!ni(t);1j=OP(n ;1=3logn)(b)supt Pni=1

j!ni(t)jI(jt;Tij>cn)=O(dn)wherednandcnaren ;1=3logn(c)suptmax1inj!ni(t)j=OP(n ;2=3):

Theorem 3.

Assumeg()andhj()areLipschitzcontinuousoforder1andAssumptions1and2'hold.Thengn(t);g(t)=OP(n ;1=3logn):

Pro of.

ByLemmaA.1(ii),n

Xi=1 !ni(t)g(Ti);g(t)=OP(n ;1=3logn):

UsingAssumption2'(c)andChebyshev'sinequalitywehaven

Xi=1 !ni(t)"i=OP(n ;1=3logn):

Thesimilarargumentsasthatfor(11)and(12)yieldn

Xi=1 !ni(t)X Ti( fX T

fX) ;1

fX T

eg(T)=OP(n ;1=3logn):

7

(8)

Finally,observethat Pni=1!ni(t)uij=O(1)andthen Pni=1!ni(t)xij=O(1)forj=1:::p:Thus,bytheargumentsfor(14)and(15),E

nXi=1 !ni(t)X Ti( fX T

fX) ;1

fX T

e"

2=O(n ;1):(16)

whichentailsn

Xi=1 !ni(t)X Ti( fX T

fX) ;1

fX T

e"=OP(n ;1=3logn):

ThiscompletestheproofofTheorem3.

# Remark 2.

Wecanconcludefromtheaboveargumentsthatlimsupn!1 (n 2=3log ;2n)Efgn(t);g(t)g 2<1:Theorem4givestheasymptoticvarianceofgn(t):

Theorem 4.

UnderAssumptions1,2'and3,ntVarfgn(t)g! 20asn!1:

Pro of.

ntVarfgn(t)g=ntE nnXi=1 !ni(t)"i o2+ntE nnXi=1 !ni(t)X Ti( fX T

fX) ;1

fX T

e" o2

;2ntE nnXi=1 !ni(t)"i o

nnXi=1 !ni(t)X Ti( fX T

fX) ;1

fX T

e" o

Thersttermconvergesto 20:Thesecondtermtendstozeroby(16),andthenthethirdtermalsotendstozerobytheCauchy-Schwarzinequality.

#

4ASYMPTOTICNORMALITYInthenonparametricregressionmodel,Liang(1995)provedasymptoticnormalityforin-dependent"i'sunderthemildconditions.Inthissection,weshallconsidertheasymptoticnormalityofgnundertheAssumptions1,2'and3.

Theorem 5.

Assumethat"1"2:::"nareindependentrandomvariableswithE"i=0andinfi 2i>c>0forsomec:ThereexistsafunctionG(u)satisfying

Z

10 uG(u)du<1(17) suchthatP(j"ij>u)G(u)fori=1:::nandlargeenoughu:(18)8

(9)

Ifmax1in! 2ni(t)

Pni=1! 2ni(t) !0asn!1:(19) Thengn(t);Egn(t)

qVarfgn(t)g ;! LN(01)asn!1:

Remark 3.

Thecondition R

10uG(u)du<1istoguaranteesupi 2i<1:

The pro of of Theorem 5.

AtrstfromtheproofofTheorem4,weobtainthatVarfgn(t)g= nXi=1 ! 2ni(t) 2i+o nnXi=1 ! 2ni(t) 2i o

Furthermoregn(t);Egn(t); nXi=1 !ni(t)"i= nXi=1 !ni(t)X Ti( fX T

fX) ;1

fX T

e"=OP(n ;1=2)

whichyields

Pni=1!ni(t)X Ti(fX T

fX) ;1

fX T

e"

qVarfgn(t)g =OP(n ;1=2n 1=2t)=oP(1) Itfollowsthatgn(t);Egn(t)

qVarfgn(t)g = Pni=1!ni(t)"i

q

Pni=1! 2ni(t) 2i +oP(1) def= nXi=1 a ni"i+oP(1) wherea ni= !

ni(t)

p

P

n

i=1!2ni(t) i :Letani=a nii,obviouslysupii<1dueto R

10vH(v)dv<1:Theproofofthetheoremimmediatelyfollowsfromtheconditions(17){(19)andLemmaA.4.

# Remark 4.

If"1:::"nareindependentidenticallydistributed,thenEj"1j 2<1andthecondition(19)ofTheorem5canyieldtheresultofTheorem5.

Assumption 2".

Theweightfunctions!ni(t)satisfy:(a) Pni=1!ni(t);1=o(n ;1=2t)(b) Pni=1

j!ni(t)jI(jt;Tij>c 0n)=o(d 0n)wherec 0nandd 0nareo(n ;1=2t):

9

(10)

Theorem 6.

Supposethatg(t)isLipschitzcontinuousoforder1.AssumetheconditionsofTheorem5holdwiththepreviousAssumption2"replacingAssumption2'.Thengn(t);g(t)

qVarfgn(t)g ;! LN(01)asn!1:

Pro of.

Infact,recalltheconclusionofTheorem5,itsucestoshowthatEgn(t);g(t)

qVarfgn(t)g = pntfEgn(t);g(t)g+o(1)=o(1):Forc 0n=o(n ;1=2t).Notethat

jEgn(t);g(t)j nXi=1 j!ni(t)fg(Ti);g(t)gjfI(jTi;tj>c 0n)+I(jTi;tjc 0n)g

+jg(t)j

nXi=1 !ni(t);1

(gc 0n)B+2C nXi=1 j!ni(t)jI(jTi;tj>c 0n)+C nXi=1 !ni(t);1 whereC=supt2 01]jg(t)jand(gc 0n)=sup

jt;t0 jc0 n jg(t);g(t 0)j:Assumption2"andthepreviousargumentsyieldtheconclusionofTheorem6.

# Remark 5.

Inthisremark,weshallgiveconcreteweightfunctionsf!ni(t)i=1:::ngwhichsatisfytheassumptionsgivenintheformercontext,inordertoexplainthereasonabilityoftheresultsestablishedinprevioussectionscarefully.Assume!ni(t)= 1hn Zsisi;1 K t;shn ds1in(20)

wheres0=0sn=1andsi= 12 (T(i)+T(i+1))1in;1:hnisasequenceofbandwidthparameterswhichtendstozeroasn!1andK()isakernelfunction,whichissupportedtohavecompactsupportandtosatisfysupp(K)=;11]supjK(x)jC<1 ZK(u)du=1andK(u)=K(;u)

ObviouslyAssumptions2(a),(b)and(d)aresatisedfortheweightfunctionsgivenin(20).If

Z

juj ah ;1 n K(u)du=o(1)

10

(11)

ThenAssumption2(c)holdalso.Infactn

Xi=1 !ni(t)I(jTi;tj>a)= 1hn nXi=1 Zsisi;1 K t;shn dsI(jTi;tj>a)

1hn Z

jT

i;sj a;maxjT

i;T

i;1j K t;shn ds

1hn Z

juj h ;1 n(a;maxjTi;T

i;1j) K(u)du=o(1) Nowletustakehn=Cn ;1=3forsomeC>0andsuppose

Z

juj ah;1 n K(u)du=O(n ;1=3logn) ThereexistconstantsC1C2>0suchthatC1n min1in jTi;Ti;1jmax1in jTi;Ti;1j C2nThenwecantakent=nhn,andAssumptions3and2"hold.Theorems5and6implythat

qnhnfgn(t);g(t)g;! LN(0 20)asn!1:

Thisisjusttheclassicalconclusioninnonparametricregressionestimation.

5NUMERICALEXAMPLESInthissectionwewillillustratethenite-samplebehaviouroftheestimatorbyapplyingittorealdataandbyperformingasmallsimulationstudy.Intheintroductionwealreadymentionedthehuman-capitalearningsfunctionasawell-knowneconometricapplicationthatcanbeputintotheformofapartiallinearmodel.Ittypicallyrelatesthelogarithmofearningstoasetofexplanatoryvariablesdescribinganindividual'sskills,personalcharacteristicsandlabourmarketconditions.Specically,weestimateandg()inthemodellnYi=X Ti+g(Ti)+"i(21)whereXcontainstwodummyvariablesindicatingthelevelofsecondaryschoolingapersonhascompletedandTisameasureoflabourmarketexperience(denedasthenumberofyearsspentinthelabourmarketandapproximatedbysubtracting(yearsofschooling+6)fromaperson'sage).11

(12)

Partial linear fit

10203040T

2.7999992.899999 3 3.099999 3.2 estimate of g(T)

Figure1:Relationshipoflog-earningsandlabour-marketexperience

Undercertainassumptions,theestimateofcanbeinterpretedastherateofreturnfromobtainingtherespectivelevelofsecondaryschooling.Regardingg(T),humancapitaltheorysuggestsaconcaveform:rapidhumancapitalaccumulationintheearlystageofone'slabormarketcarrerareassociatedwithrisingearningsthatpeaksomewhereduringmidlifeanddeclinethereafterashoursworkedandtheincentivetoinvestinhumancapitaldecrease.Toallowforconcavity,parametricspecicationsoftheearnings-functiontypicallyincludeTandT 2inthemodelandobtainapositiveestimateforthecoecentofTandanegativeestimateforthecoecientofT 2.Fornonparametrictting,weuseaNadaraya-Watsonweightfunctionwithquartickernel(15=16)(1;u 2) 2I(juj1)andchosethebandwidthusingcross-validation.Theestimateofg(T)isdepictedinFigure1.Inasamplesizethatislowerthaninmostempiricalinvestigationsofthehumancapitalearningsfunctionweobtainanestimatethatnicelyagreeswiththeconcaverelationshipenvisionedbyeconomictheoryandoftenconrmedbyparametricmodeltting.Wealsoconductedasmallsimulationstudytogeturtherinsightsintothesmall-sample12

(13)

Simulation comparation

00.51T

0 0.5 1

g(T) and its estimate values

Figure2:Estimatesofthefunctiong(T)performanceoftheestimatorofg().WeconsiderthemodelYi=X Ti+sin(Ti)+sin(X Ti+Ti)"ii=1:::n=300where"iisstandardnormallydistributedandXiandTiaresampledfromauniformdistri-butionon01]:Weset=(10:75) Tandperformed100replicationsofgeneratingsamplesofsizen=300andestimatingg():Figure2depictsthe"true"curveg(T)=sin(T)(solid-line)andanaverageofthe100estimatesofg()(dashed-line).Theaverageestimatenicelycapturestheshapeofg():

6APPENDIXInthisappendixwestatesomeusefullemmas.

Lemma A.1.

SupposethatAssumption2(a)-(c)holdandg()andhj()arecontinuous.Then(i)max1in Gj(Ti); nXk=1 !nk(Ti)Gj(Tk) =o(1)

13

(14)

Furthermore,ifg()andhj()areLipschitzcontinuousoforder1andAssumption2'(a)-(c)and2(b)hold.Then(ii)max1in Gj(Ti); nXk=1 !nk(Ti)Gj(Tk) =O(cn+dn) forj=0:::p:WhereG0()=g()andGl()=hl()forl=1:::p:

Pro of.

Weonlypresenttheproofof(ii)forg().Theproofsofothercasesand(i)aresimilar.Observethatn

Xi=1 !ni(t)fg(Ti);g(t)g= nXi=1 !ni(t)fg(Ti);g(t)g+ nnXi=1 !ni(t);1 og(t)

= nXi=1 !ni(t)fg(Ti);g(t)gI(jTi;tj>cn) + nXi=1 !ni(t)fg(Ti);g(t)gI(jTi;tjcn)+ nnXi=1 !ni(t);1 og(t)ByAssumption2'(b)andLipschitzcontinuityofg()n

Xi=1 !ni(t)fg(Ti);g(t)gI(jTi;tj>cn)=O(dn)(22)andn

Xi=1 !ni(t)fg(Ti);g(t)gI(jTi;tjcn)=O(cn):(23)(22)-(23)andAssumption2(a)completetheproofofLemmaA.1.

Lemma A.2.

UnderAssumptions1and2'.limn!1 1n fX T

fX=B

Pro of.

Denotehns(Ti)=hs(Ti); Pnk=1!nk(Ti)xks.Itfollowsfromxis=hs(Ti)+uisthatthe(sm)elementof fX TfX(sm=1:::p)isn

Xi=1 exisexim= nXi=1 uisuim+ nXi=1 hns(Ti)uim+ nXi=1 hnm(Ti)uis+ nXi=1 hns(Ti) hnm

(Ti)

def= nXi=1 uisuim+ 3Xq=1 R (q)nsm

Thestronglawoflargenumberimpliesthatlimn!11=n Pni=1uiu Ti=BandLemmaA.1meansR (3)nsm=o(n),whichandCauchy-SchwarzinequalityshowthatR (1)nsm=o(n)andR (2)nsm=o(n):Thiscompletestheproofofthelemma.14

(15)

ThefollowingLemmaisaslightversionofTheorem9.1.1ofChowandTeicher(1988).Wethereforedonotgiveaproof.

Lemma A.3.

Letnkk=1:::knbeindependentrandomvariableswithEnk=0andE 2nk= 2nk<1:Assumethatlimn!1 Pknk=1 2nk=1andmax1kkn 2nk

!0:Then

Pk

nk=1nk! LN(01)indistributionifandonlyifk

n

Xk=1 E 2nkI(jnkj>)!0forany>0asn!1:

Lemma A.4.

LetV1:::VnbeindependentrandomvariableswithEVi=0andinfiEV 2i>C>0forsomeconstantnumberC:ThefunctionH(v)satisfying R

10vH(v)dv<1suchthatPfjVkj>vgH(v)forlargeenoughv>0andk=1:::n:(24)Alsoassumethatfanii=1:::nn1gisasequencerealnumberssatisfying Pni=1a 2ni=1:Ifmax1injanij!0thenfora 0ni=ani=i(V)n

Xi=1 a 0niVi;! LN(01)asn!1:

Pro of.

Denotenk=a 0nkVkk=1:::n:Wehave Pnk=1E 2nk=1:Moreover,itfollowsthatn

Xk=1 E 2nkI(jnkj>)= nXk=1 a 0nk 2EV 2kI(jankVkj>)

nXk=1 a 2nk 2k EV 2kI(max1kn jankVkj>)

(infk 2k) ;1supk EfV 2kI(max1kn jankVkj>)g:Itfollowsfromthecondition(24)thatsupk EfV 2kI(max1kn jankVkj>)g!0asn!1:LemmaA.4isthereforederivedfromLemmaA.3.

15

(16)

REFERENCESBlanchowerandOswald(1994).Blanchower,D.G.andOswald,A.J.(1994).TheWageCurve,MITPressCambridge,MA.Carroll,R.J.(1982).Adaptingforheteroscedasticityinlinearmodels,AnnalsofStatistics,

10

,1224-1233.Chen,H.(1988).Convergenceratesforparametriccomponentsinapartlylinearmodel.AnnalsofStatistics,

16

,136-146.Chow,Y.S.andTeicher,H.(1988).ProbabilityTheory.2ndEdition,Springer-Verlag.Cuzick,J(1992a).Semiparametricadditiveregression.JournaloftheRoyalStatisticalSociety,SeriesB,

54

,831-843.Cuzick,J(1992b).Ecientestimatesinsemiparametricadditiveregressionmodelswithunknownerrordistribution.AnnalsofStatistics,

20

,1129-1136.Engle,R.F.,Granger,C.W.J.,Rice,J.andWeiss,A.(1986).Semiparametricestimatesoftherelationbetweenweatherandelectricitysales.JournaloftheAmericanStatisticalAssociation,

81

,310-320.Eubank,R.L.,Hart,J.D.andSpeckman,P.(1990).Trigonometricseriesregressionestima-torswithanapplicationtopartiallylinearmodel.JournalofMultivariateAnalysis,

32

,70-83.Gao,J.T.,Hong,S.Y.andLiang,H.(1995).Convergenceratesofaclassofestimatesinpartlylinearmodels.ActaMathematicaeSinicaSeriesNew,

38

,658-669.Hall,P.andCarroll,R.J.(1989)Variancefunctionestimationinregression:theeectofestimatingthemean.JournaloftheRoyalStatisticalSociety,SeriesB,

51

,3-14.Hardle,W.(1990).AppliedNonparametricRegression.CambridgeUniversityPress,NewYork.Heckman,N.E.(1986).Splinesmoothinginpartlylinearmodels.JournaloftheRoyalStatisticalSociety,SeriesB,

48

,244-248.Liang,H.(1995).Anoteonasymptoticnormalityfornonparametricmultipleregression:thexeddesigncase.Soo-ChowJournalofMathematics,395-399.Muller,H.G.andStadtmuller,U.(1987).Estimationofheteroscedasticityinregressionanalysis.AnnalsofStatistics,

15,

610-625.Rendtel,U.andSchwarze,J.(1995).ZumZusammenhangzwischenLohnhoeheundArbeit-slosigkeit:NeueBefundeaufBasissemiparametrischerSchaetzungenundeinesverall-gemeinertenVarianz-KomponentenModells.GermanInstituteforEconomicResearch(DIW)DiscussionPaper118,Berlin,1995.Robinson,P.W.(1987).Asymptoticallyecientestimationinthepresenceofheteroscedas-ticityofunknownform.Econometrica,

55

,875-891.

16

(17)

Schick,A.(1993).Onecientestimationinregressionmodels.AnnalsofStatistics,

21

,1486-1521.Schick,A.(1996).Weightedleastsquaresestimatesinpartlylinearregressionmodels.Statistics&ProbabilityLetters,

27

,281-287.Speckman,P.(1988).Kernelsmoothinginpartiallinearmodels.JournaloftheRoyalSta-tisticalSociety,SeriesB,

50

,413-436.Willis,R.J.(1986).WageDeterminants:ASurveyandReinterpretationofHumanCapitalEarningsFunctionsin:Ashenfelter,O.andLayard,R.TheHandbookofLaborEco-nomics,Vol.1NorthHolland-ElsevierSciencePublishersAmsterdam,1986,pp525-602.

17

Abbildung

Figure 1: Relationship of log-e arnings and lab our-market exp erienc e
Figure 2: Estimates of the function g(T )performanceoftheestimatorofg().WeconsiderthemodelYi=XTi+sin(Ti)+sin(XTi+Ti)&#34;ii=1:::n =3 00where&#34;iisstandardnormallydistributedandXiandTiaresampledfrom au niform distri-butionon01]:Weset=(10:75)Tandperformed1

Referenzen

ÄHNLICHE DOKUMENTE

One of the most popular methods for the selection of regression models is based on minimizing the cross-validation (CV) criterion of Stone (1974) among an appropriate class of

The paper reviews dierent estimation procedures based on kernel methods and test procedures on the correct specication of this model (vs. a parametric generalized linear

We continue this investigation and derive some important properties of this bootstrap method which will allow to apply this technique also for other problems such as the construction

The asymptotic theory of linear time series mo dels. and

univariate Burg estimator is ab out as large as the bias of the least squares estimator (Lysne. and Tjstheim,1987), which tends to b e smaller than the bias of the YW estimator,

We show that the asymptotic variance of the resulting nonparametric estimator of the mean function in the main regression model is the same as that when the selection probabilities

In this paper, we introduce a general flexible model framework, where the compound covariate vector can be transient and where it is sufficient for nonparametric type inference if

In this paper, we consider three substantial econometric applications exhibiting such a structure in greater detail: nonparametric estimation of a simultaneous equation