• Keine Ergebnisse gefunden

Time Series in Linear Programs with Random Right-Hand Sides

N/A
N/A
Protected

Academic year: 2022

Aktie "Time Series in Linear Programs with Random Right-Hand Sides"

Copied!
23
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Working Paper

TIME S E R E S IN

LDWAR

PROGRAMS WITH RANDOM RIGHT-HAND SIDES

Tomh5 Cipra

May 1986 WP-86-21

International Institute for Applied Systems Analysis

A-2361 Laxenburg, Austria

(2)

NOT FOR QUOTATION

WITHOUT

THE

PERMISSION

OF THE AUTHOR

TIME SERIES IN LINEAR P R O G W S WITH RANDOM RIGHT-HAND

SIDES

Tombb Cipra

May 1 9 8 6 WP-86-21

Working Papers are interim r e p o r t s on work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only limited review. Views o r opinions e x p r e s s e d h e r e i n d o n o t n e c e s s a r i l y r e p r e s e n t t h o s e of t h e I n s t i t u t e o r of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 L a x e n b u r g , Austria

(3)

One of t h e t h e o r e t i c a l p r o b l e m s in s t o c h a s t i c o p t i m i z a t i o n which c a n h a v e im- p o r t a n t c o n s e q u e n c e s f o r p r a c t i c a l implementation c o n s i s t s i n i n v e s t i g a t i n g p r o - g r a m s whose c o e f f i c i e n t s a r e o b s e r v a b l e in time as time series. Some c o n c l u s i o n s d e r i v e d in t h i s p a p e r f o r l i n e a r p r o g r a m s u n d e r r e l a t i v e l y s i m p l e sLaLisLica1 as- s u m p t i o n s o n t h e r a n d o m r i g h t - h a n d s i d e s s t i m u l a l e f u r t h e r r e s e a r c h in t h i s d i r e c - tion.

The work was c a r r i e d o u t within t h e A d a p t a t i o n a n d Optimization P r o j e c t o f t h e SysLem a n d Decision S c i e n c e s P r o g r a m d u r i n g t h e s t a y of t h e a u t h o r as a guesL s c h o l a r a1 IIASA.

A l e x a n d e r B . K u r z h a n s k i C h a i r m a n S y s t e m and Decision S c i e n c e s P r o g r a m

(4)

AUTHOR

Assistant P r o f e s s o r Tom63 Cipra from the Faculty of Mathematics and Physics, Charles University, Prague works in the field of stochastic processes, stochastic programming and econometrics. He wrote this p a p e r during his stay a t IIASA in summer 1985.

(5)

ABSTRACT

Linear p r o g r a m s s u c h t h a t t h e right-hand s i d e s of t h e i r r e s t r i c t i o n s h a v e t h e form of multivariate time s e r i e s may be useful in p r a c t i c a l applications. Behavior of t h e p r o c e s s e s formed by t h e optimal values of t h e c o r r e s p o n d i n g o b j e c t i v e func- tions i s investigated in t h e following cases: t h e right-hand s i d e p r o c e s s i s ( i ) a normal white noise; (ii) a normal white noise with a l i n e a r t r e n d ; (iii) a normal random walk. Some b a s i c probability c h a r a c t e r i s t i c s of such p r o c e s s e s a r e calcu- l a t e d explicitly.

(6)

CONTENTS

1 Introduction

2 Normal White Noise

3 P r o c e s s with L i n e a r T r e n d 4 Random Walk

R e f e r e n c e s

(7)

TIME SERIES IN

LINEAR

PROGRAMS WITH WITHOM RIGHT-HAND SIDES Tombs Cipra

1. LNTRODUCTION

Let us c o n s i d e r l i n e a r p r o g r a m s of t h e form

where t h e matrix A ( m , n ) and t h e v e c t o r c ( n , 1 ) a r e deterministic and fb, { i s a m-dimensional p r o c e s s . Such g e n e r a l model may b e a p p l i c a b l e in variops p r a c t i c a l situations. The optimal values q ( b t ) of (1.1) (if t h e y e x i s t ) form obviously a s c a l a r p r o c e s s t h e b e h a v i o r of which we s h a l l investigate.

Let us d e n o t e

S

=

Ib t R m : q ( b ) i s finite

.

(1.2)

Then a c c o r d i n g t o [6] or [7] t h e function q ( b ) i s c o n v e x , continuous and piecewise Linear on S . Moreover, S c a n b e decomposed t o a f i n i t e number of convex po- l y h e d r a l c o n e s Sf (i

=

l , . . . , k ) with t h e v e r t i c e s in t h e o r i g i n s u c h t h a t t h e inte- r i o r s of Sf are mutually disjunct a n d q ( b ) i s l i n e a r on e a c h S f . One c a n write

and

where H' are r e g u l a r ( m , m ) m a t r i c e s and g i are ( m . 1 ) v e c t o r s ( t h e v e c t o r s g f need n o t b e mutually d i f f e r e n t ) . One c a n a l s o w r i t e

q ( b )

=

max I g i ' b

\.

b E S

.

i - 1 . . . . , k (1.5)

T'ne explicit f o r m of

&

and g i c a n b e found by means of v a r i o u s algorithmic pro- c e d u r e s ( s e e e . g . [4], [ 5 , p.2761, [8], [91).

(8)

EXAMPLE 1 ( s e e [5]). In t h e p r o g r a m

one c a n Lake

The p r o c e s s [ q ( b , ) j o r i g i n a t e s as a piecewise l i n e a r (i.e. n o n l i n e a r in gen- e r a l ) t r a n s f o r m a t i o n of t h e p r o c e s s f b i { . If o n e i n v e s t i g a t e s s t a t i o n a r i t y of

f q ( b , ) j in d e p e n d e n c e o n s t a t i o n a r i t y o f f b t

I

t h e n i t is obvious t h a t frp(bt){ n e e d not b e weakly s t a t i o n a r y when f b l j h a s t h i s p r o p e r t y (i.e. when E b l a n d c o v ( b t , b, -,) d o not d e p e n d on 2).

EXAMPLE 2 Let m = 1, ~ ( b )

=

b' - 2 b - f o r b E

R '

( w h e r e b c

=

maxj0, b

1,

b -

=

min 10, b

I )

a n d bt b e independent random v a r i a b l e s s u c h t h a t

for a r b i t r a r y i n t e g e r r . Then

Eb,

=

0 , v a r bt

=

1, c o v ( b t , b, -,)

=

0 for s

+

0

for a l l t ( i . e . ) b t { i s weakly s t a t i o n a r y ) but

(9)

If jbl j is s t r o n g i y s t a t i o n a r y (i.e. t h e joint p r o b a b i l i t y distribution of (btl, . . .

.

bti) i s e q u a l to t h a t of ( b t l + , ,

. . .

, bti +,) f o r a l l i ,

t i , . . .

, t i , s) t h e n [rp(bl)j shouid n a v e t h e same p r o p e r t y but one must b e a r in mind t h a t rp(bl) i s n o t finite f o r bt

<

S. Moreover, t h e e x p l i c i t calculation of b a s i c probability c h a r a c - t e r i s t i c s of rp(bl ) { (e.g. t h e mean value and a u t o c o v a r i a n c e s ) may b e v e r y difficult even in simpie s i t u a t i o n s . In o r d e r t o d e m o n s t r a t e i t t h e c a s e with a two- dimensional normal white noise [ b t { i s studied in s e c t i o n 2. The d e r i v e d formulas f o r E rp(bl) a n d v a r rp(bt) are s o complicated t h a t i t t u r n s up r e a s o n a b l e t o recom- mend t h e simulation a p p r o a c h of Dedk 131 f o r a more g e n e r a l case. The case of a s t a t i o n a r y p r o c e s s lbt { with a c o n s t a n t mean value seems t o b e n o t v e r y useful in p r a c t i c a l situations. T h e r e f o r e a m-dimensional normal p r o c e s s [b, with a I i n e a r t r e n d i s c o n s i d e r e d in s e c t i o n 3. Finally, in o r d e r t o p r o v i d e potential generaliza- tion t o t h e nonstationary i n t e g r a t e d p r o c e s s e s of Box a n d Jenkins which are c a p a - ble to model t r e n d s in a s t o c h a s t i c way ( s e e [I]) w e d e a l with a one-dimensional normal random walk [bl { in s e c t i o n 4.

The following denotation will b e used in t h e p a p e r : a ' a n d A ' f o r t h e t r a n s p o s e of a v e c t o r a and a matrix A ; Ila(l

=

f o r a E R m ; d e t A f o r t h e d e t e r m i n a n t of a s q u a r e matrix A ; s g n ( z )

=

1 f o r z

>

0 ,

=

0 f o r z

=

0 and =-1 f o r z

<

0 : z t

=

max 10, z { , z -

=

min [O, z{.

2. N O M A L WHITE NOISE

Let [bt j b e a two-dimensional normal white noise, i.e

where C i s a positive d e f i n i t e v a r i a n c e matrix. Let T b e a lower t r i a n g u l a r m a t r i x with positive elements on t h e main diagonal s u c h t h a t

(Cholesky decomposition) a n d l e t us d e n o t e

= H < T ,

where t h e matrix

Q '

h a s t h e elements denoted as q:, and t h e row v e c t o r s of t h e t y p e ( 2 , l ) denoted as q: (u , v

=

1.2).

(10)

LEMMA 1 It h o l d s

PROOF If using t h e method of substitution we h a v e

k

= C JJ

( 2 n ) - l r e x p ( - r 2 / 2 ) d r dl9

i = I IT, a : r r 0, ~ ' ( r cos 6, r sin 6)' r 01

=

( 2 n )

C

k

J

dl9

i = l ~ ~ : Q ' ( c o s 19, sin d), > 01

The l a s t i n t e g r a l s a r e e q u a l t o t h e values of t h e convex a n g l e s between a n d

-

s o t h a t (2.4) i s obvious now.

W e c a n p r o c e e d t o t h e caiculation of Erp(bt) a n d v a r rp(bi). S i n c e t h e p r o b a - bility (2.4) c a n b e l e s s t h a n o n e in g e n e r a l t h e conditional values E(rp(bl)(bi E S ) a n d v a r (rp(bi)Jbt E S ) h a v e s e n s e only.

THEOREM 1 U n d e r t h e p r e v i o u s a s s u m p t i o n s i t h o l d s

w h e r e P ( b i E S ) is g i v e n i n (2.4) PROOF W e c a n w r i t e

k

p ( b i ~ S ) E ( r p ( b l ) l b l t S ) = C

r

g " b ( ~ n ) - l ( d e t C ) - ~ ' ~

i = l l b : $ b > O {

e x p ( - b'C-lb / 2)db

k

= C

g i ' T

J

(COS 19, sinl9)'(2r) - l r 2

i = l Ir, d : r s 0, ~ ' ( r cos d, rsln d), r o j

e x p ( - r 2 / 2 ) d r d 19 k

=

( 2 6 ) - '

C

g i ' T

J

(cosl9, s i n 19)'d 19

i = l 16: Q'(cos 6, sln d)' s O!

(11)

The v a r i a b l e 6 i s bounded by t h e a n e i e s c o r r e s p o n d i n g t o t h e couples of v e c t o r s ( Q : ~ , - q i l ) ' a n d ( - q t 2 . q : ~ ) ' (if d e t

Q( =

q t 1 q i 2

-

Q : ~ Q ~ ~ > O ) o r ( Q : ~ . - Q : ~ ) ' and

-

q q (if d e t gi

<

0). Since J c o s 6 d 6

=

s i n 6 and

J

sin 6 d 6

=-

c o s 6 w e have

which i s equivalent t o (2.5).

REMARK 1 The formulas (2.4) and (2.5) c a n b e r e w r i t t e n t o t h e form

where h:(u

=

1. 2 ) a r e t h e row v e c t o r s of t h e t y p e (2.1) of

H'.

I t i s obvious t h a t random v a r i a b l e s rp(bt) a r e mutually independent; t h e follow- ing theorem e v a l u a t e s t h e i r (conditional) v a r i a n c e .

THEOREM 2 U n d e r t h e p r e v i o u s a s s u m p t i o n s i t h o l d s

w h e r e

E(rp(b,)lbt E S ) is g i v e n i n (2,5), I is t h e (2.2) u n i t m a t r i z and

1 i i

P:

=

( - q 1 Z s qil)'- P:

=

(422s - ~ 2 1 ) ' .

(12)

PROOF One can w r i t e analogously as in t h e p r o o f o f Theorem 1

=

(T;)-'

2

k g t ' ~

J

( c o s 19, s i n 19)'(cos 19, s i n 19)d I9 T~~~

.

t = I [ ~ : P ' ( c o s 3, sin u ) , > 01

S i n c e

J s i n I 9 c o s r ~ d r ~ = 1 s i n 2 I 9

= L

- L c o s 2 $

2 2 2

a n d s g n (det Q' )

=

s g n ( d e t Hi d e t T)

=

s g n (detHi ) we s h a l l g e t (2.9) similarly as in t h e proof of Theorem 1.

3. PROCESS

WITH

LINEAR TREND

Let Ibt

I

b e a m -dimensional p r o c e s s of t h e form

where a a n d b a r e (m

.

1 ) fixed v e c t o r s (a

+

0 ) and Ict

I

i s a m -dimensional normal white noise, i.e.

-

i i d N,,, (0, C), C

z o

. (3.2)

The l i n e a r model (3.1) i s t h e usual model of multivariate time s e r i e s used f r e q u e n t - ly in p r a c t i c e .

I t i s obvious t h a t in t h i s situation t h e b e h a v i o r of t h e p r o c e s s Iq(b,)l depends substantially on t h e position of t h e v e c t o r a with r e s p e c t t o t h e sets Sf. If i t i s a f S t h e n obviously a f t e r c e r t a i n time t h e p r o c e s s ) q ( b t ) j will n o t be finite with a i a r g e p r o b a b i l i t y . W e s h a l l e x c l u d e t h i s c a s e from f u r t h e r considerations.

Now Let u s i n v e s t i g a t e t h e situation when a is a n i n t e r i o r point of a s e t Sf.

Then due t o t h e p r o p e r t i e s of t h e convex polyhedral cone St when time t p r o c e e d s t h e p r o c e s s ]lp(bt)

1

will h a v e t h e f o r m [ g i ' b t

1

with a probability which grows in

(13)

time a n d i t e n a b i e s to draw some conclusions on t h e b e h a v i o r of t h i s p r o c e s s . The following t h e o r e m e v a l u a t e s t h e time p e r i o d a f t e r which i t i s g u a r a n t e e d with a given probability t h a t lrp(bt)l l i e s in St. Let t h e denotation (2.2) a n d (2.3) b e p r e s e r v e d .

THEOREM 3 Let 0

<

a

<

1 be a g i v e n n u m b e r , l e t a be an i n t e r i o r p o i n t of St a n d l e t & ( a ) be t h e c r i t i c a l v a l u e of t h e c h i - s q u a r e d d i s t r i b u t i o n w i t h m

d e g r e e s offreedom o n t h e level a (i.e. P ( ~ : r x:(a))

=

a ) . Then f o r t f u l f i l l i n g

t h e v a l u e s bt l i e i n St (i.e. v ( b t )

=

g i bt) w i t h t h e p r o b a b i l i t y a t l e a s t 1

-

a

17

(one c a n a l s o u s e l/q:(l

=

d ( h , Zh,)).

PROOF I t holds f o r a l l t

According t o [ 2 , Theorem 11 t h e ( 1

-

a ) 100 p e r c e n t confidence r e g i o n

lies in St if a n d only if

S i n c e a i s t h e i n t e r i o r point of St i t i s hza

>

0 f o r u

=

1,

. . .

, m a n d (3.6) i s equivalent t o

s o t h a t t h e t h e o r e m i s p r o v e d

REMARK 2 Theorem 3 c a n b e formulated f o r more g e n e r a l t y p e s of p r o c e s s e s f o r which o n e i s c a p a b l e t o c a l c u l a t e t h e confidence r e g i o n in t h e form of a n elip- soid as in (3.5) anci t h e t r e n d of which s t a y s in a convex cone with t h e v e r t e x in t h e origin contained (with e x c e p t of t h e v e r t e x ) in t h e i n t e r i o r of St. Specially s u c h n a t u r a l generalization may b e d e r i v e d f o r t h e p r o c e s s e s t h e t r e n d of which h a s b e e n estimated by means of t h e r e g r e s s i o n technique ( s e e 123).

If a i s v e r y small t h e n f o r t fulfilling (3.3) o n e c a n a p p r o x i m a t e t h e probabili- t y c h a r a c t e r i s t i c s of t h e p r o c e s s I v ( b , ) j by t h e o n e s of t h e p r o c e s s f g i ' b t j , e.g.

E(rp(bt)(bt E S )

-

~ g l ' b *

=

g t ' ( b

+

a t ) , (3.7)

(14)

v a r ( p ( b , ) l b , E S )

-

v a r g i ' b ,

=

gi' g i ( 3 . 8 ) In some situations o n e c a n a l s o d e s i r e t h e evaluation of t h e a c c u r a c y of such ap- proximations. In t h e following t h e o r e m such evaluation i s d e r i v e d f o r t h e a p p r o x i - mation ( 3 . 7 ) of t h e mean value.

THEOREM 4 Let u n d e r t h e a s s u m p t i o n s of T h e o r e m 3 t f u l f i l l (3.3). L e t u s d e n o t e c

=

& ( a ) , Q t h e d i s t r i b u t i o n f i n c t i o n o f t h e s t a n d a r d n o r m a l d i s t r i b u - t i o n N ( 0 , 1 ) a n d

. -

v = max d g j ' Z g j j = 1 , . . . , k

T h e n i t h o l d s

( 1

-

a ) g i ' ( b

+

a t ) 5 E ( p ( b t ) J b t E S ) S g i ' ( b + a t ) ,

+

L [ a max f g j ' ( b + a t ) ! + v V m ( c )

1 - a j = ~ ,

. . . ,

k

I

w h e r e

v z ( c ) = [ I - 2 1 4 ( 6 ) - 1 / 2 j ]

+ 6

e x p ( - c / 2 ) ,

. . .

+ m - l ) ( m - 3 ) . . . 2 ( e x p ( - c / 2 ) f o r o d d m ~ 3

PROOF Let us d e n o t e f t t h e probability density of t h e d i s t r i b u t i o n Nm(b

+

a t , Z ) . A s t h e lower bound in ( 3 . 1 0 ) i s c o n c e r n e d it i s obviously

(15)

The upper bound in (3.10) can be derived in t h e following way:

E ( 9 ( b r )lbt

6s)

5

-

l - a - 1

r

q ( b t ) ~ t (bl )dbl R"

-

1

i

--. J

g f ' b t f l ( b l ) d b t +

f

max ~ ~l f t j

( e l

)dbt ~

j

b ~

[ ~ ( a ) R m ; P ( a ) j

.

.

.

I k

=

g f ' ( b + a t )

+ -

[ a max l g j r ( b

+ a t ) !

1 - a j = 1 ,

. . . ,

k

5 g f ' ( b

+

a t )

+ -

[ a max i g j ' ( b

+

a t ) { 1 - a j = 1 . . . . , k

exp ( - r Z / 2 ) r m -'cos 1 9 ~ cosZ 1 9 ~

. . .

cosm

-'

19, - l d r d 1 9 ~ . . . dI9,

I

, where t h e last inequality holds due t o t h e fact that outside the elipsoid

i y E Rm : y 'y 5 c

I

t h e graph o f the function max [ g j ' T y

I

can be dominated by t h e surface o f the cone C in R m with t h e vertex in the origin o f the form

where max [llT'gjlIl

=

max J g j ' ~ g j

=

v ( t h e description o f the mentioned surface

in the polar coordinates is used with the Jacobian r m

cos 1 9 ~

. . .

cosm

, , ,

) The final form o f the upper bound can be derived using the formulas

J

cos l J z cos2 193

[ o r d l <2n, - n / 2 r d z r n / 2 , . . . , - n / z S d m - l S n / 2 j

. . .

cosm -2 19

. .

dlJm - 1

- -

-1 T ; a l a z ' ' ' a,,, -2 ,

(16)

n/ 2

at

= J

cost z d z ,

0

i.e. a l

=

1, a 2

=

X / 4 a n d

a, = ( i - 1 - 3 ) 2 - 2 ) . . . l j f o r o d d i 2 3 ,

=

( 2 - 1

-

3 ) . . . 1/ l i ( i

-

2 ) . .

.

21 f o r even i r 4 ;

- j

r m e x p ( - r 2 / 2 ) d r

7;

REMARK 3 F o r m

=

1 o n e c a n calculate E(rp(bt)lbt E S ) exactly. If e.g.

S

=

R1 (i.e. S1

=

( - -, 01 and S2

=

10, -)), rp(b)

=

g l b -

+

g 2 b t f o r b E R1 (where g l , g z ER1), b1 - N ( & c?) (where w = b + a t ) a n d P ( a )

=

[cl, c2] (where

- -

< c l

<

c Z

<

- ) t h e n

E(rp(bl)lbt E S )

=

Erp(bt)

= B I [ W I @ ( C ~ )

-

@(C1)j + u ( ~ T T ) - ~ / ~ ~ B x P ( - ~ : / 2 ) - e x p ( - ~ $ / 2 ) j ] f o r c 2 5 0 ,

=

g l i w l l / 2

-

a ( c l ) i + 0 ( 2 x ) - ~ / ~ l e x ~ ( - c:/z) - e x p ( - (w/ 0 ) ~ / 2 1 ] + g Z I ~ l Q ( C 2 ) - 1 / 2 l +

c r ( ~ r ) - l / ~ [ e x p ( - (w/ u12/ 2

-

e x p ( - C: /2)1] for c l

<

0

<

c 2 ,

=

g2[wf@(C2)

-

@(C1)j

+

c r ( ~ r ) - ~ / ~ ~ e x p (- c f / 2 ) - e x p ( - ~ $ / 2 ) ] 1 f o r c l 2 0 , where Ct

=

(c,

-

w)/ a, i

=

1 , 2.

In Table 1 t h e r e a r e given Vm ( c ) for some values m if a

=

0.05 and a

=

0.01 (C

=

,ym(a)). For l a r g e r even 2 m t h e f i r s t term in t h e corresponding formula f o r t h e calculation of Vm(c) c a n b e omitted since then @(&)

-

1 (e.g. f o r m 2 4 if a

=

0.05).

(17)

Table 1 Values Vm ( c ) if a ) a

=

0.05 and b ) a

=

0.01.

Now let us consider the case when a is a relative interior point o f a ( m

-

1)- dimensional face in which two cones St

=

lz E

R m

: H i z 5 O { and S j

=

fz c

R m

: H j z 5 01 adjoin. One can assume (renumbering t h e rows o f Hi and H j I f it is necessary) that t h i s f a c e has t h e form

where h:

=

A h { f o r some negative scalar X

E X A M P L E 3 In the situation described in Example 1 e.g. the vector a

=

( 0 , 2.

5)' is t h e relative interior point o f t h e two-dimensional face fz E : z l

=

0 , z 2 5 3 , z 3 5 O { in which t h e cones S 1 a n d S 5 adjoin. In t h i s case it is h:

=-

h:

=

( 1 , 0,O)' so that it is not necessary t o renumber t h e rows o f t h e matrices H 1 and H 5 . The following theorem can be proved quite analogously as Theorem 3.

THEOREM 5 Let 0

<

a

<

1 be a given number a n d let a be a relative i n t e r i o r point of the ( m

-

1)-dimensional face (3.13) i n w h i c h two cones St a n d S j ad- join. Then for t f u l f i l l i n g

t 5 max 2

v = i , j u = l , .

.

. , m

d

x m ( a ) llquYII

-

h , ~ ' b ] / h c ' a

the v a l u e s v ( b t ) li e i n St or S j w i t h t h e probability a t least 1

-

a

This theorem enables again t o approximate t h e probability characteristics o f t h e process [ v ( b t ) { f o r t fulfilling (3.14) i f a is small. E.g. we can write f o r t h e mean value

(18)

where f t ( b t ) i s t h e density function of Nm (fi, C) with fi

=

b

+

at. Let R be a ( m , m ) matrix s u c h t h a t C

=

RR' a n d the f i r s t row of R - l h a s t h e same d i r e c t i o n as t h e v e c t o r h i (such matrix R c a n b e always c o n s t r u c t e d ) . Then h : ' ~ h a s t h e same d i r e c t i o n as t h e v e c t o r ( 1 , 0, .

.

. , 0). Let u s d e n o t e

Then i t holds e . g .

=

( ~ r r ) - ~ / ~ d i e x p ( - v f / 2 )

+

g i ' u ) l

-

@(- vl)l Altogether we s h a l l o b t a i n

a n d similarly

var(rp(bt)lbt E S )

-

( 2 / rr)1/2(d:gi

-

d l g j ) ' f i e x ~ (-v:/2) (3.17)

(19)

4 . RANDOM WALK

Random walk i s t h e simplest c a s e of t h e i n t e g r a t e d p r o c e s s e s ARIMA of Box a n d Jenkins. These p r o c e s s e s a r e nonstationary b u t t h i s n o n s t a t i o n a r i t y c a n b e r e - moved easily b y a i f f e r e n c i n g t h e originai p r o c e s s . S i n c e t h e s e p r o c e s s e s a r e v e r y useful f o r p r a c t i c a l p u r p o s e s i t is important t o i n v e s t i g a t e w h e t h e r t h i s t y p e of nonstationarity i s p r e s e r v e d a l s o f o r t h e p r o c e s s e s [ q ( b t ) l . W e s h a l l confine o u r - s e l v e s t o t h e one-dimensional case with a normal random walk f b t

I

of t h e form

where i c t

1

i s a normal white noise, i.e

Let t h e function q ( b ) b e f i n i t e f o r a l l b E

R 1

s o t h a t i t h a s t h e form

where g l and g Z are given r e a l numbers. W e s h a l l i n v e s t i g a t e t h e b e h a v i o r of t h e p r o c e s s [ q ( b t +1)

-

v ( b t ) l ( t h e p r o c e s s ibt + l

-

bl j

=

i c t

+11

i s s t a l i o n a r y ) .

THEOREM 6 U n d e r t h e p r e v i o u s a s s u m p t i o n s i t h o l d s

w h e n t

-

m.

PROOF I t i s

s o t h a t

Hence t h e a s s e r t i o n of t h e theorem follows.

THEOREM 7 U n d e r t h e p r e v i o u s a s s u m p t i o n s i t h o l d s f o r a r b i t r a r y k 5 0 cov Iq(bl +t + l )

-

q(bL + t ) . ~ ( b t +I)

-

q ( b t ) l (4.6)

(20)

w h e r e

and C ( t . t

+

k )

=

C ( t

+

k , 1 ) . D ( t , t

+

k ) = D ( t

+

k , t ) . M o r e o v e r , it is w h e n

t

--

COV ~ ~ ( b ~ + , + 1 )

-

rp(bt

+ , I ,

rp(bt + 1 )

-

rp(bt)l

-

( a 2 / 2 ) ( g : + g $ ) f o r k

= o

, ( 4 . 9 )

-

0 f o r k > O .

REMARK 4 Specially it holds var Irp(bt + I )

-

rp(bt

P R O O F Let us denote C ( t

+

k , t ) = E Y + Z + , where

The joint density f (y , z ) of Y and Z h a s the form

(21)

w h e r e

~ ( ~ 1 2 ) = ( 2 n k ~ ~ ) - ~ / ~ e x p 1 - ( Y - z ) Z / ( 2 k u 2 ) I is t h e c o n d i t i o n a l d e n s i t y of Y f o r f i x e d Z a n d

h ( ~ )

=

( 2 ~ t u ~ ) - ~ / ~ e x p

I -

z 2 / ( 2 t c 2 ) 1 is t h e m a r g i n a l d e n s i t y of Z. H e n c e it i s

e x p

1-

( y

-

z ) ' / ( Z k d ? )

-

z 2 / ( 2 t u 2 ) j d y d z

w h e r e

,-I

=

( k t ,z)-~1[-

: ;:I

We c a n w r i t e

w h e r e

If using t h e method of s u b s t i t u t i o n a n d t h e f o r m u l a s (2.10) a n d (3.12) we c a n f u r t h - e r w r i t e

t

I

/ + ( d k i /

( t +

k ) ) u e x p

/ -

( u 2 + u 2 ) / ~ i d u d v

(22)

+

u Z m / (7.7;)

JJ

u v e x p

1-

( u 2

+

v 2 ) / 2 i d u d v lu, v : u 2 0, v 2 - ( d l / t ) ~ 1

-

n/ 2

=

u2t / ( 2 n ) J r 3 e x p ( - r 2 / 2 ) d r

J

c o s 2 + d +

0

-

-arctg dt / k

- -

+

& m / ( ~ n ) J u e x p ( - u 2 / 2 ) [

- J

v e x p ( - v 2 / 2)dv i d u

o

-(dl / k )u

which coincides with (4.7). I t can b e shown similarly t h a t D ( t

+

k , t ) defined as

coincides with (4.8). If w e notice t h a t

then a f t e r some a l g e b r a i c manipulation t h e formula (4.6) follows. Finally, i t i s pos- sible t o show (e.g. by means of 1'Hospital r u l e ) t h a t

lim [ C ( t + k , t ) - ~ % / 2 \

=

lim D ( t + k , t ) = 0

t

--

t

--

s o t h a t (4.9) follows.

One c a n summarize t h a t t h e p r o c e s s frp(bt

-

rp(bt)l w h e r e [bt i s t h e r a n - dom walk (4.1) i s not (weakly) s t a t i o n a r y b u t approximately f o r l a r g e t one c a n t a k e i t as t h e ( s t a t i o n a r y ) white noise with t h e v a r i a n c e ( d ? / 2 ) (9:

+

9:).

REFERENCES

1 Box. G.E.P., Jenkins, G.M. Time S e r i e s Analysis, Forecasting a n d Control. Holden Day, San F r a n c i s c o 1970.

(23)

2 C i p r a , T. Confidence r e g i o n s f o r l i n e a r p r o g r a m s with random coefficients. IIASA Working P a p e r WP-86-0, Laxenburg, Austria 1986.

3 Dedk, I. T h r e e digit a c c u r a t e multiple normal probabilities. Num. Math. 35, 1 9 8 0 , 369-380.

4 Gal. T.. Nedoma, J . Multiparametric l i n e a r programming. Management S c i e n c e 18.

1972, 406-422.

5 Nogizka. F.. Guddat. J . , Hollatz. H., Bank. B. T h e o r i e d e r l i n e a r e n p a r a m e t r i s c h e n Optimierung. Akademie

-

Verlag. Berlin 1974.

6 Walkup.

D.,

Wets. R . Lifting p r o j e c t i o n s of convex polyedra. P a c i f i c J . Mathem.

28, 1969, 465-475.

7 Wets. R . Programming u n d e r uncertainty: t h e equivalent convex p r o g r a m . J . SIAM Appl. Math. 1 4 . 1966, 89-105.

8 Wets, R . S t o c h a s t i c programming: solution techniques and approximation schemes. In: Mathematical Programming: The S t a t e of t h e A r t (A. Bachem, M.

G r o t s c h e d . B. K o r t e eds.). S p r i n g e r . Berlin 1983. 566-603.

9 Wets, R. L a r g e s c a l e l i n e a r programming techniques in s t o c h a s t i c programming.

IlASA Working F a p e r WP-84-90. Laxenburg. Austria 1984.

Referenzen

ÄHNLICHE DOKUMENTE

– Divide the original data values by the appropriate seasonal index if using the multiplicative method, or subtract the index if using the additive method. This gives the

– Divide the original data values by the appropriate seasonal index if using the multiplicative method, or subtract the index if using the additive method. This gives the

Charles University, Prague works in the field of stochastic processes, stochastic programming and econometrics... CONFIDENCE REGIONS FOR LINEAR PROGRAMS WITH RANDOM

The methods introduced in this paper for solving SLP problems with recourse, involve the problem transformation (1.2), combined with the use of generalized linear programming..

Due to persistent covariates, the time series generated by our model has the long memory property in volatility that is commonly observed in high frequency speculative returns..

We show practical mo- tivation for the use of this approach, detail the link that this random projections method share with RKHS and Gaussian objects theory and prove, both

Microwave device, Maxwell’s equations, Scattering matrix, Boundary value problem, PML boundary condition, Eigenvalue problem, Linear algebraic equations, Multiple shifts,

Therefore we use high breakdown point regression methods for robust approximation of the signal within each time window, namely the least median of squares functional [Ham75,