• Keine Ergebnisse gefunden

Teilchenphysik 2 — W/Z/Higgs an Collidern

N/A
N/A
Protected

Academic year: 2022

Aktie "Teilchenphysik 2 — W/Z/Higgs an Collidern"

Copied!
10
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Teilchenphysik 2 — W/Z/Higgs an Collidern

Sommersemester 2019

Matthias Schr ¨oder und Roger Wolf | Exercises No 6

I

NSTITUT FUR

¨ E

XPERIMENTELLE

T

EILCHENPHYSIK

(ETP)

KIT – Die Forschungsuniversit ¨at in der Helmholtz-Gemeinschaft

www.kit.edu

(2)

Observation of Hbb

[Phys. Rev. Lett. 121, 121801 (2018), supplemental material]

e + e - b-jet

b-jet

b-tracks

b-tracks

e

+/-

tracks

pp→ZH b + b pp→ZH

e + + e -

s = 13 TeV (2017)

(3)

Observation of Hbb

◦ Useful: listings of Higgs-boson production cross-section by LHC Higgs XS Working Group

◦ Total number of H → bb events expected (13 TeV, m H = 125 GeV):

prod. mode σ [pb] BR Lum. [fb −1 ] N(evts)

ggF 48.6 58 % 41.3 1164 · 10 3

VBF 3.8 58 % 41.3 91 · 10 3

V(0,1,2leptons)H 0.25 58 % 41.3 6 · 10 3

Matthias Schr ¨oder – W/Z/Higgs an Collidern (Sommersemester 2019) Exercises No 6 3/10

(4)

Higgs-Boson Production at the LHC

[TeV]

s 6 7 8 9 10 11 12 13 14 15

H+X) [pb] → (pp σ

− 2

10

− 1

10 1 10

10 2 M(H)= 125 GeV

LHC HIGGS XS WG 2016

H (N3LO QCD + NLO EW ) pp →

qqH (NNLO QCD + NLO EW) pp →

WH (NNLO QCD + NLO EW) pp →

ZH (NNLO QCD + NLO EW) pp →

ttH (NLO QCD + NLO EW) pp →

bbH (NNLO QCD in 5FS, NLO QCD in 4FS) pp →

tH (NLO QCD, t-ch + s-ch) pp →

LHC Higgs Cross Section Working Group

Higgs Production at the LHC

Gluon-Gluon Fusion g

g

H t

Associated Production with W and Z q

q

H

W/Z W/Z

Vector Boson Fusion q

q

q

q W/Z H

W/Z

Higgs Production Cross Section at the LHC

[TeV] 6 7 8 9 10 11 12 13 14 15 s

H+X) [pb] → (pp σ

− 2

10

− 1

10 1 10

10 2 M(H)= 125 GeV

LHC HIGGS XS WG 2016

H (N3LO QCD + NLO EW) pp →

[TeV] 6 7 8 9 10 11 12 13 14 15 s

H+X) [pb] → (pp σ

− 2

10

− 1

10 1 10

10 2 M(H)= 125 GeV

LHC HIGGS XS WG 2016

H (N3LO QCD + NLO EW) pp →

qqH (NNLO QCD + NLO EW) pp →

[TeV] 6 7 8 9 10 11 12 13 14 15 s

H+X) [pb] → (pp σ

− 2

10

− 1

10 1 10

10 2 M(H)= 125 GeV

LHC HIGGS XS WG 2016

H (N3LO QCD + NLO EW) pp →

qqH (NNLO QCD + NLO EW) pp →

WH (NNLO QCD + NLO EW) pp→

ZH (NNLO QCD + NLO EW) pp→

[TeV] 6 7 8 9 10 11 12 13 14 15 s

H+X) [pb] → (pp σ

− 2

10

− 1

10 1 10

10 2 M(H)= 125 GeV

LHC HIGGS XS WG 2016

H (N3LO QCD + NLO EW) pp →

qqH (NNLO QCD + NLO EW) pp →

WH (NNLO QCD + NLO EW) pp→

ZH (NNLO QCD + NLO EW) pp→

ttH (NLO QCD + NLO EW) pp →

bbH (NNLO QCD in 5FS, NLO QCD in 4FS) pp→

tH (NLO QCD, t-ch + s-ch) pp →

Associated Production with t and b

g t

H

t/b q q’

t H

W

(5)

Particle-Flow Event Reconstruction

F. Beaudette at ICHEP2010

particle flow E jet ≈ E tracks + E γ + E n

Example: jet energy resolution at CMS (2010 conditions)

(GeV) p T

30 40 100 200 1000

T ) / p T (p σ

0.05 0.10 0.15 0.20 0.25

0.30 Simulation, | η | < 1.1 Calo Jets PF Jets

Matthias Schr ¨oder – W/Z/Higgs an Collidern (Sommersemester 2019) Exercises No 6 5/10

(6)

Calibration of m ( jj )

[Phys. Rev. Lett. 121, 121801 (2018), supplemental material]

0 20 40 60 80 100 120 140 160

m(jj) [GeV]

0 0.5 1 1.5 2 2.5

Entries / 5 GeV

Kinematic fit + b-jet regression = 9.9 GeV = 120.7 GeV, σ µ b-jet regression

= 14.9 GeV σ = 124.3 GeV, µ PF-CHS jets

= 17.4 GeV σ = 115.9 GeV, µ

CMS

Simulation Supplementary

2017 (13 TeV)

) b ) H(b l- Powheg PYTHIA Z(l+

> 150 GeV T No recoil jets, pZ

0 20 40 60 80 100 120 140 160

m(jj) [GeV]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Entries / 5 GeV

Kinematic fit + b-jet regression = 12.4 GeV = 120.0 GeV, σ µ b-jet regression

= 15.4 GeV σ = 125.2 GeV, µ PF-CHS jets

= 17.9 GeV σ = 116.2 GeV, µ

CMS

Simulation Supplementary

2017 (13 TeV)

) b ) H(b l- Powheg PYTHIA Z(l+ > 150 GeV T 1 recoil jet, pZ

(7)

Alternative Analysis: Fitting m ( jj )

[Phys. Rev. Lett. 121, 121801 (2018), supplemental material]

S/(S+B) weighted entries

5000 10000 15000 20000

Data WHb b

b

ggZHb ZHb b

VV+HF VV+LF

t

t Single top

b

W+b W+b

W+udscg Z+b b

Z+b Z+udscg

S+B uncertainty VH,H

b b

CMS

Supplementary

(13 TeV) 77.2 fb

-1

m(jj) [GeV]

60 80 100 120 140 160

Obs / Exp 0.95 1 1.05

m(jj) [GeV]

60 80 100 120 140 160

S/(S+B) weighted entries

0 500 1000

Data S+B uncertainty

b

b VH,H

b

b VZ,Z S+B uncertainty

CMS

Supplementary

(13 TeV) 77.2 fb

-1

Matthias Schr ¨oder – W/Z/Higgs an Collidern (Sommersemester 2019) Exercises No 6 7/10

(8)

Classifier Output Signal Regions

[Phys. Rev. Lett. 121, 121801 (2018), supplemental material]

Entries

−2 10 1 102 104 106 108

Data ggZHbb

b

ZHb VV+HF

b

Z+b Z+b

Z+udscg tt

VV+LF Single top

S+B uncertainty VH,H→bb T,V

, High p µ 2-

CMS Supplementary

(13 TeV) 41.3 fb-1

DNN output

0 0.2 0.4 0.6 0.8 1

Obs / Bkg 0.5 1 1.5 2

Entries

−2 10 1 102 104 106 108

109 Data WHbb

b

ZHb VV+HF

b

W+b W+b

W+udscg Z+bb

Z+b Z+udscg

t

t VV+LF

Single top S+B uncertainty b

→b VH,H µ) 1-lepton (

CMS Supplementary

(13 TeV) 41.3 fb-1

0 0.2 0.4 0.6 0.8 1

Obs / Bkg 1 2

Entries

−2 10 1 102 104 106 108

Data ggZHbb

b

ZHb VV+HF

b

Z+b Z+b

Z+udscg tt

VV+LF Single top

S+B uncertainty VH,H→bb T,V

2-e, High p

CMS Supplementary

(13 TeV) 41.3 fb-1

DNN output

0 0.2 0.4 0.6 0.8 1

Obs / Bkg 0.5 1 1.5 2

Entries

−2 10 1 102 104 106 108

109 Data WHbb

b

ZHb VV+HF

b

W+b W+b

W+udscg Z+bb

Z+b Z+udscg

t

t VV+LF

Single top S+B uncertainty b

→b VH,H 1-lepton (e)

CMS Supplementary

(13 TeV) 41.3 fb-1

0 0.2 0.4 0.6 0.8 1

Obs / Bkg

2 4

Entries

−2 10 1 102 104 106 108 1010

Data ggZHbb

b

ZHb VV+HF

b

Z+b Z+b

Z+udscg tt

VV+LF Single top

S+B uncertainty VH,H→bb T,V

, Low p µ 2-

CMS Supplementary

(13 TeV) 41.3 fb-1

DNN output

0 0.2 0.4 0.6 0.8 1

Obs / Bkg 0.5 1 1.5 2

Entries

−2 10 1 102 104 106 108 109

Data WHbb

b

ggZHb ZHbb

VV+HF VV+LF

t

t Single top

b

W+b W+b

W+udscg Z+bb

Z+b Z+udscg

S+B uncertainty VH,H→bb 0-lepton

CMS Supplementary

(13 TeV) 41.3 fb-1

0 0.2 0.4 0.6 0.8 1

Obs / Bkg 0.5 1 1.5

Entries

−2 10 1 102 104 106 108

109 Data ggZHbb

b

ZHb VV+HF

b

Z+b Z+b

Z+udscg tt

VV+LF Single top

S+B uncertainty VH,H→bb T,V

2-e, Low p

CMS Supplementary

(13 TeV) 41.3 fb-1

DNN output

0 0.2 0.4 0.6 0.8 1

Obs / Bkg 0.5 1 1.5

(9)

Control Region Distributions

[Phys. Rev. Lett. 121, 121801 (2018), supplemental material]

Entries

0 500 1000 1500

Data ggZHbb

b

ZHb VV+HF

b

Z+b Z+b

Z+udscg tt

VV+LF Single top

MC uncertainty enr.

b , Z+b , High pT,V µ 2-

CMS Supplementary

(13 TeV) 41.3 fb-1

DeepCSVmin

0 0.2 0.4 0.6 0.8 1

Obs / Exp 0.95 1 1.05

Entries

0 10000 20000 30000

40000 Data WHbb

b

ZHb VV+HF

b

W+b W+b

W+udscg Z+bb

Z+b Z+udscg

t

t VV+LF

Single top MC uncertainty enr.

b 1-lepton (e), W+b

CMS Supplementary

(13 TeV) 41.3 fb-1

b

W+b tt W+LF W+b Top

Obs / Exp 0.95 1 1.05

Entries

0 200 400 600 800 1000 1200 1400

Data ggZHbb

b

ZHb VV+HF

b

Z+b Z+b

Z+udscg tt

VV+LF Single top

MC uncertainty enr.

b , Z+b 2-e, High pT,V

CMS Supplementary

(13 TeV) 41.3 fb-1

DeepCSVmin

0 0.2 0.4 0.6 0.8 1

Obs / Exp 0.95 1 1.05

Entries

0 20000 40000 60000

Data WHbb

b

ZHb VV+HF

b

W+b W+b

W+udscg Z+bb

Z+b Z+udscg

t

t VV+LF

Single top MC uncertainty enr.

b ), W+b µ 1-lepton (

CMS Supplementary

(13 TeV) 41.3 fb-1

b

W+b tt W+LF W+b Top

Obs / Exp 0.95 1 1.05

Entries

0 2000 4000 6000 8000 10000

12000 Data ggZHbb

b

ZHb VV+HF

b

Z+b Z+b

Z+udscg tt

VV+LF Single top

MC uncertainty enr.

b , Z+b , Low pT,V µ 2-

CMS Supplementary

(13 TeV) 41.3 fb-1

DeepCSVmin

0 0.2 0.4 0.6 0.8 1

Obs / Exp 0.95 1 1.05

Entries

0 1000 2000 3000

Data WHbb

b

ggZHb ZHbb

b

W+b W+b

W+udscg Z+bb

Z+b Z+udscg

t

t VV+HF

VV+LF Single top

MC uncertainty enr.

b 0-lepton, Z+b

CMS Supplementary

(13 TeV) 41.3 fb-1

b

V+b tt V+LF V+b Top

Obs / Exp 0.95 1 1.05

Entries

0 2000 4000 6000

Data ggZHbb

b

ZHb VV+HF

b

Z+b Z+b

Z+udscg tt

VV+LF Single top

MC uncertainty enr.

b , Z+b 2-e, Low pT,V

CMS Supplementary

(13 TeV) 41.3 fb-1

DeepCSVmin

0 0.2 0.4 0.6 0.8 1

Obs / Exp 0.95 1 1.05

Matthias Schr ¨oder – W/Z/Higgs an Collidern (Sommersemester 2019) Exercises No 6 9/10

(10)

All Bins in Fit

[Phys. Rev. Lett. 121, 121801 (2018), supplemental material]

Entries

1 10 10 2

10 3

10 4

10 5

10 6 Data Background

b

→ b VH,H

Background uncertainty Signal + Background

CMS

Supplementary

(13 TeV) 41.3 fb

-1

(S/B) log 10

− 3 − 2.5 − 2 − 1.5 − 1 − 0.5 0

Data / Bkg

0.5

1

1.5

Referenzen

ÄHNLICHE DOKUMENTE

The equations of motion of a system described by the field Φ(x) can be derived from the Lagrange density L using the Euler-Lagrange equations.. ∂

In the Standard Model, the mass terms for the gauge bosons W ± and Z emerge dynamically from their coupling to the Higgs field via the covariant

In the Standard Model, the mass terms for the gauge bosons W ± and Z emerge dynamically from their coupling to the Higgs field via the covariant

In this exercise, we want to measure the efficiency of a high-level trigger path that requires the presence of one jet with transverse momentum p T above a certain thresh- old, in

Precise Measurement of the W-Boson Mass with the CDF II Detector, Phys. An alternative perprint- version of the paper is available http://arxiv.org/abs/1203.0275.. Please

k) How is the dijet invariant mass m(jj) of Higgs-boson candidate decays cali- brated? Why is the mass not used as final sensitive variable in the analysis?. l) How are the signal

The simulated events are weighted such that the sum of weights of simulated events in a specific phase space corresponds to the expected number of real events in this phase space..

In particular for the lower boundary, the neglected W and Z boson contributions play an important role as they enter with a different sign than the top quark, even if at