• Keine Ergebnisse gefunden

Bayesian Analysis of the Ricker Stock-Recruitment Model

N/A
N/A
Protected

Academic year: 2022

Aktie "Bayesian Analysis of the Ricker Stock-Recruitment Model"

Copied!
23
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

B A Y E S I A N A N A L Y S I S O F T H E R I C K E R S T O C K - l U C R U I T b E W T llODEL

E r i c F. Wood

P J o v e m b e r 1 9 7 5

R e s e a r c h M e m o r a n d a a r e i n f o r m a l p u b l i - c a t i o n s r e l a t i n g t o o n g o i n g o r p r o j e c t e d a r e a s o f r e s e a r c h a t I I A S A . T h e v i e w s expressed a r e t h o s e o f t h e a u t h o r , a n d do n o t n e c e s s a r i l y r e f l e c t t h o s e o f I I A S A .

(2)
(3)

Bayesian Analysis of the Ricker Stock-Recruitment Model

Eric F. Wood

Abstract

Bayesian statistics were applied to analyze the Ricker stock-recruitment model. This model is used for salmon fishery management and predicts the resulting recruits for a specified level of spawners. The Ricker model is trans- formed into a linear regression form, and the uncertainty in the model parameters and the 'noise' of the model are calculated using Bayesian regression analysis. Applica- tion to the Skeena River Sockeye fishing with 67 years of data showed that parameter uncertainty was much less than model noise, thus putting in question the applicability of the Ricker model for management decisions. The analysis is extended to experimentation on the 'optimal' spawning level, non-stationarity of the fishery, and model uncer- tainty.

Introduction

A number of simple models have been proposed and used to establish fishery regulations and optimal catch quotas, for example, the 'Ricker model' (Ricker, 1954) and the 'Shaeffer

model' (Schaeffer, 1954). A model will be assumed that describes the fishery; the model parameters are estimated from the avail- able data and the 'optimal' harvest rates established. Walters (1975), Allen (1973) and others have tried to establish control laws for non-equilibrium situations, still using the simple dy- namic fishery models described above. Walters and Hilborn (1 975) extended the adaptive control laws to consider parameter uncer- tainty in the models, which could arise from a lack of data for the fishery or non-stationarity of the fishery (changes in en- vironmental carrying capacities and in genetic structure, etc.;

Walters and Hilborn, 1975). Walters and Hilborn (1 975) must nevertheless assume that the simple model adequately describes

(4)

the fishery behaviour. If this is not true, then the control laws may bring the fishery into a non-equilibrium situation or an equilibrium that may have dire long-term consequences to the fishery

.

This paper considers the statistical properties of the

Ricker model used by Walters and Hilborn (1975) for the adaptive control analysis. Such a statistical analysis can also treat questions of experimentation, should the control be altered to gain more information about the model or parameters of the

fishery. The approach followed in this paper is Bayesian statis- tics. Bayesian analysis has as its foundation the concept that unknown states of nature can be treated as random variables.

Then the equilibrium stock parameter b can be described by a probability density function f(b) estimated from the available information. As will be described later, the fishery model

should be modified to reflect the uncertainty in the parameters.

Such statistical procedures allow a formal analysis of questions concerning the value of experimentation and the effect of ,param- eter and model uncertainty.

Bayesian Analysis of the Ricker Model

The simple model developed by Ricker (1954) has been widely used for analysis of stock-recruitment and in the management of fisheries. Its form is:

where

Rt = recruits at the end of generation t, St-l = spawners at the start of generation t,

a = a stock production parameter,

b = the equilibrium stock level (in the absence of fishing)

.

Since the model is not a perfect predictor of fishery dy- namics, the model of Equation (1) can be modified to include a

(5)

' n o i s e t e r m ' o r random e n v i r o n m e n t a l f a c t o r . T h i s f o r m c a n b e w r i t t e n a s

w h e r e

EJ

= t h e random e n v i r o n m e n t a l f a c t o r , N o r m a l l y d i s t r i b u t e d t w i t h mean 0 , v a r i a n c e a 2

.

T h e r e i s b o t h e m p i r i c a l e v i d e n c e ( A l l e n , 1 9 7 3 ) a n d t h e o r e t - i c a l j u s t i f i c a t i o n (Walters a n d H i l b o r n , 1 9 7 5 ) t h a t

EJt

i s

N o r m a l l y d i s t r i b u t e d . From E q u a t i o n ( 2 ) , t h e r e c r u i t s R g i v e n t '

a s p a w n i n g l e v e l S t - l , w i l l b e Log-Normal d i s t r i b u t e d . By r e w r i t t i n g E q u a t i o n ( 2 ) a s

w h e r e

t h e R i c k e r m o d e l c a n b e a n a l y z e d a s a N o r m a l r e g r e s s i o n . y t w i l l b e N o r m a l l y d i s t r i b u t e d w i t h mean B 1

+

B2St-l a n d v a r i a n c e a . 2

W e a s s u m e t h a t t h e s e t o f o b s e r v a t i o n s Y ( Y = y 1 , y 2 , . . . , y n ) a n d X ( X = [ I , S

I ,

[ I , S ,

I , . . . ,

[ I

1 )

come f r o m t h e d i s t r i b u -

0

t i o n f o r y , f y ( y ( B 1 , B 2 , 0 )

,

w h i c h i s c o n d i t i o n a l upon t h e param- e t e r s e t a a n d - B E [B

,

B 2 ] t . The d i s t r i b u t i o n o f t h e u n c e r t a i n p a r a m e t e r s c a n b e f o u n d by a s i m p l e a p p l i c a t i o n o f t h e B a y e s Theorem:

(6)

where

f ' ( B r a ) - = t h e p r i o r d i s t r i b u t i o n o f B r a . - I f no p r i o r i n f o r m a t i o n i s a v a i l a b l e , t h e n f ' ( B r a ) c a n b e - r e p r e s e n t e d by a u n i f o r m d i s t r i b u t i o n o v e r t h e i n t e r v a l o f t h e p a r a m e t e r ,

£ ( Y , x ( B , u )

- -

L ( B , ~ ~ Y , x )

-

= t h e s a m p l e l i k e l i h o o d f u n c t i o n o f t h e p a r a m e t e r s e t , c o n d i t i o n a l upon t h e o b s e r - v a t i o n s ( o r t h e p r o b a b i l i t y o f t h e o b s e r v a t i o n s g i v e n t h e p a r a m e t e r s ) ,

f "

(g,

a

1

Y , X ) = t h e p o s t e r i o r d e n s i t y f u n c t i o n o f t h e p a r a m e t e r c o n s i d e r i n g s a m p l e i n f o r m a t i o n and p r i o r i n f o r - m a t i o n .

The way t h e i n f o r m a t i o n a b o u t

- B

a n d a i s a n a l y z e d d e p e n d s upon t h e o b j e c t i v e s o f t h e a n a l y s i s . C o n s i d e r t h e c a s e when d e c i s i o n s a r e t o b e made c o n c e r n i n g y ( o r , i n o u r c a s e . Rt which

i s embedded i n y ) . H e r e t h e i n f e r e n c e s a b o u t y s h o u l d r e f l e c t t h e u n c e r t a i n t y i n

-

B r a by a p p l y i n g compound d i s t r i b u t i o n t h e o r y i n a B a y e s i a n framework (Wood a n d R o d r i g u e z - I t u r b e , 1 9 7 5 ) . T h i s p r o c e d u r e r e s u l t s i n o b t a i n i n g t h e p r e d i c t i v e d e n s i t y f o r y ,

? ( y l x ) , f o u n d by

w h e r e

f ( y

1

x ,

-

8 , a ) = t h e p r o b a b i l i s t i c form o f t h e R i c k e r m o d e l , E q u a t i o n ( 3 ) ,

£ " ( B r a )

-

= t h e p o s t e r i o r d i s t r i b u t i o n o f t h e p a r a m e t e r s ,

?

( y

1

x ) = t h e p r e d i c t i v e d e n s i t y o f y , now p a r a m e t e r - f r e e .

i ( y ( x ) s h o u l d b e i n t e r p r e t e d a s b e i n g t h e model f o r y.

f ( y l x , f i , a ) , w e i g h t e d by t h e d i s t r i b u t i o n o f t h e u n c e r t a i n param- e t e r s

-

B r a . The a b o v e w i l l b e a p p l i e d t o t h e R i c k e r s t o c k r e c r u i t - ment model.

(7)

Likelihood of the Observed Sample

Previously, it was discussed that the Ricker model has an error term

5

whose distribution could be assumed Normal with

t f

mean 0 and variance a 2

.

Then the Ricker model has a Normal den- sity function with mean X t- B and variance a 2

.

That is,

-1/2 o -1 1 t

exp

[-

--Z (yt

-

x t g (Y,

-

x B)]

f ( y t / g f a f x t ) = ( 2 ~ ) t- 2a

where

xt =

P I ,

a row vector,

'

= [-:/b]

,

a column vector.

The likelihood function for the sample Y(Y = y1,y2, ...,yn) is the product of the density function for the individual y 's

t and is given by

where

The likelihood function has the form of the product of

Bivariate-Normal and Inverted-Gamma-2 density functions (Zellner, 1971).

Assume that no prior information exists concerning the parameters

-

B,a; then the prior probability density function can be expressed (Jefferys, 1961) as

(8)

On c o m b i n i n g t h e l i k e l i h o o d f u n c t i o n and t h e p r i o r d e n s i t y f u n c t i o n , t h e j o i n t p o s t e r i o r p r o b a b i l i t y d e n s i t y f u n c t i o n f o r B,a i s

-

From quat ti on (8), it i s o b s e r v e d t h a t t h e m a r g i n a l d e n s i t y

h

f u n c t i o n f o r

- 8

i s a ~ i v a r i a t e - ~ o r m a l w i t h mean

- B

and c o v a r i a n c e

( x ~ x )

a 2

.

B e c a u s e a i s n o t known, t h e d i s t r i b u t i o n o f

- B

c a n b e o b t a i n e d f r o m ( 8 ) by i n t e g r a t i n g o v e r a . T h a t i s ,

which i s i n t h e f o r m o f a B i v a r i a t e - S t u d e n t - t d e n s i t y f u n c t i o n . T h i s d i s t r i b u t i o n s e r v e s a s a b a s i s f o r making i n f e r e n c e s a b o u t B . The m a r g i n a l d e n s i t y f u n c t i o n f o r a c a n b e o b t a i n e d f r o m

-

E q u a t i o n ( 8 ) by i n t e g r a t i n g w i t h r e s p e c t t o

- B .

T h i s r e s u l t s i n

w h i c h i s i n t h e f o r m o f a n Inverted-Gamma-2 d e n s i t y f u n c t i o n . P r e d i c t i v e D e n s i t y f o r y

I t may b e of i n t e r e s t t o make i n f e r e n c e s f r o m t h e d e n s i t y f u n c t i o n f o r

-

B and a , b u t u s u a l l y f i s h e r y m a n a g e r s a r e more con- c e r n e d w i t h t h e d i s t r i b u t i o n o f

y ,

t h e f u t u r e o b s e r v a t i o n g i v e n f u t u r e c o n t r o l

G .

I n t h i s case, i t i s i m p o r t a n t t o c a l c u l a t e t h e p r e d i c t i v e d e n s i t y f o r

G ,

g i v e n x , t h a t .w w i l l r e f l e c t t h e un- c e r t a i n t y i n

- B

a n d a :

(9)

where

f

(71 -

~ , a , x )

-

= t h e d e n s i t y f u n c t i o n o f t h e R i c k e r model w i t h o u t c o n s i d e r i n g p a r a m e t e r u n c e r t a i n t y , f " ( ~ , a l ~ , x ) - = t h e p o s t e r i o r d e n s i t y f u n c t i o n o f t h e param-

e t e r

-

f3,a.

I n t e g r a t i n g qua ti on ( 1 1 ) a n d r e a r r a n g i n g t h e terms ( Z e l l n e r , 1971 ) g i v e s

where

E q u a t i o n ( 1 2 ) i s i n t h e f o r m o f a S t u d e n t - t d i s t r i b u t i o n w i t h moments

E [ ? I =

2~

f o r v > 1 I

v H-l

v[Yl = f o r v > 2

.

D i s t r i b u t i o n o f R

E q u a t i o n ( 1 2 ) g i v e s t h e d i s t r i b u t i o n o f

p,

I n A 8,

,

when s t - 1

t h e d i s t r i b u t i o n f o r Rt may b e o f g r e a t e r i n t e r e s t . L e t

where

-

S t - l = a known ( f u t u r e ) c o n t r o l ;

t h e n t h e J a c o b i a n t r a n s f o r m from

(10)

and the distribution of

?

(Rt) is derived from:

The distribution of is in the form of a Log-Student-t t

probability density function.

A more convenient approach to find the moments of

kt

is by using first-order analysis (Cornell, 197'2)

.

First-order analysis is characterized by single-moment treatment of random components and first-order analysis of functional relationships among vari- ables. The implication of this characterization is that infor- mation about random variables is represented only by their means and covariance, and that in dealing with functional relationships among random variables only the first-order terms in a Taylor expansion will be retained. For example,

where

w = a column vector of random variables,

-

= the vector of their means,

-w

ht = the transpose of a column vector of partial derivatives:

-

hi = ag(w)/awi, evaluated at the mean.

The symbol

'

is used to mean 'equal' in a first-order sense.

The moments of Z are

(11)

Returning to the problem of finding the moments of kt, given the control, the relationship between variables is

so that the moments from Equations (15) and (16) for

k+

given

L

the control

it -

are

-

It should be remembered that eY is evaluated at its mean.

The same approach can be used to find the moments of b, the equilibrium stock parameters:

Then the first-order approximations are

(12)

A s e c o n d - o r d e r a p p r o x i m a t i o n f o r E [ b ] c a n b e e x p r e s s e d u s i n g f i r s t moments enja jam in and C o r n e l l , 1 9 7 0 ) :

A g a i n , a l l f u n c t i o n s and p a r t i a l d e r i v a t e s o f

-

B a r e e v a l u a t e d a t i t s v e c t o r o f means.

A p p l i c a t i o n t o S k e e n a R i v e r Sockeye F i s h e r y

The R i c k e r model h a s p r e v i o u s l y b e e n a p p l i e d t o t h e S k e e n a R i v e r Sockeye s a l m o n f i s h e r y by W a l t e r s ( 1 9 7 5 ) . W a l t e r s ' d a t a , 67 y e a r s o f r e c o r d f r o m 1908 t h r o u g h 1 9 7 4 , i s p r e s e n t e d i n

F i g u r e 1 and w i l l b e u s e d i n t h i s s t u d y . F i r s t , t h e f u l l r e c o r d i s u s e d t o o b t a i n i n f e r e n c e s on t h e p a r a m e t e r s B 1 , B 2 , and a . The r e s u l t i n g p r e d i c t i v e d e n s i t y i s c a l c u l a t e d and a f i r s t - o r d e r a n a l y s i s p e r f o r m e d t o f i n d t h e moments o f t h e r e c r u i t s R t , g i v e n t h e c o n t r o l St

-

A f t e r t h i s a n a l y s i s , t h e s a m p l e was d i v i d e d

i n t o f o u r 1 5 - y e a r r e c o r d s ( t h e f i r s t 7 y e a r s b e i n g d i s c a r d e d ) . An a n a l y s i s o f t h e d i v i d e d r e c o r d may i n d i c a t e w h e t h e r t h e param- e t e r s o f t h e R i c k e r model a r e c h a n g i n g w i t h t i m e . F u r t h e r m o r e , s i n c e t h e most r e c e n t l y c o l l e c t e d d a t a i s p r o b a b l y o f a h i g h e r q u a l i t y , t h e a n a l y s i s o f t h e l a s t 15 y e a r s s h o u l d g i v e b e t t e r i n f e r e n c e s a b o u t t h e p a r a m e t e r s .

F i n a l l y , g i v e n t h e r e s u l t s o f t h e a n a l y s i s , t h e q u e s t i o n s o f e x p e r i m e n t a t i o n w i t h t h e c o n t r o l p a r a m e t e r S c a n b e c o n s i d e r e d .

T a b l e 1 p r e s e n t s t h e s t a t i s t i c s f o r t h e p a r a m e t e r s

B1

and B 2 f o r b o t h t h e 67 y e a r s o f r e c o r d a n d f o r t h e f o u r 1 5 - y e a r s u b - r e c o r d s . T a b l e 2 p r e s e n t s t h e s t a t i s t i c s f o r a , b , a n d a , t h e p a r a m e t e r s o f t h e R i c k e r model a s f o r m u l a t e d i n E q u a t i o n ( 1 ) .

F i g u r e 2 p r e s e n t s f ( B l I B 2 ) , u s i n g t h e f u l l 67 y e a r s o f

-

r e c o r d . F i g u r e 3 g i v e s t h e p r e d i c t i v e d e n s i t y o f

$,

i n Rt

,

-

t - 1

g i v e n S t - l , a l s o u s i n g t h e 67 y e a r s o f r e c o r d . U s i n g a

(13)

s e c o n d - o r d e r a n a l y s i s f o r t h e mean o f R and f i r s t - o r d e r a n a l y s i s f o r t h e v a r i a n c e o f R , t h e R i c k e r c u r v e was c o n s t r u c t e d u s i n g t h e 67 y e a r s o f d a t a and t h e f o u r 1 5 - y e a r s a m p l e s . I n c l u d e d i n t h e f i g u r e s a r e n o t o n l y t h e mean o f R g i v e n S f b u t a l s o t h e mean f o n e s t a n d a r d d e v i a t i o n . These c u r v e s a r e p r e s e n t e d i n F i g u r e s

4 t h r o u g h 8 . S i m i l a r r e s u l t s were f o u n d d i v i d i n g t h e s a m p l e i n t o 20-year b l o c k s . F i g u r e 9 p r e s e n t s t h e f u n c t i o n R v e r s u s c o n t r o l S .

The r e s u l t s show t h a t w i t h s a m p l e s i n t h e o r d e r o f 1 5 y e a r s , t h e p a r a m e t e r s o f t h e R i c k e r model c a n b e e s t i m a t e d f a i r l y w e l l . The l a r g e s t c o e f f i c i e n t o f v a r i a t i o n i s . 2 5 , w i t h m o s t b e i n g below . 2 0 . The r e s u l t s s e e m t o s u p p o r t t h e h y p o t h e s i s (Waiters, p e r s o n a l c o m m u n i c a t i o n ) t h a t t h e e q u i l i b r i u m s t o c k s i z e i s d e - c r e a s i n g . T h i s d e c r e a s e c o u l d r e f l e c t t h e s h r i n k a g e o f t h e a c t i v e spawning a r e a s i n t h e r i v e r f i s h e r y .

The most i m p o r t a n t i n s i g h t o f t h e s t a t i s t i c a l a n a l y s i s i s t h e i n a d e q u a c y o f t h e R i c k e r model t o e x p l a i n t h e b e h a v i o u r o f t h e f i s h e r y . The c o e f f i c i e n t o f . v a r i a t i o n 0

R I

S"RI S a t t h e maximum y i e l d r a n g e s f r o m .46 t o . 6 8 and r i s e s , a p p r o a c h i n g 1 when S i s a r o u n d 2 1 0 6

.

T h i s r e s u l t l e a d s o n e t o q u e s t i o n s e r i o u s l y t h e a d e q u a c y o f t h e R i c k e r model f o r f i s h e r y manage- ment. C l e a r l y , t h e model a s f o r m u l a t e d c a n n o t c a p t u r e t h e com- p l e x i t y o f t h e p r o b l e m and f i s h e r y m a n a g e r s s h o u l d c o n s i d e r o t h e r management t o o l s .

E x t e n s i o n s t o t h e A n a l y s i s

E x p e r i m e n t a t i o n c a n b e p e r f o r m e d e i t h e r t o g a i n knowledge a b o u t t h e p a r a m e t e r s o f a p a r t i c u l a r model o r t o t r y t o d i s c r i m - i n a t e among a l t e r n a t i v e m o d e l s . F o r t h e r e s u l t s p r e s e n t e d h e r e , e x p e r i m e n t a t i o n f o r p a r a m e t e r s would b e o f l i m i t e d v a l u e . The p a r a m e t e r s h a v e r a t h e r low v a r i a n c e a n d t h e ' n o i s e ' i n t h e d a t a comes f r o m t h e i n a d e q u a c y o f t h e m o d e l .

E x p e r i m e n t a t i o n t o d i s c r i m i n a t e among m o d e l s c a n b e p e r - formed q u i t e e a s i l y (see Wood, 1 9 7 4 ) . I f t h e a l t e r n a t i v e model i s a s i m p l e r e l a t i o n s h i p b e t w e e n R and S f t h e n it i s s u s p e c t e d

(14)

(looking at the data of Figure 1) that neither model would per- form very well. One would be choosing the better of two poor models.

The design of the experimentation can be guided by the ex- pected costs and benefits in the following manner. If the experi- ment is to have S' spawners (the control) for T' years, then an expected cost EIC(S',T1)I, is associated with the experiment;

this can be found by Monte Carlo simulation using the distribu- tion f ( R / s ' ) and f (R(s*), where S* is the a priori optimal spawn- ing level. The experiment can yield information I(S',T1) which can lead to a new posteriori optimal spawning level S'*, which each year would have expected incremented benefits above S* of E[AB~S*,S'*]; here

Non-Stationarity

The analysis presented here assumed stationarity of the fishery. This may not be valid and some of the results support this feeling. It appears that the equilibrium stock parameter is decreasing, which could support the hypothesis that the salmon are abandoning part of the spawning ground. This result could imply that fewer spawners should be released; that is, S* is de- creasing. As a positive feedback system, more spawning ground would be abandoned. Therefore, thought should be given to in- creasing the spawners with the idea of rejuvenating the abandoned areas.

Non-stationarity can also be handled in the analysis pre- septed here by putting a distribution on b to reflect the changes over time. Winkler and Barry (1973) have done some work in

analyzing non-stationary means in a Multi-Normal process. Simi- larly, the uncertainty in the number of spawners can be analyzed.

(15)

Multi-Stock Models

Within the fishery analyzed, it is recognized that geneti- cally isolated stocks of the same species exist. The management of salmon fisheries has not considered this aspect when the op- timal spawning level S* is established. Thus, one stock may be severely overfished by arriving 'early' at the estuary and wait- ing before moving upstream, while another stock may pass quickly upstream. Furthermore, each stock would have its own set of parameters a and b leading to its own S*.

It is possible, with the Bayesian methodology presented here, to consider a hyper-model consisting of a set of models, one for each stock. The result would be a set of optimal control levels - S*. Management policy would then consist of sampling

throughout the fishing season to determine fishing policy--which would result in real-time fishing management.

Summary

This paper has attempted to analyze the Ricker model using Bayesian statistics, in the hope of gaining insight into the value of the model for management purposes. The results indi- cate that parameter certainty was small in comparison to the error term of the model. This result implies that the Ricker model is not a good predictive model of the Skeena River Sockeye.

Experimentation with the control S would produce limited information about the model but may help in the identification of alternative models. Future work on model selection among multi-stock models may lead to more positive results.

(16)

-14-

Table 1 . Statistics for B 1 , B 2 -

Table 2. Statistics of a, b and a.

L

*

Second-order analysis for the mean of b, first-order analysis for the variance.

Years

1908- 1974 191 5- 1929 1930- 1944 1945- 1959 1960- 1974

!3, = a

1.763

1.955

2.115

1.802

2.205

8, = -a/b

-1.175

-1.133

-1.990

-1.545

-2.172

COV ( B 1 B2)

- 0 2 4 4 -.0315 -.0315 -.0414 .I164 -.I263 -.I263 .I583

.I466

-.

290

-.

290 .651

.I686

-.

2207

-.

2207 .3392

.0903 -.I331

- .

1331 - 2 2 4 5

(17)

PARENT SPAWNERS

(

MILUONS)

F i g u r e 1 . S t o c k - r e c r u i t m e n t r e l a t i o n s h i p f o r t h e Skeena s o c k e y e , from W a l t e r s

( 1 9 7 5 )

.

(18)

F i g u r e 2. P r o b a b i l i t y d e n s i t y f u n c t i o n f o r 6 , , B 2 .

F i g u r e 3 . P r e d i c t i v e d e n s i t y f ( y l s ) : 1 9 0 8 - 1 9 7 4 .

(19)

F i g u r e 4 . Expected r e c r u i t s f o r spawning c o n t r o l l e v e l s : 1 9 0 8 - 1 9 7 4 .

3

SPAWNERS S ( IN 106 Fl SH ) --

/ - -

\

/ \.

\

/

\ \

F i g u r e 5. Expected r e c r u i t s f o r spawning c o n t r o l levels: 1 9 1 5 - 1 9 2 9 .

0 '

L 1

A

1 2

SPAWNERS S

(

IN lo6 FISH )

(20)

F i g u r e 6 . E x p e c t e d r e c r u i t s f o r s p a w n i n g c o n t r o l l e v e l s : 1930-1 944.

SPAWNERS S ( IN lo6 FISH )

F i g u r e 7 . E x p e c t e d r e c r u i t s f o r s p a w n i n g c o n t r o l l e v e l s : 1945-1959.

(21)

F i g u r e 8 . E x p e c t e d r e c r u i t s f o r spawning c o n t r o l l e v e l s : 1960-1 974.

1 2

SPAWNERS S ( IN lo6 FI SH )

F i g u r e 9 . E x p e c t e d r e c r u i t s f o r spawning c o n t r o l l e v e l s : 1955-1 974.

(22)

R e f e r e n c e s

[ I ] A l l e n , K . R . "The I n f l u e n c e o f Random F l u c t u a t i o n s i n t h e S t o c k - R e c r u i t m e n t R e l a t i o n s h i p o n t h e Economic 9 e t u r n f r o m Salmon F i s h e r i e s . " ~ o n s e i l I n t e r n a t i o n a l e p o u r 1 ' ~ x p l o r a t i o n d e l a M e r , R e p o r t 164 ( 1 9 7 3 ) , 351-359.

[ 2 ] B e n j a m i n , J . R . a n d C o r n e l l , C . A . P r o b a b i l i t y , S t a t i s t i c s a n d D e c i s i o n f o r C i v i l E n g i n e e r s . N e w Y o r k , McGraw- H i l l , 1 9 7 0 .

[ 3 ] C o r n e l l , A l l i n , C . " F i r s t - O r d e r A n a l y s i s o f Model a n d P a r a m e t e r U n c e r t a i n t y . " P r o c e e d i n g s , I n t e r n a t i o n a l Symposium o n U n c e r t a i n t i e s i n H y d r o l o g i c a n d Water R e s o u r c e S y s t e m s . T u c s o n , U n i v e r s i t y o f A r i z o n a , 1 9 7 2 , 1 2 4 5 - 1 2 7 4 .

[ 4 ] J e f f e r y s , H . T h e o r y o f P r o b a b i l i t y , 3 r d . e d . O x f o r d , C l a r e n d o n , 1 9 6 1 .

[ 5 ] R i c k e r , W.E. " S t o c k a n d R e c r u i t m e n t . " J . F i s h . R e s . Ed.

C a n a d a ,

-

11 ( 1 9 5 4 ) , 559-623.

[ 6 ] S c h a e f f e r , M.B. "Some A s p e c t s o f t h e Dynamics o f P o p u l a - t i o n s I m p o r t a n t t o t h e Management o f t h e C o m m e r c i a l M a r i n e F i s h e r i e s . " B u l l . I n t e r n . T r o p . Tuna Comrn.,

1 ( 1 9 5 4 ) , 27-56.

-

[ 7 ] Walters, C a r l J . " O p t i m a l H a r v e s t S t r a t e g i e s f o r Salmon i n R e l a t i o n s h i p t o E n v i r o n m e n t a l V a r i a b i l i t y a n d Un- c e r t a i n t y a b o u t P r o d u c t i o n P a r a m e t e r s . " IIASA CP-75-2, P r o c e e d i n g s o f a Workshop o n S a l m o n Management.

L a x e n b u r q , A u s t r i a , I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d - - S y s t e m s A n a l y s i s ( 1 9 7 5 ) , 51-79.

[ 8 ] W a l t e r s , C . J . a n d H i l b o r n , R . " A d a p t i v e C o n t r o l o f F i s h i n g S y s t e m s . " IIASA WR-75-114. L a x e n b u r g , A u s t r i a ,

I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s ( 1 9 7 5 )

.

[ 9 ] W i n k l e r , R . a n d B a r r y , C . " N o n s t a t i o n a r y Means i n a M u l t i - n o r m a l P r o c e s s . " IIASA RR-73-9. L a x e n b u r g , A u s t r i a , I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s

( 1 9 7 3 ) .

[ l o ] Wood, E r i c F . " B a y e s i a n A p p r o a c h t o A n a l y z i n g U n c e r t a i n t y Among S t o c h a s t i c M o d e l s . " IIASA RR-74-16. L a x e n b u r g , A u s t r i a , I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s ( 1 9 7 4 ) .

(23)

[I11 Wood, Eric F. and Rodriguez-Iturbe, I. " ~ a y e s i a n Inference and Decision Making for Extreme ~ y d r o l o g i c Events."

Water Resources Research, 11, 4 (1975), 533-542. - [I21 Zellner, Arnold. An Introduction t o Bayesian Inference

in Economics. New York, Wiley, 1971.

Referenzen

ÄHNLICHE DOKUMENTE

A host of researchers in the last 15 years [8] have suggested another way to explain software architectures: Instead of pre- senting an architectural model as a

Model: an abstract representation of a system created for a specific purpose.... A very popular model:

Model: an abstract representation of a system created for a specific purpose.... A very popular model:

Another variable that entered significantly was a measure of openness, the trade share of GDP, which was positively related to volatility from 1960-89 for a well balanced dataset

(Of course electrodynamics was much older, and could have been regarded as based on a U(1) gauge symmetry, but that wasn’t the point of view of the theorists who de- veloped

As can be seen from the Tukey-Anscombe plot below, the residual for a given value of the linear predictor can only take two different values and thus has a binary distribution.

Текущая инвестиционная активность за исследуемый период была подвержена наибольшему влиянию со стороны динамики общего объёма инвестиций в других

(1992) “Conflict Inflation, Distribution, Cyclical Accumulation and Crises, '' European Journal of Political Economy 8 (4), pp. (2007) “Interest Rate, Debt, Distribution and