• Keine Ergebnisse gefunden

total points: 20

N/A
N/A
Protected

Academic year: 2021

Aktie "total points: 20"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Hand in y our solutions un til W ednesda y , 05/24/17, 14:15 (PO b o x of y our T A in V3-128)

total points: 20

Prof. Dr. Moritz Kaßmann Fakultät für Mathematik

Sommersemester 17 Universität Bielefeld

Partial Differential Equations Exercise sheet V, 05/17/17

Exercise V.1 (5 Points)

Let Ω ⊂ Rd be a bounded domain, f ∈ C(Ω) andg ∈C(∂Ω). Let u ∈ C2(Ω)∩C(Ω) satisfy

(−∆u=f inΩ,

u=g on∂Ω. (1)

Prove the existence of a constant µ=µ(d,Ω)only depending on the dimensiondand the domain Ωsuch that

max

|u| ≤µ

max∂Ω |g|+ max

|f|

.

Hint: Consider the function eu∈C2(Ω)∩C(Ω),u(x) =e u(x) +λ|x|2 for an appropriate choice of the constantλ.

Exercise V.2 (2+2 Points)

a) Show that the Laplace operator in polar coordinates is given by

∆ =∂r2+1 r∂r+ 1

r2ϕ2.

Hint: Let u∈C2(R2) and

T : (0,∞)×[0,2π)→R2\ {0}, T(r, ϕ) = (rcosϕ, rsinϕ)

be the mapping that transforms polar coordinates into cartesian coordinates. Consider v(r, ϕ) = (u◦T)(r, ϕ). Calculate ∂rv and∂ϕv.

b) With help of a) prove that the function u : R2 \ {0} → R, u(x, y) = x2+yy 2 is harmonic.

Exercise V.3 (3+3 Points)

Let g ∈C2(R), h∈ C1(R) and c >0. Find a solution u : [0,∞)×[0,2π]→ R of the problem









t2u=c2x2u in(0,∞)×(0,2π), u(0,·) =g in[0,2π],

tu(0,·) =h in(0,2π), u(·,0) =u(·,2π) = 0 in[0,∞).

for the following functions g andh:

a) g: [0,2π]→R, g(x) = sin(nx), n∈N, and h: [0,2π]→R, h(x) = 0.

(2)

b) g: [0,2π]→R, g(x) = 0, n∈N, and h: [0,2π]→R, h(x) = sin(nx), n∈N. Exercise V.4 (3+2 Points)

Letd≥2, g∈C2(Rd)and h∈C1(Rd). Letu∈C2([0,∞)×Rd)be a solution of





t2u−∆u= 0 in(0,∞)×Rd, u(0,·) =g inRd,

tu(0,·) =h inRd. Forx∈Rd defineUx: [0,∞)×(0,∞)→R,

Ux(t, r) =

∂Br(x)

u(t, y)dO(y).

Show the following for everyx∈Rd: a) Ux∈C2([0,∞)×[0,∞))

b) ∂2tUx−∂r2Uxd−1rrUx= 0 in(0,∞)×(0,∞)

Hint: Use the identity

r1−dr(rd−1rUx) = d−1rrUx+∂r2Ux.

2

Referenzen

ÄHNLICHE DOKUMENTE

[r]

Adjust u according to the

Partial Differential Equations Exercise sheet IV, 05/10/17. Exercise IV.1

[r]

[r]

Partial Differential Equations Exercise sheet VIII, 06/07/17. Exercise VIII.1 (2+3 Points) a) Prove the

[r]

Prove the