• Keine Ergebnisse gefunden

total points: 20

N/A
N/A
Protected

Academic year: 2021

Aktie "total points: 20"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Hand in y our solutions un til W ednesda y , 05/10/17, 14:15 (PO b o x of y our T A in V3-128)

total points: 20

Prof. Dr. Moritz Kaßmann Fakultät für Mathematik

Sommersemester 17 Universität Bielefeld

Partial Differential Equations Exercise sheet III, 05/03/17

Exercise III.1 (5 Points)

LetΩ⊂Rd be a bounded domain. Assume gn∈C(∂Ω) for n∈N and sup

∂Ω

|gm−gn| →0 for m, n→ ∞.

Forn∈Nlet un∈C2(Ω)∩C(Ω)be harmonic in Ωwithun|∂Ω=gn.

Show that the sequence (un) converges uniformly to a function u ∈ C(Ω) which is harmonic inΩ.

Exercise III.2 (4+1 Points)

a) Let B+ ={x∈Rd | kxk<1, xd>0}. Letu∈C2(B+)∩C(B+) be harmonic in B+ withu= 0 on ∂B+∩ {xd= 0}.Define a function v:B1(0)→Rvia

v(x) =

(u(x) for xd≥0,

−u(x1, ..., xd−1,−xd) for xd<0.

Prove thatv is harmonic in B1(0).

b) Let H={x∈Rd |xd>0}. Assume u∈C2(H)∩C(H) is bounded and satisfies

∆u= 0 inH and u|H= 0.

Showu≡0.

Exercise III.3 (5 Points)

Let Ω⊂Rdbe a domain. Let u: Ω→Rbe a harmonic function in Ω. Prove that u is real analytic, i.e.,u is an infinitely differentiable function and the Taylor series of u at any pointx0∈Ωconverges pointwise to uin a neighbourhood of x0.

Exercise III.4 (5 Points)

GivenL >0, find an explicit solution for the following problem:













∆u= 0 in(0, L)×(0.L), u(0,·) =f in(0, L),

u(L,·) = 0 in(0, L), u(·,0) = 0 in(0, L), u(·, L) = 0 in(0, L), wheref(y) = sin(Ly) for n∈N.

Hint: Determine all harmonic functions u of the form u(x, y) = v(x)w(y). Adjust u according to the boundary conditions.

Referenzen

ÄHNLICHE DOKUMENTE

[r]

Partial Differential Equations Exercise sheet IV, 05/10/17. Exercise IV.1

[r]

[r]

[r]

Partial Differential Equations Exercise sheet VIII, 06/07/17. Exercise VIII.1 (2+3 Points) a) Prove the

[r]

Prove the