• Keine Ergebnisse gefunden

total points: 20

N/A
N/A
Protected

Academic year: 2021

Aktie "total points: 20"

Copied!
2
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Hand in y our solutions un til W ednesda y , 06/14/17, 14:15 (PO b o x of y our T A in V3-128)

total points: 20

Prof. Dr. Moritz Kaßmann Fakultät für Mathematik

Sommersemester 17 Universität Bielefeld

Partial Differential Equations Exercise sheet VIII, 06/07/17

Exercise VIII.1 (2+3 Points) a) Prove the following lemma:

Lemma. Let T > 0 and v ∈ C([0, T]) nonnegative. Assume there are constants a, b≥0 such that for all t∈[0, T]

v(t)≤a ˆt

0

v(s)ds+b.

Then

v(t)≤beat ≤b(1 +at eat) for all 0≤t≤T.

b) Let Ω ⊂ Rd be a bounded domain with ∂Ω ∈ C1, T > 0 and QT = (0, T]×Ω.

Assume u∈C(QT)∩C1,2(QT)solves





tu−∆u=f inQT, u(0,·) =g onΩ,

u= 0 on[0, T]×∂Ω.

for some given continuous functions f andg.

Use part a) to show that for allt∈(0, T]the following estimate holds:

||u(t,·)||2L2(Ω)+ 2||∇u||2L2(Qt)≤et

||g||2L2(Ω)+||f||2L2(Qt)

Exercise VIII.2 (5 Points)

LetB1(0)⊂Rd andQ= (0,1]×B1(0). Show that the following claims are false:

Claim 1: Letu be a positive solution of the heat equation

tu−∆u= 0 inQ and t >0.

Then there is a constant C >0, independent of u, such that u(t, x)≤Cu(t, y)

for allx, y∈B1/2(0).

Claim 2: Letu be a positive solution of the heat equation

tu−∆u= 0 in(0,1]×Rd, then there is a constantC >0such that for all 23 < s <1

u(s, x)≤Cu(t, y)

for allx, y∈B1/2(0)and 0< t < 13.

(2)

Exercise VIII.3 (3+2 Points)

LetΩ⊂Rd be open,α >0 and p∈[1,∞). Defineu:Rd→R, u(x) =

(0, if x= 0,

|x|−α, else.

Find allα, psuch thatu|Ω has a weak derivative inLp(Ω)and decide whether the function is inW1,p(Ω)for

a) Ω =B1(0)the open unit ball, b) Ω =Rd\B1(0).

Exercise VIII.4 (1+2+2 Points)

Let I ⊂ R be a (not necessarily bounded) interval, f ∈ L1loc(I) and u ∈ W1,p(I), 1≤p≤ ∞. Prove the following statements:

a) If ˆ

I

f(t)ϕ0(t)dt= 0 for all ϕ∈Cc1(I),

thenf is constant almost everywhere.

b) For x0 ∈I define a function v:I →Rvia v(x) =

ˆx

x0

f(t)dt.

Then v∈C(I) andf is the weak derivative ofv.

c) There is a function eu∈C(I)such that

u=ue a.e. onI and

u(x)e −eu(y) = ˆx

y

u0(t)dt for allx, y∈I.

2

Referenzen

ÄHNLICHE DOKUMENTE

Adjust u according to the

Partial Differential Equations Exercise sheet IV, 05/10/17. Exercise IV.1

[r]

[r]

[r]

[r]

Prove the

given by the