• Keine Ergebnisse gefunden

Poisson-Voronoi Diagrams and the Polygonal Tundra

N/A
N/A
Protected

Academic year: 2022

Aktie "Poisson-Voronoi Diagrams and the Polygonal Tundra"

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Poisson-Voronoi Diagrams and the Polygonal Tundra

F. Cresto Aleina 1,2 , V. Brovkin 2 , S. Muster 3 , J. Boike 3 , L. Kutzbach 4 , T. Sachs 5 , and S. Zuyev 6

fabio.cresto-aleina@zmaw.de

   

1. Introduc,on 

The role played by small‐scale features is o5en fundamental to  correctly compute land‐atmosphere fluxes (e.g., peatlands and  periglacial environments). 

The impact of local heterogenei?es is captured only by local 

mechanis?c models, but they are unable to describe regional or  global effects. 

  A sta?s?cal descrip?on of such systems may be able to upscale  clima?c responses and fluxes from local features to large scales. 

Case study to test the approach: polygonal tundra. 

   

2. Polygonal Tundra 

  Polygonal tundra is a type of 

paEerned ground generated by  complex crack and growth 

processes. 

  It mainly consists of elevated dry  rims and low wet centres. 

CH4 emissions depend strongly on  the posi?on of the water table level  (Wt) in respect to the polygon 

centre surface (S). 

Figure  1:  Aerial  picture  of  the  experimental  sites  on  Samoylov  Island,  Lena  River  Delta,  Siberia  (Boike et al., 2008).  

   

  Poisson‐Voronoi Diagrams (PVD). We  generate a Poisson point pro‐cess and  then associate with each point pi

Voronoi polygon V(pi). 

 

  Different colours represent different  characteris?cs of the terrain (i.e., 

humidity)

  Cross  sec,on  of  a  polygon.  To  realis?cally  compute greenhouse gas fluxes, we dis?nguish 3  different terrain types. If: 

3. The model 

a)  (S‐Wt) >ε        WET centers 

b) |S‐Wt|≤ε       SATURATED centers  c)  (S‐Wt) <‐ε       MOIST centers 

ε = 10 cm    

   

   

•  F. Cresto Aleina et al., (2012), A stochastic model for the polygonal tundra based on Poisson- Voronoi Diagrams. Earth System Dynamics, in revision.

•  S. Muster et al., (2012), Subpixel heterogeneity of ice-wedge polygonal tundra: a multi-scale analysis of land cover and evapotranspiration in the Lena River Delta, Siberia, Tellus B.

•  J.Boike, et al., (2008), Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia, Journal of Geophysical Research.

1 International Max Planck Research School for Earth System Modelling, Hamburg, Germany

2 The Land in the Earth System, Max Planck Institute for Meteorology, Hamburg, Germany

3 Alfred Wegener Institute for Polar and Marine Research, Research Unit Potsdam, Potsdam, Germany

4 Institute of Soil Science, Klima-Kampus, University of Hamburg, Hamburg, Germany

5 Deutsches GeoForschungsZentrum, Helmholtz-Zentrum, Potsdam, Germany

6 Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden

6. References and affilia,ons 

                     

     

Percola,on threshold 

Figure  4:  Percola?on  realiza?on.  The  giant  cluster  of  interconnected  polygons  is  coloured  in yellow. 

  Water table level varies with  precipita?on, evapotran‐

spira?on (clima?c forcing)  and lateral runoff.  

  Lateral runoff takes place if: 

   Wt < Thaw Depth  

     and it is fundamental in the        water balance. 

  Interconnec?ons among  polygons explain slow 

drainage. 

  Applica?on of percola?on  threshold theory on PVD. 

  Water flows out from the  system through a giant 

cluster of connected  polygons. 

4. Results 

Dynamical water table and upscaled methane emissions   

Figure 3: Our model shows increased methane emission in the wet scenario because of a drastic drop in the area covered by the relatively drier tundra (moist centers and elevated rims).

  Very wet summers would lead to significant  modifica?ons of the frac?on of the landscape  covered by saturated centers. 

  Different surface types are associated to  different emission proper?es. 

  The wet scenario leads to a drop in the surface  covered by drier tundra, and therefore to 

higher methane emissions. 

Figure 2: Ensemble simula?ons. Panel (a) displays water table  varia?ons  over  ?me  along  with  cumula?ve  precipita?on  and  evapotranspira?on.  

Panel (b) shows water table dynamics in the three simulated  scenarios: wet (blue line), dry (red line), and standard (black  line).  

                     

     

5.  Conclusions 

  Sta,s,cal  proper,es  of  the  polygonal  tundra  are  well  reproduced by the model. 

  The  model  is  able  to  upscale  land‐atmosphere  fluxes  and  to  explain shiMs in the landscape due to clima,c forcing. 

  Basis for future generaliza,ons of the approach. 

Referenzen

ÄHNLICHE DOKUMENTE

In Figure 5.5, simulation results of a model run using measured water surface temperatures as the upper boundary condition are shown and therefore snow cover and

Die Periode „kalt &amp; feucht II“ hatte eine positive klimatologische Wasserbilanz bezieht man noch die Verluste durch den Abfluss mit ein, stieg der Speicher der

Озера на поверхности едомы значительно отличаются по морфометрическим признакам от озер в аласах и от отдельных аласов.. Озера на поверхности едомы в

Our study of a low-centered polygon of the Lena Delta, Siberia, showed that the bacterial community in permafrost soils is represented by all major soil bacterial groups, includ-

Ecosystem-scale measurements and investigations of the small-scale variability of methane emission were carried out in northern Siberian wet polygonal tundra using the eddy

7 Data of measurement campaigns July 19–October 22, 2003 and June 1–July 21, 2004: (a) air temperature, and soil temperature in a wet polygon center at 20 cm depth; (b) rainfall,

Here we investigated the methanogenic community structure from three different arctic tundra soils located in the Laptev Sea coast region (Siberia)..

The plant-mediated proportion of the total CH 4 emission from the polygon centre (about 2/3) lay in the same range as results obtained by Schimel (1995) for arctic wet meadow tundra