• Keine Ergebnisse gefunden

Die Pharmazie

N/A
N/A
Protected

Academic year: 2022

Aktie "Die Pharmazie"

Copied!
5
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

D 20485 E

Die Pharmazie

An International Journal

of Pharmaceutical Sciences 3 48. Jahrgang März 1993

Aus dem Inhalt

Übersicht

• Amidinohydrazone in der Arzneistofforschung, Teil 2 Originale

• Synthese von N-(2-Carboxy-thieno-pyridinylformamidinen mit antianaphylaktischer Wirkung

• Synthesis of l,2,4-triazolo[4,3-a](l,3)diazepines

• Neue Thieno-Verbindungen

• Determination of hyrcanoside by FIA

• HPLC-Trennung chiraler Benzo-l,4-diazepine

• In vitro penetration of betamethasone-17-valerate into a multilayer membrane system

• Incorporation of amphotericin B in liposomes decreases its toxicity in mice

• Interaction of ibuprofen with early chick embroygenesis

• New triterpenoids from galls of Pistacia integerrima

• Analytik von Prazosin-Hydrochlorid

• Translocation of protein kinase C in human platelets by patients with uremia

• Quercetin-3-O-sambubioside in Quercus-species

• Acylated flavonol glucosides ofHelichrysum bractea- tum

Erfahrungsbericht

• pH-Messung in W/L-Emulsionssalben

GOVl

Govi-Verlag

Pharmazeutischer Verlag GmbH Frankfurt am Main

Redaktion Chefredakteur S. Pfeifer (Berlin)

Stellvertretender Chefredakteur P . Pflegel (Greifswald) Wissenschaftlicher Beirat G . B e r n ä t h (Szeged)

R. B r a u n (Frankfurt a m M a i n ) D . D . Breimer (Leiden) M . D i t t g e n (Jena) D . D u c h e n e (Paris) G . F r a n z (Regensburg) H . G e b l e r (Hannover) G . H e i n i s c h (Innsbruck) K . H i l l e r (Berlin) H . - D . H ö l t j e (Berlin) L . K n y (Berlin)

L . K r ö w c z y h s k i ( K r a k o w ) W . K u b e l k a (Wien) M . L u c k n e r (Halle/Saale) F . M a r k w a r d t (Erfurt) H . M ö h r l e (Düsseldorf) H . M o r c k (Frankfurt a m M a i n ) E . M u t s c h i e r (Frankfurt a m M a i n ) P . N u h n (Halle/Saale)

H . - H . O t t o ( F r e i b u r g i . Br.) J. Richter (Berlin)

P . C . Schmidt ( T ü b i n g e n ) W . Schunack (Berlin) F . T . S m i t h (Auburn) O . Sticher ( Z ü r i c h ) K . Szendrei (Szeged) K . T h o m a ( M ü n c h e n ) R. V o i g t (Berlin) G . W a g n e r (Leipzig) R. A . de Zeeuw (Groningen)

PHARAT 48 (3) 161-240 (1993)

ISSN 0031-7144 • Pharmazie • Frankfurt/Main • 48 (1993) 3 • S. 161 -240

(2)
(3)

Lehrstuhl für Biopharmazie

1

der Universität Halle und Institut für Pharmazeutische Technologie und Biopharmazie

2

der Universität Heidelberg

Study of t h e i n v i t r o penetration of t h e topical g l u c o c o r t i c o i d betamethasone-17-valerate

f r o m s o l u t i o n - t y p e gels into a multilayer membrane s y s t e m

B A R B A R A B E N D A S

1

, A. G Ö P F E R I C H

2

, G. LEE

2

and R. NEUBERT

1

T h e

in vitro

transport of betamethasone-17-valerate (1) into a multilayer membrane system has been inves- tigated. Subsaturated formulations of 1 were studied as formed by m i x i n g appropriate propylene g l y c o l / w a - ter cosolvent systems. T h e A U C (drug concentration in acce ptor membrane as a function of time) and the diffusivity of the d r u g in the vehicle were used to evaluate the results of the

in vitro

transport. T h e importance and relationship between solubility, parti- tion coefficient, and diffusivity for the process of

in vitro

penetration of 1 are discussed.

Untersuchungen zur in vitro-Penetration von Bethame- thason-17-valerat aus Lösungsgelen in ein Mehrschicht- membransystem

Gegenstand der Untersuchungen ist der in v i t r o - T r a n s - port v o n Betamethason-17-valerat (l)aus L ö s u n g s g e l e n in ein M e h r s c h i c h t m e m b r a n m o d e l l . A l s H y d r o g e l e k a - men Systeme mit unterschiedlichen P r o p y l e n g l y c o l / W a s s e r - M i s c h u n g e n zur A n w e n d u n g . Z u r A u s w e r t u n g der Ergebnisse wurden die A U C (Arzneistoffkonzentra- tion i n der A k z e p t o r m e m b r a n als F u n k t i o n der Zeit) und der Diffusionskoeffizienz des Arzneistoffes i m V e h i - kel herangezogen. D i e Bedeutung und der Z u s a m m e n - hang zwischen L ö s l i c h k e i t , Verteilungskoeffizient und Diffusionskoeffizient für die i n v i t r o - P e n e t r a t i o n v o n 1 werden diskutiert.

1. Introduction

T h e importance of the interactions between drug, vehicle, and skin for percutaneous a b s o r p t i o n are complex, as can be appreciated from a study of the available literature [1-6].

There are various parameters that affect the mechanisms responsible for specific d r u g release a n d penetration. O n e way to i m p r o v e the d e r m a l a b s o r p t i o n of drugs is to manipulate their physico-chemical properties by p r o d u c i n g derivatives w i t h increased potential for permeation through the skin barrier. M a n y investigations have been carried out to produce prodrugs w i t h the a i m to increase l i p o p h i l i c i t y . T h i s changes related parameters like p a r t i t i o n coefficient, solubility and even diffusivity [7-16].

T h e d e r m a l uptake properties of a d r u g are also influenced by the choice of the type of vehicle a n d its ingredients. T h u s the interactions of the physico-chemical properties of a d r u g and vehicle play an i m p o r t a n t role for the delivery of the d r u g into the s k i n from its f o r m u l a t i o n [17-20]. F u r t h e r m o r e , the components of the vehicle are themselves able to penetrate into the skin. T h i s can result i n a decreased diffusional resistance of the stratum c o r n e u m [21-23].

In this study, betamethasone-17-valerate (1) i n the mixed cosolvent system propylene glycol ( P G ) / w a t e r has been used to study solution-type gels as t o p i c a l vehicles. T h e influence of P G o n the

in vitro

penetration of the d r u g out of the vehicle into a membrane system has been investigated. T h e ratio of the 1 concentration i n s o l u t i o n ( C

v

) to its saturated solubility in the gel ( C

s

) was m a i n t a i n e d constant, w i t h the d r u g only being present i n the dissolved state.

2. Investigations, results and discussion

The

in vitro

penetration experiments were run using s o l u t i o n - type formulations of 1 i n simple hydrogels with v a r y i n g content of cosolvent. T o classify the l i p o p h i l i c i t y of 1 its saturated solubility in the acceptor l i p i d d o d e c a n o l ( D D ) , in propylene glycol ( P G ) and i n water was determined (Table 1).

It is slightly soluble i n water, but shows a high solubility in D D . T h e percentage of dissolved 1 in water increases with increasing P G content ( F i g . 1). If the ratio of C

v

to C

s

is kept constant for a l l systems investigated, then the same solubility conditions are established. F r o m previous results [31] one can expect that for fixed t h e r m o d y n a m i c activity, the amount penetrated into the membrane w i l l be constant up to a certain value. A b o v e this, the release of 1 w i l l be c o n t r o l l e d by p a r t i t i o n behaviour.

Table 1 Solubility of 1 in D D , P G and water as solvent systems (mean value + S D , n = 4)

D D P G Water

Solubility 12.5 ± 1.0 3.0 ± 0.01 0.012 ± 0.008 [mg/ml]

In this study, the A U C was used as a parameter to estimate the amount a n d rate of

in vitro

penetration of 1 from each gel as a function of time and P G - c o n t e n t ( F i g . 2).

C o n s i d e r a t i o n of the cumulative amount of 1 transported in dependence o n the time shows that w i t h P G content above 5 0 % the amount penetrated after 200 m i n decreases ( F i g . 2).

W h e n the A U C is expressed as a function of P G content (see T a b l e 2) it can be estimated that the

in vitro

penetration is independent of P G content up to 4 0 % . T h e slight increase i n A U C values in the range of 50 and 6 0 % P G are caused by higher amounts of 1 being transported w i t h i n the first 15 m i n (Fig. 3.). T h i s increased penetration rate is caused by convec- tive transport. It has been found that P G is able to penetrate

S o l u b i l i t y [ m g / m l ]

3H

2H

1

1

i , r -

2 0 4 0 6 0 8 0 1 0 0 P G c o n t e n t [ ° /0]

F i g . 1. S o l u b i l i t y o f 1 i n P G / w a t e r m i x t u r e s

(4)

P e n e t r a t e d a m o u n t [ % ] 1 0 0 -

8 0 - . . i 1 . ,

6 0 -

4 0 -

2 0 -

2 0 3 0 4 0 5 0 6 0 7 0 8 0 P G c o n t e n t [ % ]

F i g . 2. In vitro p e n e t r a t i o n o f 1 from s o l u t i o n - t y p e gels as function o f P G

considerably i n the acceptor membranes [32]. D r u g molecules dissolved i n the cosolvent are, therefore, transported with the cosolvent flow into the acceptor. W i t h increasing P G content in the gels, the a m o u n t o f 1 penetrated into the acceptor decreases, a l t h o u g h the extent of convection w o u l d be expect- ed to increase.

T h e study of the p a r t i t i o n behaviour of 1 between vehicle a n d acceptor indicates that the ability of 1 to distribute into the acceptor decreases w i t h increasing P G content o f the d o n o r m e d i u m (Fig. 4). B y c o m p a r i n g the solubility a n d p a r t i t i o n behaviour as functions o f P G content, it is evident that these two contrary processes result i n a n o p t i m a l cosolvent concen- tration for the in vitro penetration o f 1 [33-35]. T h e p a r t i t i o n coefficient w i l l be the most i m p o r t a n t parameter, p r o v i d e d the concentration o f d r u g is i n a constant relation to its saturated solubility a n d it other factors influencing the d r u g release, such as change i n viscosity o f the vehicle, c a n be neglected. T h e decrease i n p a r t i t i o n coefficient seen w i t h higher cosolvent concentration i n the gels arises from a higher affinity of the d r u g for the vehicle, consequently lower uptake rates of 1 are measured.

T h e diffusion coefficients for the 1 i n the vehicles lie i n the range o f 1 0 "

7

c m

2

/ s ( F i g . 5) as is typically found for isotropic hydrogels. T h e y are independent o f the P G content up to 4 0 % , A t higher P G contents, D decreases slightly but remains w i t h i n the same order o f magnitude. T h e higher affinity o f the d r u g for the f o r m u l a t i o n at these large P G contents manifests itself i n lower values for K . In accordance w i t h F i c k ' s First law, these two changes result i n a decrease i n the a m o u n t o f 1 penetrated.

P e n e t r a t e d a m o u n t [%>]

6 0 J

20]

2 0 3 0 4 0 5 0 6 0 7 0 8 0 P G c o n t e n t [%>]

K 1 5 -

1 0 -

5 -

2 0 4 0 6 0 8 0 1 0 0

P G c o n t e n t [ ° /0]

F i g . 4. Penetrated a m o u n t o f 1 in dependence o f P G content i n 15 m i n

W e conclude that b o t h A U C a n d diffusivity c a n be used to evaluate the in vitro penetration of a l i p o p h i l i c substance from simple hydrogels (Table 2). T h e c a l c u l a t i o n of diffusivity allows a quantitative estimation of the importance of the A U C .

Table 2 Comparision of the parameters A U C and diffusivity for evaluating the in v i t r o penetration of 1 from hydrogels with varrying P G content

P G content [%] A U C [% • minj D [cm2 s]

20 13690 1.105 E-007

30 13639 1.179 E-007

40 13439 1.173 E-007

50 13866 8.204 E-008

60 13734 8.006 E-008

70 11743 6.4865 E-008

80 11597 6.2296 E-008

3. Experimental

3.1. M a t e r i a l s

Betamethasone-17-valerate (1) a n d p r o p y l e n e g l y c o l ( P G ) were p u r c h a s e d from C O M P h a r m a H a n d e l s - G m b H , H a m b u r g . C h l o r o f o r m , m e t h a n o l a n d c o l l o - d i o n ( 4 % w/w) were p r o v i d e d by L a b o r c h e m i e A p o l d a . D o d e c a n o l ( D D ) , t e t r a z o l i u m blue a n d p o t a s s i u m h y d r o x i d e were p u r c h a s e d from M e r c k , D a r m s t a d t a n d s o d i u m c a r b o x y m e t h y l c e l l u l o s e from F l u k a F e i n c h e m i k a l i e n G m b H , N e u - U l m .

D [ c m2/ s ]

1,200

E - 0 7 -

1. 1 0 0 E - 0 7 - j •

1,000

E - 0 7 - /

9,000 E - 0 8 - / 8,000 E- 0 8 - /

7000E-08-*

6,000 E- 08-' 1 1 1 1 1 1 1 r -

5

10 20

3 0 4 0 P G

Sic

F i g . 3. Penetrated a m o u n t o f 1 i n dependence o f P G content w i t h i n 200 m i n P i g . 5. P a r t i t i o n coefficient o f 1 between vehicle a n d acceptor l i p i d

(5)

3.2. M e t h o d s

3.2.1. Solubility of \ in PG water mixtures

A series o f P G / w a t e r m i x t u r e s was prepared from 10 to 8 0 % P G in 1 0 % (w/w) increments. D r u g was a d d e d to each until a suspension formed, w h i c h was then s h a k e n for 24 h at 32 C + 1 C . T h e samples were centrifuged a n d the supernatant s o l u t i o n s were assayed for their d r u g content. T h e t e t r a z o l i u m blue m e t h o d for g l u c o c o r t i c o i d s was used.

3.2.2. Determination of partition behaviour

T o characterize the p a r t i t i o n b e h a v i o u r o f 1 between the s o l u t i o n - t y p e gels a n d the acceptor m e d i u m ( D D ) the penetration experiments were c a r r i e d out for a finite time (300 min). T h e d r u g content i n the m e m b r a n e s was then determined, a n d the p a r t i t i o n coefficient ( K ) c a l c u l a t e d a c c o r d i n g to N e r n s t :

aa qu

T h e f o l l o w i n g c o n d i t i o n s have to be taken into a c c o u n t : 1. n o n ideal, dilute s o l u t i o n s were used; a n d 2. the f o r m u l a t i o n excipients, e.q. P G , c o u l d penetrate into the acceptor m e d i u m .

3.2.3. Preparation of the gels

A suitable a m o u n t o f s o d i u m c a r b o x y m e t h y l c e l l u l o s e was m i x e d w i t h the a p p r o p r i a t e a m o u n t o f P G a n d the m i x t u r e made up w i t h distilled water. T h e gels were then a d d e d to the d r u g a n d stirred to a h o m o g e n o u s f o r m u l a t i o n .

3.2.4. In vitro membrane transport studies

T h e m u l t i l a y e r m e m b r a n e system used has been described p r e v i o u s l y [24, 25].

A defined a m o u n t o f the f o r m u l a t i o n (10 mg) was a p p l i e d to the acceptor system, w h i c h was attached i n a cell w i t h a fixed a p p l i c a t i o n area (4 c m2) . T h e acceptor system consists o f one l i p i d m e m b r a n e to m a i n t a i n a p p r o x i m a t i v e sink c o n d i t i o n s (acceptor l o a d i n g after c o m p l e t e a b s o r p t i o n of the d r u g :

1 10%). T h e experiments were c a r r i e d out sixfold at 32 C ± 1 C in a t e m p e r a t u r e - c o n t r o l l e d c h a m b e r . A t selected time intervals the m o d e l a p p a r a t u s was r e m o v e d from the c h a m b e r , the p e n e t r a t i o n cells were disassembled, the f o r m u l a t i o n r e m a i n i n g o n the exposed surface was r e m o v e d , a n d the m e m b r a n e s assayed for their content o f 1.

3.2.5. Extraction of the drug

T h e separated m e m b r a n e s were extracted w i t h 2 m l for each sample by s h a k i n g for 30 m i n .

3.2.6. Analytical method

T h e content o f 1 i n the v a r i o u s m e m b r a n e s of the m o d e l was assayed indirectly

x = 0 x =

F o r m u l a t i o n A c c e p t o r c ( x , t ) m ( t )

D

d c ( 0 , t ) , .

— = 0 c ( h , t ) = 0 d x t

f d c ( x , t ) m ( t ) = - D A —

d x d t

0

F i g . 6. S i n k m o d e l for d e s c r i b i n g the diffusional release o f a d r u g from t h i n film i n t o adjacent acceptor

by m e a s u r i n g a b s o r b a n c e after r e d u c t i o n o f t e t r a z o l i u m blue t h r o u g h the o x i d a t i o n o f the k e t o l structure of the g l u c o c o r t i c o i d in a l k a l i n e s o l u t i o n . T h e absorbance of the f o r m a z a n c o m p o u n d o b t a i n e d was measured at 525 n m .

3.2.7. Analysis of data

T h e results were expressed as plots of 1 c o n c e n t r a t i o n in the acceptor m e m b r a n e versus time. T h e statistical m o m e n t s o f each curve were calculated a c c o r d i n g to B r o c k m e i e r [26, 27]. A c c o r d i n g to the literature, the A U C can be used for c h a r a c t e r i z i n g the extent of d r u g penetration into systems such as excised h u m a n s k i n a n d the membranes used here [28, 29].

A d d i t i o n a l l y , the diffusivity o f the d r u g in each f o r m u l a t i o n was calculated.

T h e o r e t i c a l values for the time-dependent mass o f d r u g in the acceptor m e m b r a n e were fitted by the N e l d e r - M e a d m e t h o d to the c o r r e s p o n d i n g e x p e r i m e n t a l l y determined values. T h e c a l c u l a t i o n was based o n a finite- difference m e t h o d [30] to a p p r o x i m a t e n u m e r i c a l l y the diffusion e q u a t i o n for the linear movement o f a d r u g w i t h constant diffusity, D . t h r o u g h a finite plane sheet: D c ( x , t )x x — c(x, t), = 0. where c(x. t) = c o n c e n t r a t i o n in f o r m u l a - tion, x = space c o o r d i n a t e , and t = time. T h e sink m o d e l used is illustrated in F i g . 6 a n d describes the diffusional release o f the d r u g from a t h i n film of f o r m u l a t i o n into an adjacent acceptor m e m b r a n e . T h e latter is taken to act as a sink, resulting i n : c(h. t) = 0. T h e flux of d r u g entering the acceptor m e m b r a n e . J, is equal to that l e a v i n g the f o r m u l a t i o n , i.e. J = d m (x. t) A d t |x h.

References

1 K a t z , M . ; P o u l s e n . B. J . : J . Soc. C o s m e t . 23, 565 (1972) 2 Idson, B . : J . P h a r m . Sei. 64, 901 (1975)

3 L i p p o l d , B . C . : A c t a P h a r m . T e c h n o l . 27, 1 (1981) 4 H o r s c h , W . : P h a r m a z i e 39. 598 (1984)

5 Ziegenmeyer, J . : P h a r m , unserer Zeit 15, 129 (1986)

6 S t ü t t g e n . G . : D i e H a u t als T r a n s p o r t o r g a n für Arzneistoffe, S. 1. Steinkopff V e r l a g , D a r m s t a d t 1990

7 L a n d m a n n , L . : P h a r m , unserer Zeit 20, 155 (1991)

8 F l y n n , G . L . ; Y a l k o w s k y , S. H . : J . P h a r m . Sei. 61, 839 (1972) 9 C o o p e r , E . R . : J . C o n t r o l l e d Release 1, 153 (1984)

10 G u y , R. H . ; C a r l s t r ö m , E . M . ; B u c k s , D . A . W . : H i n z , R. S.: J . P h a r m . Sei.

75, 968 (1986)

11 Y o u n g - H a r v e y , J . A . : Rae, 1. D . ; P i t m a n , I. H . : Int. J . P h a r m . 30, 151(1986) 12 J o h a n s e n , M . : M o l l g a a r d , B . ; W o t t o n , P. K . ; L a r s e n , C ; H o l l g a a r d , A . :

i b i d . 32, 199 (1986)

13 W a r a n i s . R. P . ; S l o a n . K . B . : J . P h a r m . Sei 76, 587 (1987)

14 A l - K h a m i s , K . ; D a v i s , S. S.; Hadgraft, J . : Int. J . P h a r m . 40, 111 (1987) 15 T o j o , K . ; C h i a n g , C . C ; C h i e n , Y . W . : J . P h a r m . Sei. 76, 123 (1987) 16 B u n d g a a r d , H . ; M o r k , N . ; H o l l g a a r d , A . : Int. J. P h a r m . 55, 91 (1989) 17 P r u s t r u p , J . ; F u l l e r t o n , A . ; C h r i s t r u p , L . ; B u n d g a a r d , H . : i b i d . 71,105(1991) 18 L o t h , H . : i b i d . 68, 1 (1991)

19 Asche, H . ; B o t t a , L . ; Rettig, H . ; W e i r i c h , E . G . : A c t a P h a r m . H e l v . 60, 232 (1985)

20 S l o a n , B . K . ; Siver. K . G . ; K o c h , A . M . : J . P h a r m . Sei. 75, 744 (1986) 21 N a n n i p i e r i , E . ; C a r e l l i , V . ; D i C o l o , G . ; G i o r g i , I.; Serafini, M . F . : Int. J .

C o s m e t . Sei. 12, 21 (1990)

22 Hadgraft, J . : P h a r m . Int. 5, 252 (1984)

23 R i t s c h e l . W . A . ; S p r o c k e l . O . L . : D r u g s of today 24, 613 (1988) 24 F ü r s t , W . ; N e u b e r t , R . ; W i l d n e r , R . : P h a r m a z i e 42, 452 (1987) 25 N e u b e r t , R . ; W o h l r a b , W . : A c t a P h a r m . T e c h n o l . 36, 197 (1990) 26 B r o c k m e i e r , D . : A r z n e i m . - F o r s c h . 31, 746 (1981)

27 I d e m : A c t a P h a r m . T e c h n o l . 32, 164 (1986)

28 N e u b e r t , R . ; Bendas, C ; W o h l r a b , W . ; G i e n a u , B . ; F ü r s t . W . : Int. J . P h a r m . 75, 89 (1991)

29 N e u b e r t , R . ; Bendas, B . ; W o h l r a b , W . : E u r . J . P h a r m . B i o p h a r m . 38. 11 (1992)

30 C r a n k , J . ; N i c o l s o n , P. A . : P r o c . C a m b . P h i l . Soc. 43, 50 (1947) 31 L i p p o l d , B . C . : A c t a P h a r m . T e c h n o l . 27, 1 (1981)

32 Bendas, B . ; N e u b e r t , R . : i n p r e p a r a t i o n

33 Patel, A . R . ; V a s a v a d a , R. C : P h a r m . Res. 5, 116 (1988)

34 P o u l s e n , B . J . ; Y o u n g , E . ; C o q u i l l a , V . ; K a t z , M . : J . P h a r m , sei. 57,928 (1968) 35 O s t r e n g a , J . ; Steinmetz, C ; P o u l s e n , B . : i b i d . 60, 1175 (1971)

Received September 4, 1992 Prof. D r . R e i n h a r d N e u b e r t W e i n b e r g w e g 15 4010 H a l l e Saale

Referenzen

ÄHNLICHE DOKUMENTE

For this reason, I re-calculate my probit and tobit regressions with a sociability indicator depending on other three activities, and find that the positive significant influence of

This can be encapsulated in our finding that, averaging over the eight Lok Sabha elections between 1989 and 2014, in order to win 200 seats in the Lok Sabha the INC would have had

The result shows that a percent increase in population has significantly reduce infrastructure investment on energy and telecommunication, as well as

But FDI inflow affects by some important determinants like as GDP per capita, average growth rate of GDP, foreign reserve, gross capital formation, human capital, terms of trade

We study this relationship for a sample of Spanish manufacturing firms between 1990 and 2005, estimating a model with four equations: participation in technological

With regard to the effect of fall in the prices on the decision making process of travel after a terrorist attack, the results revealed that the larger the probability of

By analyzing and interpreting the data stored in databases, important information can result and this information will lead to decisions that will adapt the

En los próximos apartados se revisa la teoría económica y otros tipos de estudios empíricos más específicos para tratar de obtener conclusiones más concretas sobre qué tipo de