• Keine Ergebnisse gefunden

GEORG SPEYER HAUS INSTITUT FÜR TUMORBIOLOGIE UND EXPERIMENTELLE THERAPIE

N/A
N/A
Protected

Academic year: 2022

Aktie "GEORG SPEYER HAUS INSTITUT FÜR TUMORBIOLOGIE UND EXPERIMENTELLE THERAPIE"

Copied!
70
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

GEORG SPEYER HAUS INSTITUT FÜR TUMORBIOLOGIE UND EXPERIMENTELLE THERAPIE

2021

Annual Report Georg-Speyer-Haus

Zelluläre Kommunikation in der Stammzellnische Zell-Zell Interaktionen im Tumorstroma Experimentelle Therapie

(2)

Die Grundfinanzierung des Georg-Speyer- Hauses wird vom Bundesministerium für Gesundheit und dem Hessischen Ministerium für Wissenschaft und Kunst getragen.

The basic funding of the Georg-Speyer-Haus is provided by the Federal Ministry of Health and the Ministry of Higher Education, Research and the Arts of the State of Hessen.

(3)

Forschen für das Leben

Research for Life

(4)
(5)

7 11 13 14 16

18 22 26

28 32 36 40 44 46

50 52

56 61 63 67 68

Inhalt

Vorwort

Das Georg-Speyer-Haus Organisationsstruktur Highlights 2021

Zelluläre Kommunikation in der Stammzellnische Cellular Communication in the Stem Cell Niche Prof. Dr. D. Krause

Dr. H. Medyouf

Zell-Zell Interaktionen im Tumorstroma Cell-Cell Interaction in the Tumor Stroma PD Dr. M. C. Arkan

Dr. H. Farin Prof. Dr. F. R. Greten Dr. L. Sevenich

Experimentelle Therapie Experimental Therapy Prof. Dr. W. Wels Transgenic Core Phillip Grote Publikationen

Finanzen und Administration Service

Der Verein »Freunde und Förderer des Georg-Speyer-Hauses«

Zuwendungsgeber

Content

I

II

III

(6)
(7)

Introduction

nach den massiven Pandemie-bedingten Ein- schränkungen im vergangenen Jahr, war es uns möglich in diesem Jahr einen opus moderandi zu finden, der unter Einhaltung aller Hygienebe- stimmungen, einen konsolidierten allgemeinen Betrieb unserer Forschungsarbeiten ermöglichte.

Auch wenn dies zur Folge hatte, dass persönliche Kontakte weiterhin deutlich eingeschränkt waren, konnten zumindest unseren wissenschaftlichen Arbeiten und insbesondere die vielen exzellenten Drittmittel-geförderten Projekte wieder auf einem akzeptablen Niveau fortgeführt werden.

Zu unserer großen Freude war es uns möglich im Mai des Jahres allen MitarbeiterInnen des Hauses ein Impfangebot zu machen, welches auf große Akzeptanz gestoßen ist und im Folgenden deutliche Erleichterungen für das tägliche Miteinander am GSH erlaubte. Unser Dank gehört hier unseren Partnern des Universitätsklinikums, die dies ermöglicht haben.

Trotzdem verzichten wir auch weiterhin auf die Durch- führung unserer internen Seminarreihen und Vorträge externer Gäste in Präsenz und hoffen sehr, dass wir diese Veranstaltungen genau wie das traditionell stattfindende Auswahlsymposium für den Paul Ehrlich- und Ludwig Darmstaedter-Nachwuchspreis im nächsten Jahr wieder in gebührendem Rahmen in unserem Hörsaal durchführen können. Die zweite internationale Frankfurt Cancer Conference, welche im September als gemeinsame Veranstaltung der onkologischen Verbünde Frankfurts im Hybrid- Format am Campus Westend durchgeführt werden konnte, war in jeder Hinsicht ein vielversprechendes Highlight des Jahres, das uns aber auch vor Augen geführt hat, wie wichtig der persönliche Austausch für unsere tägliche wissenschaftliche Arbeit ist.

After the massive pandemic-related restrictions in the past year, we were able to find an opus moderandi this year that enabled a consolidated general operation of our research work in compliance with all hygiene regulations. Even if this meant that personal contacts continued to be significantly restricted, at least our scientific work and in particular the many excellent third-party funded projects could be continued at an acceptable level.

To our great pleasure, we were able to offer all of our employees a vaccination in May, which was met with great acceptance and which subsequently made it easier for everyone to work together on a daily basis at the GSH. Our thanks go to our partners at the University Hospital who made this possible.

Nevertheless, we continue to refrain from holding our internal seminar series and lectures by external guests in attendance and very much hope that we will be able to hold these events as well as the traditional selection symposium for the Paul Ehrlich and Ludwig Darmstaedter Junior Award next year in an appropriate setting in our lecture hall. The second international Frankfurt Cancer Conference, which was held in September as a joint event of Franfurt’s oncol- ogy associations in a hybrid format on the Westend campus, was a promising highlight of the year in every respect, but it also showed us how important personal exchange is for our daily scientific work.

Dear Reader,

dear friends of the Georg-Speyer-Haus, Liebe Leserinnen und Leser,

liebe Freunde des Georg-Speyer-Hauses,

Florian R. Greten | Direktor Georg-Speyer-Haus

Institut für Tumorbiologie und experimentelle Therapie Paul-Ehrlich-Str. 42 – 44 D-60596 Frankfurt / M.

Tel. (069) 63395-232 Fax (069) 63395-184 greten@gsh.uni-frankfurt.de

(8)

Wir freuen uns sehr, dass wir mit Dr. Phillip Grote die Leitung unserer transgenen Core Facility in diesem Sommer außerordentlich kompetent neu besetzen konnten und so die Kontinuität dieser exzellenten Ein- heit aufrechterhalten konnten und das methodische Angebot zukünftig sogar noch erweitern können.

Für unsere steten Bemühungen Beruf, Familie und Privatleben erfolgreich zu vereinbaren, haben wir in diesem Jahr das Zertifikat des audits berufundfamilie der Gemeinnützigen Hertie-Stiftung erhalten, welches uns bei der Umsetzung unserer strategischen Ziele in den kommenden Jahren unterstützen wird. Im Zuge dieser Bemühungen freuen wir uns sehr, dass uns das Uni- versitätsklinikum eine Nutzung der Kindertagesstätte ab dem kommenden Jahr in Aussicht gestellt hat.

Darüber hinaus hat das GSH in diesem Jahr die Charta der Vielfalt unterzeichnet. Hierbei handelt es sich um eine Initiative zur Förderung von Vielfalt in Unternehmen und Institutionen unter der Schirmherrschaft von Bundeskanzlerin Angela Merkel. Mit der Unterzeichnung der Charta der Vielfalt, setzt das Georg-Speyer-Haus ein klares Zeichen für Vielfalt und Toleranz in der Arbeitswelt und signalisiert die Wertschätzung aller MitarbeiterInnen unabhängig von Alter, ethnischer Herkunft und Nationalität, Geschlecht und geschlechtlicher Identität, körperlichen und geistigen Fähigkeiten, Religion und Weltanschauung, sexueller Orientierung und sozialer Herkunft.

Mit Spannung sehen wir dem kommenden Jahr entgegen. Zum einen hoffen wir wie oben erwähnt unsere Seminarreihe wieder aufnehmen zu können. Zum anderen stehen Begutachtungen verschiedener wissenschaftlicher Verbundprojekte an, so zum Beispiel der Antrag für die zweite Förderperiode des LOEWE-Zentrums FCI im Herbst 2022. Schon jetzt laufen die Vorbereitungen hierfür auf Hochtouren. Im Oktober fand der Rhein-Main Cancer Retreat in Königstein statt und die aktuellen Projekte des FCI wurden vom internationalen wissenschaftlichen Beirat evaluiert und sehr positiv bewertet, so dass wir uns darauf freuen, mit diesem positiven Feedback in den kommenden Monaten einen überzeugenden Antrag auszuarbeiten.

We are very pleased that we were able to recruit Dr. Phillip Grote as our new Head of our transgenic core facility (TCF) this summer. He is extraordinarily competent enabling us to maintain the continuity of this excellent unit and even expand the methodologi- cal range in the future.

For our constant efforts to successfully combine work, family and private life, we received the certificate of the audit berufundfamilie of the non-profit Hertie Foundation this year, which will support us in the implementation of our strategic goals in the coming years. In the course of these efforts, we are very pleased that the University Hospital has offered us the prospect of using the daycare center starting next year.

In addition, the GSH signed the Diversity Charter this year. This is an initiative to promote diversity in companies and institutions under the patronage of Chancellor Angela Merkel. By signing the Diversity Charter, the GSH is sending a clear signal for diversity and tolerance in the working world and signals the appreciation of all employees regardless of age, ethnic origin and nationality, gender and gender identity, physical and mental abilities, religion and worldview, sexual orientation and social origin.

We look forward to the coming year with excitement.

On the one hand, as mentioned above, we hope to be able to resume our series of seminars. On the other hand, assessments of various scientific collaborative projects are pending, for example the application for the second funding period of the LOEWE Center FCI in fall 2022. Preparations for this are already in full swing. In October the Rhein-Main Cancer Retreat took place in Königstein and current projects of the FCI were evaluated and rated very positively by the international scientific advisory board.

With this positive feedback we are looking forward to draft a convincing application in the coming months.

Introduction

Florian R. Greten, Direktor

(9)

Introduction

(10)
(11)

Die Stiftung privaten Rechts „Chemo- therapeutisches Forschungsinstitut Georg-Speyer-Haus“ wurde 1904 in Frankfurt am Main gegründet, um eine Forschungsstätte für Paul Ehrlich, den ersten Direktor des Hauses, zu schaffen.

Die Stiftungsverfassung bestimmt als Zweck der Stiftung die wissenschaftliche Forschung auf den Gebieten der Chemo- therapie und verwandter Wissenschaften, die dem Fortschritt der Biomedizin dienen.

Es werden ausschließlich und unmittelbar gemeinnützige Zwecke verfolgt.

Die laufenden Geschäfte des heutigen Instituts für Tumorbiologie und experimentelle Therapie nimmt der Direktor wahr. Er ist in dieser Tätigkeit dem Stiftungsvorstand verantwortlich.

Das Georg-Speyer-Haus ist durch einen Kooperationsvertrag mit der Goethe- Universität Frankfurt verbunden.

Das Gebäude des Georg-Speyer-Hauses in der Paul-Ehrlich-Straße 42 – 44, 1906 eröffnet, wurde von der Stadt Frankfurt am Main zur Nutzung für Institutszwecke zur Verfügung gestellt. Der gesamte Gebäudekomplex wurde in den Jahren 1995 – 1997 aus Mitteln des Bundesmi-

nisteriums für Gesundheit und des Hessischen Ministeriums für Wissenschaft und Kunst saniert und modernisiert. Er umfasst eine Gesamtfläche von 4710 qm. Die Laboratorien sind für Arbeiten unter verschiedenen biologischen und gentechnischen Sicherheitsstufen 1 und 2 zugelassen.

The private foundation “Chemothera- peutisches Forschungsinstitut Georg- Speyer-Haus” (Chemotherapeutic Research Institute Georg-Speyer-House) was established in 1904 in order to provide a research institute for Paul Ehrlich, its first director. The constitution of the institute, originating from its foundation, defines its purpose as an establishment for scientific research in the field of chemotherapy and related sciences. It is an independent institution under public law which is exclusively engaged in non-profit work.

Today’s Institute for Tumor Biology and Experimental Therapy is headed by the Scientific Director who reports to the Board of the Foundation. The Georg- Speyer-Haus has a cooperative agreement with the Goethe University Frankfurt.

The Georg-Speyer-Haus is located in a building on Paul-Ehrlich-Str. 42- 44, which has been provided by the City of Frankfurt.

The building which was opened in 1906 was renovated in the years from 1995 – 1997 with support from the Federal Min- istry of Health and the Ministry of Higher Education, Research and the Arts of the State of Hessen. It comprises an area of 4710 m2. The laboratories are certified for work under different biological and gene technology safety regulations 1 and 2.

The Georg-Speyer-Haus

Research for Life

Forschen für das Leben

(12)

Das Georg-Speyer-Haus wird finanziell vom Bundesministerium für Gesundheit (BMG) sowie vom Hessischen Ministerium für Wissenschaft und Kunst (HMWK) unterstützt. Zusätzlich stehen Mittel aus der Drittmittelförderung öffentlicher und privater Forschungsförderungsorganisatio- nen, aus Kooperationsvereinbarungen mit Unternehmen, aus Erträgen des Stiftungs- kapitals und aus Spenden zur Verfügung.

Als Partner im Universitären Centrum für Tumorerkran- kungen (UCT), dem LOEWE Zentrum für Zell-und Gen- therapie (LOEWE-CGT) sowie dem Deutschen Konsortium für translationale Krebsforschung (DKTK) führt das Georg-Speyer-Haus international kompetitive Grundlagenforschung auf dem Gebiet der Tumorbiologie unter besonderer Berücksichtigung des Tumormikromilieus durch. Durch die enge Kollaboration mit den klinischen Partnern der Goethe-Universität im Rahmen der oben genannten Verbünde werden die Ergebnisse aus der Grundlagenforschung in frühe klinische Studien überführt.

Darüberhinaus engagiert sich das Georg- Speyer-Haus in der Wissensvermittlung sowie in der Umsetzung neuer Einsichten in therapeutische Applikationen, Dienst- leistungen und Produkte und kann so als ein Zentrum der translationalen onkolo- gischen Forschung angesehen werden.

The Georg-Speyer-Haus is supported by the Federal Ministry of Health and the Ministry of Higher Education, Research and the Arts of the State of Hessen. Additional funding is provided by competitive grants, by cooperation agreements with companies, by returns from the investment of the founda- tion and by private donations.

As a strong partner within the University Cancer Center, the LOEWE Center für Cell and Gene Therapy as well as the German Cancer Consortium the Georg- Speyer-Haus is performing internationally competitive basic research in the field of tumor biology with a particular focus on the tumor microenvironment. In close collaboration with clinical partners at the Goethe-University, results are translated into early clinical trials and the Georg- Speyer-Haus can therefore be considered a center of translational oncology.

The Georg-Speyer-Haus

(13)

Organizational Structure

FORSCHUNGSBEREICH 3

Experimentelle Therapie Prof. Dr. W. Wels STIFTUNGSRAT

Vorsitzender G. Wiesheu Dr. U. Bollert Dr. C. Burtscheidt Prof. Dr. W. Müller-Esterl

Prof. Dr. S. Offermanns Dr. B. Schnieders Prof. Dr. S. Zeuzem

WISSENSCHAFTLICHER BEIRAT

Vorsitzender Prof. Dr. A. Radbruch Prof. Dr. M. van den Broek

Prof. Dr. T. Brunner Prof. Dr. K. L. Rudolph

Prof. Dr. M. Sibilia Prof. Dr. T. Tüting Prof. Dr. D. Tuveson DIREKTORIUM

Wissenschaftlicher Direktor Prof. Dr. F. R. Greten

Stellvertreter Prof. Dr. W. Wels

Kaufmännische Leiterin F. Hasslinger-Pajtler

ZENTRALE EINRICHTUNGEN Durchflusszytometrie

Histologie Präklinische Einheit Mikroskopie und invivo Imaging

Dr. S. Stein Dr. B. Ritter Dr. M. Ebert Dr. T. Alekseeva Transgenic Core Facility

Dr. Ph. Grote

VERWALTUNG

Personal, Finanzen, IT, Innendienst, Einkauf,

Arbeitssicherheit F. Hasslinger-Pajtler FORSCHUNGSBEREICH 1

Zelluläre Kommunikation in der Stammzellnische

Prof. Dr. D. Krause Dr. H. Medyouf

FORSCHUNGSBEREICH 2

Zell-Zell Interaktionen im Tumorstroma PD Dr. M.C. Arkan

Dr. H. Farin Prof. Dr. F. R. Greten

Dr. L. Sevenich

Hygiene- und Labor- management

H. Kunkel

(14)

Highlights 2021

25.6. – 18.7.2021 Radevent „Gemeinsam gegen Krebs“

Die Deutsche Krebshilfe veranstaltete vom 25. Juni bis 18. Juli 2021 das Radevent

„Gemeinsam gegen Krebs“

mit dem Ziel, sich gegenüber Krebspatienten solidarisch zu zeigen und auf das Thema Krebs aufmerksam zu machen.

Das GSH stellte hierbei mit 25 Radfahrern das größte Team. Das GSH Bike Team hat gemeinsam 10.075 km

gesammelt. Platz 2 und 3 der Kilometer-Champion gingen an das Team. Gefeiert wurden die gefahrenen Kilometer bei einer Pasta Party. Die GSH Gruppen- und Verwaltungsleitung unterstütze die Spendenaktion durch eine Spende in Höhe von 1.075 Euro an die Deutsche Krebshilfe, zur Unterstützung der Wohltätigkeitsarbeit.

The German Cancer Aid orga- nized the fund raising event

“Together Against Cancer”

from 25.06.-18.07.2021 with the mission to show solidarity with cancer patients and to raise awareness for cancer. The Georg-Speyer-Haus formed the largest team with 25 cyclists und jointly collected 10.075 km and 2nd and 3rd place went to team members.

The collected kilometer were celebrated with a Pasta Party. The GSH group leaders and head of adminstration supported the fund raising by donating 1.075 Euro to the Deutsche Krebshilfe to support their charity.

(15)

Juni/Juli 2021 EM Tippspiel

Es gab eine rege Beteiligung beim EM Tippspiel und die Damen haben fast alle Preise abgeräumt, herzlichen Glückwunsch zum 1., 2. und 3. Preis.

EM prediction game June + July 2021:

There was a lively participation in the EM prediction game and the women won almost all prizes, congratulations on 1st, 2nd and 3rd prize.

Christmas 2020

Da wir im Jahr 2020 keine Weihnachtsfeier wegen Corona organisieren durften, haben ein paar „gute Geister“ allen Mitarbeiterinnen und Mitarbeitern eine Tüte mit Geschenken übergeben. DANKE noch mal dafür!!!

Since we were unfortunately not allowed to organize a Christmas Party in 2020 because of Corona, a few

“good ghosts” gave all employees a bag with gifts. THANK YOU again!

(16)
(17)

Zelluläre Kommunikation in der Stammzellnische

Cellular Communication in the Stem Cell Niche

Laboratories I

I

(18)

Bone marrow microenvironment Daniela Krause

Die Rolle des

Knochenmarksmikromilieus bei den Leukämien

The bone marrow microenvironment (BMM) is increasingly being considered as a novel target to augment existing therapies for haematological malignancies.

This is important, as the overall survival rate for all leukaemias in adults is only 44%, and leukaemic stem cells are rarely eradicated. Eradication of cancer stem cells in leukaemia or leukaemia stem cells, however, is thought to be important for cure of a cancer.

Based on our previous work our laboratory focuses on various pathways of interaction of leukaemia cells with their surrounding bone marrow microenvironment in an effort to eventually target these interactions and eradicate leukaemic stem cells (LSC). The extracellular matrix, the coagulation system, chemical factors and novel pathways of adhesion to the BMM, studied by various in vitro and in vivo modelling systems, as well as in vivo 2-photon based imaging (in collaboration with Prof. S. Dimmeler), hereby, form the basis of our studies.

The role of the bone marrow microenvironment in leukaemia

Mitarbeiter Robel Belay Dr. Jimena Bravo Bianca Gregorz Fabian Höller Christina Karantanou Dr. Rahul Kumar Dr. Pablo Llavona Dr. Valentina Minciacchi Wahyu Minka Celina Reiter Raquel Soares Pereira Costanza Zanetti Gruppenleiterin

Daniela Krause Tel.: +49 69 63395-500 Fax: +49 69 63395-519 Krause@gsh.uni-frankfurt.de

leukaemia

bone marrow microenvironment pharmacological modulation

(19)

Bone marrow microenvironment Daniela Krause

Trotz verbesserter Therapien, z.B. in Form von Tyrosinkinaseinhibi- toren, liegt die 5-Jahres-Überlebensrate bei Erwachsenen für alle Leukämien bei nur 40%. Deshalb hat es sich unsere Arbeitsgruppe zur Aufgabe gemacht, neue Therapien, vor allem solche mit neuem Therapieansatz, zu entwickeln.

Wie bereits von uns und anderen Gruppen publiziert, kann eine gezielte Modulation des Knochenmarksmikromilieus (KMMM), dem Ort, wo eine Leukämie entsteht und voranschreitet, eine Ver- ringerung von leukämischen Stammzellen nach sich ziehen. Dies ist notwendig, denn leukämische Stammzellen können zu Thera- pieresistenz und Krankheitsrückfall führen. Das KMMM, welches leukämische Stammzellen vor der Chemotherapie „beschützen“

kann, besteht aus verschiedenen Zelltypen wie Osteoblasten, Osteoklasten, mesenchymalen Stammzellen, Endothelzellen, und der extrazellulären Matrix.

Wir haben gezeigt, wie spezifische Interaktionen von Leukämie- zellen mit der extrazellulären Matrix des KMMMs oder das Alter des KMMMs spezifisch den Krankheitsverlauf einer Leukämie beeinflussen kann. Ferner sind die Rolle des Blutgerinnungssystems im KMMM, chemische Faktoren im KMMM und qualitätskontrol- lierende Prozesse in den Nischenzellen des KMMMs der Fokus unserer Arbeitsgruppe.

In one project we studied the influence of the age of the bone marrow microenvironment on leukaemia progression. This is important, as B-cell acute lymphoblastic leukaemia (B-ALL) occurs most commonly in children, while chronic myeloid leukaemia (CML) is more frequent in adults. The myeloid bias of haematopoiesis in elderly individuals has been considered causative of these differences, but the age of the BMM is contributory. In fact, our study has shown that the age of the BMM influences the leukaemia phenotype, at least partially

via a certain cytokine, CXCL13, and its respective receptor, CXCR5. We demonstrated that high expression of CXCR5 may predict central nervous system relapse in paediatric B-ALL, offering novel avenues for treatment.

In another project we have shown that the natural anticoagulant system may influence leukaemia progression via breakdown of the extracellular matrix (ECM). Other proteins in the BMM may favour the establishment of a pro-tumorigenic environment,

which accelerates disease progression in acute myeloid leukaemia (AML).

Both pathways may be inhibited by a novel use of particular drugs for the treatment of leukaemia.

Bone remodeling, as it occurs during growth, fracture healing, but also on a daily basis, alters the physico-chemical composition of the BMM. We have shown that distinct changes of this composition influences leukaemia progression with the most profound changes close to the bone lining.

I

Mesenchymal stromal cells stained with DAPI (blue), syndecan 1 (green) and phalloidin (pink)

(20)

Bone marrow microenvironment Daniela Krause

Exciting results have shown that certain drugs which fine-tune the chemical milieu also heavily influence leukaemia stem cells.

All three projects have led to the discovery of innovative ways of targeting the BMM, which are to be tested in clinical trials in future.

In a fourth project we are investigating the role of lipid raft associated molecules for adhesion of leukaemia cells to the BMM. We have found that lipid raft-associated molecules play a prominent role for the engraftment of leukaemia cells, possibly via association with the adhesion molecule CD44.

Other projects in the laboratory are involved with quality control pathways in bone marrow niche cells, influencing leukaemia outcome, and the augmentation of the function of haematopoietic stem cells.

Given the current pandemic due to SARS-CoV-2 we have also initiated a project focusing on genetic determinants in the clinical course of infection with SARS-CoV-2 in collaboration with the German Red Cross and the Departments of Infectious Diseases, Virology and Bioinformatics at the Goethe University, funded by the

Goethe University’s Corona-Funds.

In summary, the laboratory focuses on the role of the different constituents of the BMM on the initiation, maintenance and progression of leukaemias in an attempt to develop novel therapies which can augment our existing armamentarium against this intractable disease.

Mesenchymal stromal cells stained with DAPI (blue) and CD63 (green)

Fluorescence imaging of mitochondria using MitoTracker (dye) in mesenchymal stromal cells.

The nuclei are stained with DAPI.

(21)

Bone marrow microenvironment Daniela Krause

Ausgewählte Publikationen

Zanetti C, Kumar R, Ender J, Godavarthy PS, Hartmann M, Hey J, Breuer K, Weissenberger ES, Minciacchi V, Karantanou C, Gu Z, Roberts KG, Metzler M, Stock W, Mullighan CG, Bloomfield CD, Filmann N, Bankov K, Hartmann S, Hasserjian RP, Cousins A, Halsey C, Plass C, Lipka DB, Krause DS. The age of the bone marrow microenvironment influences B-cell acute lymphoblastic leukemia progression via CXCR5-CXCL3. Blood. 2021 Aug 23:blood.2021011557

Verma D*, Zanetti C*, Godavarthy PS*, Kumar R, Minciacchi VR, Pfeiffer J, Metzler M, Lefort S, Maguer-Satta V, Nicolini FE, Burroni B, Fontenay M, Krause DS. Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-cell acute lymphoblastic leukemia. Leukemia. 2020 Jun;34(6):1540-1552

Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, Andreeff M, Krause DS. Bone marrow niches in haematological malignancies. Nat Rev Cancer, 2020, May;20(5):285-298.

Godavarthy PS, Kumar R, Herkt SC, Pereira RS, Hayduk N, Weissenberger ES, Aggoune D, Manavski Y, Lucas T, Pan K-T, Voutsinas JM, Wu Q, Müller MC, Saussele S, Oellerich T, Oehler VG, Lausen J, Krause DS. The vascular bone marrow niche influences outcome in chronic myeloid leukemia via the E-selectin - SCL/TAL1 - CD44 axis. Haematologica. 2020 Jan;105(1):136-147 Kumar R, Pereira R, Zanetti C, Minciacchi VR, Merten M, Meister M, Niemann J, Dietz MS, Rüs- sel N, Schnütgen F, Tamai M, Akahane K, Inukai T, Oellerich T, Kvasnicka HM, Pfeifer H, Nicolini FE, Heilemann M, Van Etten RA, Krause DS. Specific, targetable interactions with the microenviron- ment influence imatinib-resistant chronic myeloid leukemia. Leukemia. 2020, 34(8):2087-2101

*co-first authorship ... weitere Publikationen

finden Sie auf Seite 57

I

Immunofluorescence image (green) of Fatty acid binding protein 4 (FABP4) in mesenchymal stromal cells (MSC). Nuclei are stained with DAPI and the F-actin network is stained with phalloidin.

BMP1 staining of bone sections TGFbeta staining of bone sections

Other activities

We are also coorganizing the 23rd international scientific meeting on

“Chronic myeloid leukaemia” under the umbrella of the European School of Haematology. We are actively collaborating with pharma on research involved in the leukaemic bone marrow microenvironment.

(22)

Bone Marrow Microenvironment Hind Medyouf

Das Mikromilieu des Knochenmarks in Krebserkrankungen

Niche contributions to human myelodysplastic syndromes MDS are heterogeneous diseases that originate from clonally derived HSCs that acquire secondary mutations and gain competitive advantage over normal HSCs.

MDS mainly affect the elderly and are characterized by ineffective hematopoiesis with peripheral cytopenia and a high propensity to evolve to acute myeloid leukemia (AML). In some cases, MDS can progress from a precursor state referred to as clonal hematopoiesis of indeterminate potential (CHIP). CHIP individuals present no overt hematological manifestations but carry HSC clones with mutations (variant allele frequency > 2%) that are recurrently seen in MDS/AML patients. MDS progres- sion follows both linear and branching evolution paths, leading to tremendous intra and inter-individual heterogeneity (Mossner, Jann et al., 2016) that represent an additional challenge for therapeutic elimination as well as modeling in genetically engineered mouse models.

Importantly, both in CHIP and MDS, altera- tions in HSCs often do not fully explain the increased fitness that progressively results in the clonal dominance of the mutant

The Bone Marrow Microenvironment in Human Cancers

Bone marrow microenvironment Leukemia/Metastasis

Immune escape/Immunotherapy

Mitarbeiter Arnaud Descot

Cristóbal Fernández Santiago Alexander Schäffer

Sophia Thevissen Irene Tirado-Gonzalez Ioanna Tsoukala Maresa Weitmann Gruppenleiterin

Hind Medyouf Tel.: +49 69 63395-540 Fax: +49 69 63395-297 medyouf@gsh.uni-frankfurt.de

Although cancer is driven by cell intrinsic events, it is well-recognized that the tumor stroma contributes to this multistep process. The bone marrow microenviron- ment (BMME) is a complex ecosystem in which hematopoietic stem cells (HSCs) interact with a plethora of stromal cells (immune, endothelial, mesenchymal, neuronal) that modulate their behavior and ensure HSC’s ability to provide a lifelong supply of mature blood cells.

Whenever the stroma or hematopoietic cells are altered, this can result in hematopoietic damage. Our lab is actively exploring the specific mechanisms by which the stroma contributes to hemato- logical cancers, with a particular emphasis on its contribution to immune evasion and impact on cellular dynamics and clonal competition in pre-leukemic syndromes, referred to as myelodysplastic syndromes (MDS). Additionally, building on the knowledge gained in the context of hema- tological cancers, we began to explore the interplay between the BMME and disseminated tumor cells (DTCs) from solid cancer entities, particularly breast cancer.

(23)

Bone Marrow Microenvironment Hind Medyouf

Das Mikromilieu des Knochenmarks stellt ein komplexes Ökosys- tem dar in dem eine Vielzahl unterschiedlicher Zelltypen wichtige Aufgaben in der Aufrechterhaltung der Hämatopoese spielen.

Allerdings können diese Zelltypen krankheitsbedingte Verände- rungen aufweisen oder physiologische Funktionen werden durch Tumorzellen zweckentfremdet, um deren Entstehung und Ausbrei- tung zu fördern (Medyouf, CSC, 2014, Medyouf, Blood, 2017). Das Forschungsziel unserer Arbeitsgruppe besteht in der funktionellen Analyse des Einflusses der Gewebsumgebung des Knochenmarks auf das Verhalten von Tumorzellen im Kontext von Blutkrebs sowie Metastasen solider Tumorarten. Unsere Arbeit stützt sich hierbei auf die Hypothese, dass die Aufklärung der Mechanismen, durch die die Knochmarks-Mikroumgebung das Verhalten der Tumorzel- len beeinflusst, einen entscheidenden Beitrag zur Identifizierung neuartiger therapeutischer Ziele innerhalb der Knochenmarks- nische beiträgt und Grundlagen zur Entwicklung verbesserter Behandlungsmöglichkeiten schafft.

Wir verwenden unterschiedliche “Omic“-Methoden und Patienten- material, um die wechselseitigen Interaktionen zwischen Tumor- zellen und Nischzellen zu analysieren. Ein besonderer Fokus wird hierbei auf die Rolle von Endothel-, Mesenchym- und Immunzellen gesetzt. Funktionelle und translationale Studien werden an einem breiten Spektrum experimenteller Systeme durchgeführt. Diese umfassen z.B. syngene Mausmodelle, xenotransplantierte Modelle ausgehend von Patientenmaterial (Tirado-Gonzalez, Leukemia, 2018) und humanisierte 2D und 3D Modelle der Knochenmarks- nische, die kürzlich in unserem Labor etabliert wurden (Schäffer et al., unpublished). Wir sind davon überzeugt, dass Therapien, die gezielt gegen Funktionen der Tumormikroumgebung gerich- tet sind, einen wichtigen Teil der Bemühungen zur Etablierung verbesserter Therapieansätze darstellen und uns dem Ziel der Krebsprävention oder gar Heilung näherbringen.

HSCs. Therefore, one of our projects is exploring whether the progressive clonal dominance of mutant HSCs stems from a niche-directed competitive advantage that may (i) confer increased fitness and self- renewal of the mutant HSCs per se and/or (ii) impose a selective disadvantage of the non-mutated HSCs in the altered environ- ment (Figure 1). These questions are being addressed using patient-derived xeno- grafts in genetically engineered models with niche alterations that recapitulate those associated with physiological aging, as well as state-of-the-art 3D Human

Organotypic Marrow Environments (3D HOMEs), in which human HSCs can be studied in multicellular and fully human engineered systems that are amenable to experimental manipulation. Building on our previous work that demonstrated the essential role of disease-associated mesenchymal niche cells in MDS (Medyouf, 2014), another project is using omics approaches to interrogate the reciprocal crosstalk between niche and MDS cells and unravel the molecular mediators by which MDS cells turn their environment into a self-reinforcing one.

Understanding and targeting these niche contributions to MDS represents a major focus in our lab (Medyouf, 2017). Our projects are supported by collaborations with clinical partners and funds from the European Research Council, the Marie Skłodowska-Curie Actions and the German Cancer Consortium.

I

Figure 1.

Schematic view depicting clonal evolution in MDS and potential niche contributions.

(24)

Immune evasion in

hematological malignancies Hematological malignancies are poorly immunogenic and devastating blood cancers that excel at immune evasion and are frequently refractory to adaptive checkpoint therapy. Acute leukemia in particular, is the leading cause of cancer-related deaths in children and is an appalling clinical challenge in adults and elderly patients. Treatment strategies are largely based on intensive chemotherapy

and targeted therapy in specific disease subtypes, but resistance remains a leading cause of death. Although new immunotherapeutic modalities (e.g. CAR-T cells) have raised hope for a subset of leukemia patients, both cell intrinsic (e.g.

antigen loss) and extrinsic events (e.g.

immune suppressive microenvironment) drive treatment failure and resistance. In this context, we are exploring novel strategies that could enhance the engagement of innate immune cells (myeloid cells, NK cells)

with the aim to potentiate the early steps of the “immunity cycle” (Chen & Mellman, 2013) and improve the immune sensing of the leukemic cells and/or the priming of downstream effector cells. In doing so, we recently discovered that leukemia cells actively establish a suppressive environment by co-opting macrophages to activate a signaling axis that skews them towards a tumor promoting fate, namely the GAS6/AXL axis. Importantly, we found that targeting AXL (inhibitor or ablation in macrophages) not only lifts the barriers towards effective anti-leukemic immunity (Figure 2) but also elicits a potent response to adaptive checkpoint therapy (Tirado-Gonzalez, Descot et al., 2021). This work puts AXL on the emerging list of promising myeloid-centered immunotherapeutic targets that could improve efficacy of current therapeutic strategies. Additional work on this topic is underway, with support from the German Cancer Aid, the German Cancer Foundation and the European Research Council.

Bone Marrow Microenvironment Hind Medyouf

Figure 2.

AXL ablation in macrophages elicits leukemic clearance. Representative IHC analysis depicting disease burden (brown = GFP+ Leukemia) in mice with AXL proficient (Axlf/f) or AXL deficient (Csf1r-Cre+ Axlf/f) macrophages, challenged with GFP+ Philadelphia-chromosome positive B-ALL.

(25)

Role of ECM-producing stromal cells in bone metastatic progression Despite substantial advances in the treatment of primary tumors, disseminated disease remains the major source of cancer-related deaths and a significant clinical hurdle for the management of patients with solid tumors. Bone is one of the major sites of metastasis in breast cancer (BC), along with brain and lung.

Breast cancer patients often show an indolent disease course, where their disseminated tumor cells (DTCs) presum- ably remain dormant for years (up to

decades) before reactivation and disease progression. DTCs detection at the time of diagnosis correlates with poor outcome.

Reciprocal crosstalk between DTCs and their niches is a dynamic process that is inevitably influenced by bone health. In this regard, it is important to note that age has been proposed to be an important risk factor for the development of overt bone metastasis. Our work is particularly focused on the role of mesenchymal stromal cells and how age-related dynamic changes in these cellular populations control the behavior of bone DTCs. Our goal is to

gain the necessary knowledge to devise new therapeutic strategies that could either (i) prevent the overt outgrowth of metastasis and/or (ii) sensitize bone homing DTCs to current treatments. This research line makes extensive use of PDX models and our 3D HOMEs system (Figure 3), and is supported by funding from the German Research Foundation.

Bone Marrow Microenvironment Hind Medyouf

... weitere Publikationen finden Sie auf Seite 57

I

Ausgewählte Publikationen

Tirado-Gonzalez I*, Descot A*, Soetopo D*, Nevmerzhitskaya A, Schäffer A, Kur IM, Czlonka E, Wachtel C, Tsoukala I, Müller L, Schäfer AL, Weitmann M, Dinse P, Alberto E, Buck MC, Landry JJ, Baying B, Slotta- Huspenina J, Roesler J, Harter PN, Kubasch AS, Meinel J, Elwakeel E, Strack E, Quang CT, Abdel-Wahab O, Schmitz M, Weigert A, Schmid T, Platzbecker U, Benes V, Ghysdael J, Bonig H, Götze KS, Rothlin CV, Ghosh S, Medyouf H.

AXL Inhibition in Macrophages Stimulates Host-versus-Leukemia Immunity and Eradicates Naïve and Treatment-Resistant Leukemia. (2021) Cancer Discov. Jun 8. doi:10.1158/2159-8290.CD-20-1378.

*Equal contribution

Tirado-Gonzalez I, Czlonka E, Nevmerzhitskaya A, Soetopo D, Bergonzani E, Mahmoud A, Contreras A, Jeremias I, Platzbecker U, Bourquin JP, Kloz U, Van der Hoeven F, Medyouf H.

CRISPR/Cas9-edited NSG mice as PDX models of human leukemia to address the role of niche-derived SPARC.

(2018) Leukemia. Apr;32(4):1049-1052. doi: 10.1038/leu.2017.346. Epub 2017 Dec 6.

Medyouf H.

The microenvironment in human myeloid malignancies: emerging concepts and therapeutic implications.

(2017) Blood. Mar 23;129(12):1617-1626. doi: 10.1182/blood-2016-11-696070. Epub 2017 Feb 3.

Mossner M, Jann JC, Wittig J, Nolte F, Fey S, Nowak V, Obländer J, Pressler J, Palme I, Xanthopoulos C, Boch T, Metzgeroth G, Röhl H, Witt SH, Dukal H, Klein C, Schmitt S, Gelß P, Platzbecker U, Balaian E, Fabarius A, Blum H, Schulze TJ, Meggendorfer M, Haferlach C, Trumpp A, Hofmann WK, Medyouf H*, D. Nowak*.

Mutational hierarchies in myelodysplastic syndromes dynamically adapt and evolve upon therapy response and failure. (2016) Blood. Sep 1;128(9):1246-59. doi: 10.1182/blood-2015-11-679167. Epub 2016 Jun 6.

*Co-senior and co-corresponding authors.

Figure 3.

Schematic view of the 3D HOMEs used to study reciprocal crosstalk between human HSCs/DTCs and the bone marrow niche accompanied by a representative image depicting human breast cencer cells (GFP) interacting with vessel like structure (tdTomato hEC = Red) and stromal cells (aSMA = white).

(26)
(27)

Zell-Zell Interaktionen im Tumorstroma

Cell-Cell Interaction in the Tumor Stroma

II

Laboratories II

(28)

Diet, Energy Metabolism, and Cancer Melek Canan Arkan

Diät,

Energiemetabolismus und Krebs

Diet is shaped by multiple diverse factors such as culture, nutritional knowledge, price, availability, taste, and convenience.

Given the reciprocal interaction between host and environmental factors during carcinogenesis, food consumption is becoming critical. Due to the distinct shifts in agriculture and changes in crops in the last decades, food may have a pivotal role in aggravating disease. Our research aims at delineating how changing diet is associated with cancer initiation and progression in the pancreas and intestine at a molecular and cellular level. Using preclinical models as well as clinical samples, we aim at defining derange- ments in host, microbial, and tumor energy metabolism in order to define whether there are vulnerabilities that can be targeted during disease or therapy and if customizing diet may eventually pave the way for individual-based interventions.

Diet, Energy Metabolism, and Cancer

Metabolic Derangements during Cancer Diet, Microbiome, and Cancer

Modeling Host-Microbiome Interactions in vitro Gruppenleiterin

Melek Canan Arkan Tel.: +49 69 63395-600 Fax: +49 69 63395-297 arkan@med.uni-frankfurt.de

Mitarbeiter Asude Callak Kirisözü Matthias Schewe Anna Zinoveva

(29)

Diet, Energy Metabolism, and Cancer Melek Canan Arkan

Die Ernährung wird von vielen verschiedenen Faktoren wie Kultur, Ernährungswissen, Preis, Verfügbarkeit, Geschmack und Bequemlichkeit geprägt. Angesichts der Wechselwirkungen zwi- schen Wirts- und Umweltfaktoren während der Kanzerogenese, wird der Nahrungsmittelkonsum immer kritischer. Aufgrund der deutlichen Verschiebungen in der Landwirtschaft und der Veränderungen bei den Nutzpflanzen in den letzten Jahrzehnten könnte der Nahrungsmittelkonsum eine entscheidende Rolle bei der Verschlimmerung von Krankheiten spielen. Unsere Forschung

zielt darauf ab, auf molekularer und zellulärer Ebene zu beschrei- ben, wie eine veränderte Ernährung mit der Krebsentstehung und dem Fortschreiten von Krebs in Bauchspeicheldrüse und Darm verbunden ist. Mit Hilfe präklinischer Modelle und klinischer Proben wollen wir Störungen im Wirts-, Mikroben- und Tumor- energiestoffwechsel definieren, um festzustellen, ob es Schwach- stellen gibt, die während der Erkrankung oder Therapie gezielt angegangen werden können, und ob eine angepasste Ernährung schließlich den Weg für individuelle Interventionen ebnen kann.

II

N

T Clinical/preclinical models

Technology platforms

Metabolic profiling Bacterial Genome Glycobiome in vivo imaging Metabolome

Metabolic analyzer NGS Glycan analyzer MRI NMR

Disease Therapy

Figure 1.

Through technology platforms we currently established, alterations in metabolism during disease and therapy using clinical samples or preclinical models are under investigation.

Bioprinting

3D Bioprinter

(30)

Diet, Energy Metabolism, and Cancer Melek Canan Arkan

Metabolic Derangements during Cancer

Cancer is marked by dysregulation of the signaling pathways that orchestrate proliferation, cell death, tumor-promoting inflammation and energy metabolism.

Our studies focus on elucidating the host and tumor energy metabolism, delineating the critical alterations that take place during disease initiation and progression, and targeting the metabolic

vulnerability of tumor cells genetically or pharmacologically in relevant mouse models, which may have a diagnostic value in pancreatic and intestinal cancer and can impact therapy response. Using mouse- or human-derived organoids as in vitro model system, we compare relevance to primary tumor tissue, characterize the metabolic potentials, and eventually use them as a tool to target vulnerabilities in energy metabolism.

Figure 2.

Using preclinical models, derangements in bioenergetic pathways during tumor development and therapy are investigated in order to define and target vulnerabilities, which may set the stage for future drug discovery for therapeutic interventions.

Diet, Microbiome, and Cancer Human gut is inhabited by billions of bacteria contributing majorly to the regulation of metabolic functions and immune homeostasis. Given microbiota composition and functional profiles shape susceptibility to cancer under deranged metabolism, the dynamics of bacterial community is critical. Nutrition can directly or indirectly modulate microbiome and play a decisive role in disease outcome.

Our studies aim at unravelling the impact of varying dietary intake on microbiota structure and function during cancer and therapy response. We elucidate whether precision nutrition can pave the way for individual-based interventions in cancer by regulating microbiome and metabolism.

OCRECAR

Metabolic

Profiling Treatment

response

Metabolic profile-guided therapy Biobank

(31)

Modelling Host-Microbiome interactions in vitro

Many links of microbiota to cancer remain only correlative due to lack of modeling host-microbiome connections. This underlies the critical and urgent need for sophisticated in vitro model systems to address the issue, which will help not only to gain mechanistic insights into microbial effects on intestinal epithelium but also will lead to development of innovative therapeutic strategies targeting microbial-epithelial interactions. Therefore, our studies will include 3D Bioprinting as an innovative system to fabricate complex 3D interactions by coculturing intestinal organoids with microbes.

II

Ausgewählte Publikationen

Khasawneh J, Schulz MD, Walch A, Rozman J, Hrabe de Angelis M, Klingenspor M, Buck A, Schwaiger M, Saur D, Schmid RM, Klöppel G, Sipos B, Greten FR, and Arkan MC (2009)

‘Inflammation and mitochondrial β-oxidation link obesity to pancreatic cancer’.

Proc. Natl. Acad. Sci. USA; 106(9): 3354-9.

Schulz MD*, Atay C*, Heringer J*, Romrig FR, Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C, Salinas-Riester G, Böck A, Alpert C, Blaut M, Polson SC, Brandl L, Kirchner T, Greten FR, Polson SW and Arkan MC (2014).

‘High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity’.

Nature; 514(7523): 508-512.

Arkan MC (2016).

‘Cancer: Fat and fate of pancreatic tumours’.

Nature; 536(7615):157-8.

Arkan MC (2017).

‘The intricate connection between diet, microbiota, and cancer: A jigsaw puzzle’.

Semin. Immunol.; 32: 35-42.

... weitere Publikationen finden Sie auf Seite 58 Diet, Energy Metabolism, and Cancer

Melek Canan Arkan

Figure 4.

Mechanistic insights into host-microbiome interac- tions in vitro by modeling with extrusion-based 3D bioprinting using bioinks and scaffolds to provide physiological tissue-specific microenvironment.

16S rRNA sequencing/

metagenomics

Sampling Bioinformatics

Probiotics

Diet FMT

Figure 3.

Defining the alterations in microbiome and the effect of interventions designed to impact micro- bial community and function during disease and therapy is our ultimate goal.

3D Bioprinting

+

dECM

(32)

Microenvironmental crosstalk Henner Farin

Gewebsinteraktionen und Signalmechanismen im Darmkrebs

In Germany, colorectal cancer (CRC) is the third most common cancer type with 59,000 new diagnoses and 24,000 death cases each year. Two major classes can be distinguished: microsatellite stable (MSS,

~85%) and microsatellite instable tumors (MSI; ~15%). Although great advances have been achieved in tumor prevention, the therapeutic options for patients with advanced disease are limited. Main challenges are a high genetic heterogene- ity in CRC both at the inter-individual and intratumoral level. In addition, prognosis and therapy response are strongly influ- enced by the tumor microenvironment (TME). For most patients, the improved molecular understanding not yet led to more effective therapies. One limitation is the availability of predictive cancer models to test treatment strategies.

Patient-derived tumor organoids (PDTOs) have emerged as an important preclinical model for CRC. The organoid technol- ogy is based on expansion of primary epithelial cells in 3D Matrigel and defined growth factors. Originally developed for the mouse small intestine, the culture conditions have been adapted to support

Signaling crosstalk in the colon cancer microenvironment

3D organoid biobanks from human colorectal cancer Paracrine signaling mechanisms of the intestinal stem cell niche Targeting of the colon cancer microenvironment

Mitarbeiter Tahmineh Darvishi Christian Issing Alena Kress Constantin Menche Mohammed Mosa Benardina Ndreshkjana Patricia Schult-Dietrich Sara Stier

Gruppenleiter Henner Farin

Tel.: +49 69 63395-520 Fax.: +49 69 63395-297 farin@gsh.uni-frankfurt.de

(33)

growth of normal and tumor cells from human colon and other organs. PDTOs can be expanded and cryopreserved to establish ‘living biobanks’ that represent the tumor heterogeneity among and within patients. In clinical collaboration and supported by the Frankfurt Cancer Institute, we are generating a CRC organ- oid biobank as a research tool to study cancer phenotypes including drug sensitiv- ity and therapy resistance. In addition, our group develops genetic technologies for targeted modification of 3D organoids.

The Farin group is funded by the German Cancer Consortium (DKTK) and the German Cancer Research Center (DKFZ) at the Georg-Speyer-Haus Frankfurt. Research focus areas are:

I. Wnt signals in stem cell homeo- stasis and colon tumorigenesis Tissue homeostasis and regeneration depend on the capacity of stem cells to proliferate and produce differenti- ated offspring. In the past years, it has been recognized that signals from the surrounding ‘stem cell niche’ govern epithelial turnover and plasticity to meet the physiological demands. As a unique feature, small intestinal organoids contain functional stem cells that continuously generate differentiated cells in vitro. Using genetic and microscopic techniques, we have identified that the Wnt3 protein is secreted by niche cells, thereby inducing stem cells in close vicinity (Fig. 1; Farin et al., Nature 2016). The localized production and limited mobility of Wnt3 were found

to control epithelial patterning, providing a mechanism for tissue self-organization.

In addition, we investigate how Wnt signaling affects the tumor microenviron- ment. Using organoid transplantation models, we have recently identified that cancer-associated fibroblasts (CAFs) are dependent on the pathway activity. Tumor growth and invasion were differentially regulated by CAF subtypes in response to Wnt signals (Mosa et al., Cancer Research 2020), highlighting how stromal plasticity influences tumor malignancy.

Microenvironmental crosstalk Henner Farin

Unsere Arbeitsgruppe erforscht die zellulären und molekularen Vorgänge bei der Entstehung von Darmkrebs. Insbesondere inte- ressiert uns die Kommunikation verschiedener Zelltypen in der unmittelbaren Umgebung des Tumors, dem so genannten „Tumor- microenvironment”. Dabei nutzen wir „Organoide“, ein neuartiges dreidimensionales Gewebekultur-System. Organoide können unter definierten Kulturbedingungen aus humanen Darm-Stammzellen etabliert werden und bilden Darmepithel-spezifische Strukturen wie Krypten (Furchen) oder Villi (Zotten) aus. Dadurch können Stammzellen in einem Gewebe-ähnlichen Zustand expandiert werden, was die Untersuchung von molekularen Signalen in einer definierten Mikroumgebung ermöglicht. Durch Zugabe von Fibro- blasten, Gefäß- oder Immunzellen wird der Organkontext nach- gebildet. Im Mittelpunkt unserer Forschung steht die genetische

Analyse der Entstehung und Progression des Darm-Karzinoms. Im Rahmen einer klinischen Kollaboration am „Frankfurt Cancer Insti- tut“, werden dazu „lebende Biobanken“ von Patienten-ableiteten Tumor-Organoidlinien angelegt. Mit Hilfe von genetischen Techni- ken (CRISPR/Cas9) und Hochdurchsatzanalysen wie Genom-/RNA- Sequenzierung und Proteomanalyse versuchen wir zu verstehen wie onkogene Mutationen den Tumor-Phänotyp beeinflussen. Im Rahmen des EU-Projekts „EUbOPEN“ nutzen wir Organoid-Modelle zur pharmakologischen Testung als Ansatzpunkt für zukünftige Therapien beim Darmkrebs.

Unsere Gruppe am Georg-Speyer-Haus wird finanziert vom Deut- schen Konsortium für Translationale Krebsforschung (DKTK) und Deutschen Krebsforschungszentrum (DKFZ).

II

Figure 1.

Study of Wnt signals in self-renewal and dif- ferentiation.

Left: mouse intestinal organoids. Middle: localized production of Wnt3 by the stem cell niche (from Farin et al., Nature 2016). Right: Epithelial pattern- ing by the Wnt3 gradient (adapted from commen- tary by Gregorieff and Wrana, Cell Research 2016).

(34)

II. Functional genetic screening to identify CRC driver mutations Oncogenes and tumor suppressors show context-specificity that depends on the tumor type, the genetic background, and environmental factors. We aim to reca- pitulate this complexity using 3D organoid models. By genetic engineering of patient derived organoids using the CRISPR/Cas9 technology, we have recently studied the transcriptomic and proteomic changes

induced by known oncogenic mutations (Michels et al., J. Exp. Med. 2019). To facil- itate high-throughput genetic testing of many genes in parallel, we have recently developed a protocol for pooled CRISPR/

Cas9 library screening in human colon organoids (Fig. 2; Michels et al., Cell Stem Cell 2020). This technology permits an unbiased detection of genes that confer positive or negative growth advantages.

We have used custom-generated gRNA

libraries to identify tumor suppressors in vitro and after organoid xenotransplanta- tion. Furthermore, we have combined our library with unique molecular identifiers (UMIs) to study the consequences of gene perturbation on the clonal level. This powerful method for phenotypic charac- terization may in future allow to identify patient-specific tumor vulnerabilities.

Figure 2.

CRISPR/Cas9 library screening in 3D organoids in vitro and in vivo

Top: TGF-β resistance screen in vitro. Barcode sequencing after phenotypic selection (growth in presence of TGF-β). Bottom: Tumor suppressor screen in human organoids after subcutaneous xenotransplantation. Barcode sequencing in 3 tumor pools. (data from Michels et al., Cell Stem Cell 2020).

Microenvironmental crosstalk Henner Farin

in vitro in vivo

(35)

Microenvironmental crosstalk Henner Farin

Ausgewählte Publikationen

Farin HF*, Jordens I, Mosa MH, Basak O, Korving J, Tauriello DVF, de Punder K, Angers S, Peters PJ, Maurice MM, Clevers H.* (2016) Visualization of a short-range Wnt gradient in the intestinal stem-cell niche. Nature 530, 340–343

*co-correspondence

Schnalzger TE, de Groot MHP, Zhang C, Mosa MH, Michels BE, Röder J, Darvishi T, Wels WS, Farin HF. (2019)

3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO Journal; doi: 10.15252/embj.2018100928 Mosa MH, Michels BE, Menche C, Nicolas AM, Darvishi T, Greten FR, Farin HF.

A Wnt-induced phenotypic switch in cancer-associated fibroblasts inhi- bits EMT in colorectal cancer Cancer Research 2020;80, 5569–5582 Michels BE, Mosa MH, Streibl BI, Zhan T, Menche C, Abou-El-Ardat K, Darvishi T, Członka E, Wagner S, Winter J, Medyouf H. Bourtros M, Farin HF. (2020)

Pooled In Vitro and In Vivo CRISPR-Cas9 Screening Identifies Tumor Suppressors in Human Colon Organoids. Cell Stem Cell 26: 782-792.e7

... weitere Publikationen finden Sie auf Seite 58

III. Preclinical organoid models for cancer immunotherapy In CRC, cell-based immunotherapies could be beneficial, because immune checkpoint inhibitors alone are not effective in the majority of MSS patients.

Lymphocytes can be engineered to recognize tumor-associated antigens, however, the application of such chimeric antigen receptors (CAR)-modified cells has proven challenging in solid tumors.

The immunosuppressive tumor stroma in CRC prevents effector cell recruitment and function and we furthermore lack pre- dictive in vitro models. To address these challenges, we have recently developed a CAR-PDTO co-culture system (Fig. 3;

Schnalzger et al., EMBO Journal 2019).

In collaboration with Prof. Winfried Wels (Georg-Speyer-Haus), cytotoxic killing by CAR-modified NK-92 cells was measured in an enzymatic assay and by live imaging, providing a preclinical platform to evaluate efficacy and specificity CAR therapies.

As participant of the newly established EU-consortium ‘EUbOPEN’ (‘Enabling and unlocking biology in the OPEN’), we are currently developing a PDTO drug screen- ing platform. The consortium is funded by the Innovative Medicines Initiative (IMI2) and aims to generate an open access chemogenomic library of compounds cov- ering the ‘druggable human genome’.

In our contribution, we will develop

‘Human Tissue Assays’ for (immuno)- oncology in CRC and subsequently conduct high-throughput pharmacologic screens.

II

Figure 3.

3D model for CAR-mediated cytotoxicity using patient-derived CRC organoids

Combination of GFP/luciferase transgenic human colon cancer organoids (green) with CAR-cells (violet).

Monitoring of cytotoxic responses by video microscopy and enzymatic read-outs (adapted from Schnalzger et al., EMBO Journal 2019).

(36)

Cell Plasticity Florian Greten

Entzündungsprozesse im kolorektalen Karzinom

Despite profound research and improve- ments in therapies and preventive colon screenings, colorectal cancer (CRC) remains one of the three most frequent and lethal types of cancer in industrial nations. Next to a genetic predisposi- tion, known risk factors include age, inflammatory bowel diseases, as well as dietary factors and obesity. This strongly supports the notion, that carcinogenesis is not simply a genetic disease but rather a complex network of different cell types and soluble mediators, influenced by environmental factors. Malignantly transformed intestinal epithelial cells (IEC) form tumor initiating cells that closely interact with surrounding cells of the tumor microenvironment (TME) like fibroblasts, vascular or immune cells and with components of the intestinal micro- biome. Cytokines and growth factors, metabolites and even toxins from bacteria or fungi act on the developing tumor and form a unique micro milieu, that differs in different patients and even different tumors of the same patient, showing the need for personalized therapy.

Inflammatory pathways in intestinal carcinogenesis

Colorectal carcinogenesis Inflammatory processes in CRC

Targeting the tumor stroma to overcome therapy resistance Mitarbeiter

Verawan Boonsanay-Michel Fatih Ceteci

Claire Conche Yasamin Dabiri Christin Danneil Dominic Denk Esther Engel Kilian Kennel Kathleen Mohs Adele Nicolas Marina Pešić Valentina Petrocelli Birgit Ritter Eva Rudolf Gruppenleiter

Florian R. Greten, Direktor Tel.: +49-69-63395-232 Fax: +49-69-63395-184 greten@gsh.uni-frankfurt.de

(37)

Cell Plasticity Florian Greten

Der Fokus unserer Forschung liegt auf der funktionellen Analyse des Mikromilieus im Kolonkarzinom. Hierbei kommen relevante Maus- modelle zum Einsatz, welche die verschiedenen Arten und Stadien der kolorektalen Karzinogenese valide abbilden. Konditionale Maus- linien ermöglichen zudem die gezielte Aktivierung oder Deletion zu untersuchender Zielgene. Seit vielen Jahren beschäftigen wir uns mit der systematischen Analyse eines entzündlichen Mikromilieus im sporadischen und Entzündungs-assoziierten Kolonkarzinom. Entzün- dungen können sowohl Ursache als auch Folge der Tumorbildung sein, sowie durch therapeutische Maßnahmen induziert werden.

Sie können unter anderem Immunzellen in einen pro-tumorigenen Zustand polarisieren und die Dedifferenzierung post-mitotischer intestinaler Epithelzellen zu stammzellartigen Zellen initialisieren.

Zu allen Zeitpunkten beeinflussen entzündliche Prozesse somit die Karzinogenese und den Therapieerfolg. Wir haben es uns zur Aufgabe gemacht die zugrunde liegenden molekularen Prozesse und zellulären Interaktionen des Tumormikromilieus aufzudecken um diese schwerwiegende Erkrankung genauer zu verstehen und neuartige Therapiemöglichkeiten aufzudecken.

Despite the incredible complexity of colorectal carcinogenesis, there are certain common factors. The majority of CRC cases harbor alterations in the WNT pathway due to a loss of the tumor suppressor APC. This causes constitu- tive active β-catenin and the elevated expression of its target genes, responsible for proliferation and the development of adenomas. In the last few decades, the WNT signaling pathway with its receptors, adapter molecules and target genes have been deciphered which has given great insight into the molecular processes and levers that are taking place.

If APC is not affected, it’s generally a different component of the same pathway causing similar results (like a direct activating mutation of the proto-oncogene β-catenin). Further mutations in tumor suppressor or proto-oncogenes enable the transformation of benign adenomas to carcinomas, additionally promoted by the TME. The classical course of CRC and interacting factors are depicted in Figure 1.

II

Figure 1.

Course of tumorigenesis in colorectal cancer.

Accumulation of mutations cause progression from tumor initiating cell to metastatic carcinoma, supported by factors of the tumor microenvironment (TME).

CAF, cancer-associated fibroblast; CRC, colorectal cancer; DC, dendritic cell; ECM, extracellular matrix; IEC, intestinal epithelial cell; LOH, loss of heterozygosity; NK, natural killer; ROS, reactive oxygen species; TAM, tumor-associated macrophage; TAN, tumor-associated neutrophil.

Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nature. Nature Reviews Immunology. The inflammatory pathogenesis of colorectal cancer. Schmitt and Greten; 2021)

Referenzen

ÄHNLICHE DOKUMENTE

báå= sçêâçããÉå= îçå= ^êíÉå= ÇáÉ= OMMT= â~êíáÉêí= ïìêÇÉåI= áëí= ÑΩê= áå= ÇÉå= òìã= wÉáíéìåâí= ÇÉê=

Erst recht nicht der Wille der Angehörigen, die aus echter Lie- be Sterbehilfe fordern, aber viel- leicht auch aus Überdruß, Über- müdung oder finanziellen Überle- gungen, aus

Ist der Gemeinderat bereit, sich beim Kanton dafür einzusetzen, dass ebenso spontan wie bei der Tramlinie 8, auch auf den überaus stark frequentierten Riehener Bus- und

[r]

The focus was on the characterization of the expanded NK cells with respect to the expression levels of various functionally relevant surface molecules including chemokine

In order to assess whether such a cross-tolerance upon persistent NKG2D engagement also occurs in  vivo, we first determined surface expression levels of activating NK

[r]

Onkel Blinker denken Anker trinken flink schlank schenken Fink Bank blinken lenken winken Trinker