• Keine Ergebnisse gefunden

Design of Experiments with Spatially-Averaged Observations

N/A
N/A
Protected

Academic year: 2022

Aktie "Design of Experiments with Spatially-Averaged Observations"

Copied!
15
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOE QLJOTATIOK WITHOUT THE PERMISSION OF THE AUTHOR

DESIGN OF EXPERIkIENTS

WITH

SPATIALLY-AVERAGED OBSERVATIONS

VaLeri Fedorov

May 1986 W - 8 6 - 2 4

Working P a p e r s are interim r e p o r t s o n work of t h e I n t e r n a t i o n a l I n s t i t u t e f o r Applied Systems Analysis a n d h a v e r e c e i v e d only limited review. Views o r opinions e x p r e s s e d h e r e i n d o n o t n e c e s s a r i l y r e p r e s e n t t h o s e of t h e Institute o r of i t s National Member Organizations.

iNTEENATIONAi INSTITUTE FOR APFLIED SYSTEMS ANALYSIS 2361 Laxenburg. Austria

(2)

I a m v e r y g r a i e f u l t o P r o f . A.B. Kurzhanski f o r encouraging discussions a n d Lo A . T e d a r d s f o r h e r p a t i e n c e in editing a n d proofing t h e p a p e r .

(3)

PREFACE

This paper deals with experiments when only some average values (over time or space intervals) can be measured. This kind o f experiment can be encountered in t h e areas o f remote sounding o f atmosphere, spectrometry, sample surveys, ra- dioactivity analysis, e t c . In these cases, the optimal experimental design means that the choice o f intervals o f observation (sometimes r e f e r r e d t o as "windows") and corresponding shares o f totally available time ( o r expenses) will maximize the final experimental information.

Formalization o f t h e problem leads t o a special class o f optimization problems closely related t o the classical "Markov's moments" problem. This paper contains new analytical and numerical results, together with a short but illuminative survey o f previous researches.

P r o f . M.A. Antonovsky Environmental Program

(4)

CONTENTS

1. Introduction

2. Experimental Probicrns 3. Optimization Problems in

Experimental Design Problem 4. Continuous Optimal Designs 5. Numerical Methods

6. S t r u c t u r e of S l i t Function 7. R e f e r e n c e s

(5)

DESIGN OF EXPE7UkiIENTS WITH SPATIALLY-AVERAGED OBSERVATIONS

VaLeri Fedorov

1. INTRODUCTION

A numner 01 puDllcaLlons c o n c e r n i n g oprimal aesign or experimenLs wnen con- t r o l s belong t o some functional s p a c e were published in t h e l a t e 1970's. Now i t i s evident t h a t t h e b a s i c i d e a s behind t h e s e t h e o r e t i c a l a p p r o a c h e s a r e t h e same a s in t r a d i t i o n a l e x p e r i m e n t a l design t h e o r y (e.g., Fedorov, Uspensky 1977; Mehra 1974; Kozlov 1981; Pazman 1986). The d i f f e r e n c e s become tangible in t h e applica- tion of g e n e r a l t h e o r e t i c a l r e s u l t s t o s p e c i f i c e x p e r i m e n t a l problems.

In t h i s p a p e r t h e s e d i f f e r e n c e s will b e t r a c e d f o r e x p e r i m e n t s with spatially- a v e r a g e d o b s e r v a t i o n s .

The simplest s t a t i s t i c a l model d e s c r i b i n g a t l e a s t a p a r t of t h e a b o v e men- tioned e x p e r i m e n t s i s t h e foliowing one:

yf

=

firzf + r i , i

=

1 . N

-

(1)

where +€Rm i s a v e c t o r of unknown p a r a m e t e r s ; ti a r e independent random values with z e r o means and f i n i t e v a r i a n c e s uf ( a more d e t a i l e d assumption wiil b e formu- lated l a t e r ) ; r s t a n d s f o r transposing. Variabies zi a r e defined by t h e i n t e g r a l

f ( v ) i s a v e c t o r of given b a s i c functions; h ( v ) a r e some functions which c a n b e chosen (controlled) by a n e x p e r i m e n t e r , O s h s l . In some c a s e s i n t e g r a l (2) must b e a Lebesque one. Function h ( v ) d e s c r i b e s t h e physical n a t u r e of a n e x p e r i m e n t a n d most typical examples will b e given below in S e c t i o n 2. If t h e l e a s t s q u a r e s es- timators

6 =

Arg min

z

N u;2)Yf +Tzi 1 2

*

i = 1

a r e used t o analyze e x p e r i m e n t s d e s c r i b e d by ( I ) , then t h e quality of t h e s e estima- t o r s is_ defined by t h e i r dispersion (variance-covariance) m a t r i c e s D

=

E)(fi-.IPt) ( t h i t a - T Y ~ ) ~ ] , where t h e s u b s c r i p t r s t a n d s f o r t r u e values. I t i s well known ( s e e Fedorov 1972) t h a t in r e g u l a r cases

where ?c couid depend upon h ( t ) also. Matrix M i s usuaily called "information ma- t r i x . "

The o b j e c t i v e of optimal experimental design i s t h e s e a r c h f o r c o n t r o l s h i ( v ) providing b e t t e r d i s p e r s i o n m a t r i c e s or (more a c c u r a t e l y ) some functions of tinem ( s e e S e c t i o n s 3, 4).

(6)

2. EXPERIMENTAL PROBLEMS

Example 1. S p e c t r o m e t r i c E x p e r i m e n t s

In t h e s e e x p e r i m e n t s t h e measurement tools (e.g., a s p e c t r o m e t e r , a radiome- ter, e t c . ) h a v e a f i n i t e s p e c t r a l resolution and can m e a s u r e only a s p e c t r u m (of ab- s o r b t i o n o r r a d i a t i o n ) a v e r a g e d o v e r some f r e q u e n c y i n t e r v a l which i s defined by t h e so-called "slit" function. Formally t h e model of a measurement p r o c e s s c a n b e d e s c r i b e d in t h e simplest c a s e (when B e e r ' s law i s still working a n d t h e s p e c t r u m i s linearly dependent upon c o n c e n t r a t i o n s of components) by t h e following model:

-

The t o t a l s p e c t r u m intensity l i n e a r l y depends upon t h e s p e c t r u m intensities of any component

w h e r e v i s f r e q u e n c y ; Br

=

(B1, .

.

.

.

r9,) i s t h e v e c t o r of c o n c e n t r a t i o n s .

-

The o b s e r v e d sicnai yi i s a l i n e a r functional of t h e s p e c t r u m u n d e r analysis [ c o m p a r e with (2)J

w h e r e hi ( v ) i s a s l i t function ( o r resolution function) of t h e i - t h o b s e r v a t i o n ; V i s t h e f r e q u e n c y i n t e r v a l avaiiable f o r o b s e r v a t i o n s ; E, i s t h e e r r o r of ob- s e r v a t i o n .

iisually a s l i t function c a n b e s a t i s f a c t o r i l y approximated by

-

E r r o r s E , a r e assumed t o b e random, independent f o r d i f f e r e n t i and t h e i r v a r i a n c e a: c a n d e p e n d upon hi ( v ) a n d upon t h e time ti s p e n t on t h e i - t h ob- s e r v a t i o n . In p r a c t i c e o n e c a n f a c e s e v e r a l possibilities. F o r i n s t a n c e ,

(a) a:

= c?

( b ) a:

= c?

[ j h , ( v ) d v ]

v

( C ) a:

= S t ,

( d ) a:

=

a2ti [ j h i (v ) d v

1.

(6)

v

The l a t t e r two c a s e s c o r r e s p o n d usually t o t h e situation when a n e x p e r i m e n t e r can choose t h e d u r a t i o n of a n o b s e r v a t i o n . If instead of yf ( t h e s e values c a n b e called

"total radiation") o n e c o n s i d e r s a v e r a g e values ( " a v e r a g e radiation"):

=

yi l j h f (v ) d v

I-' v

t h e n t h e i r v a r i a n c e s will b e correspondingly equal:

( a ) of

= 02

( b ) a:

=

g ! J h f ( v ) d v 1-I

v

o r

( c ) a:

=

( d ) a: = d?t,-'!Jhi(v)dv

v

(7)

and v a r i a b i e s zi wiii b e defined by t h e following formuiae:

In what follows below, t h e notation y i will b e used e v e r y w h e r e and t h e s t r u c t u r e of v a r i a n c e s of and vaiues zi will define t h e c a s e .

Example 2. Remote S o u n d i n g o f A t m o s p h e r e

The s a t e l l i t e measurements of t h e outgoing r a d i a n c e in t h e i n f r a r e d s p e c t r u m band become r o u t i n e f o r d i s t a n t r e t r i e v a l of d i f f e r e n t physical p a r a m e t e r s of t h e a t m o s p h e r e ( f o r i n s t a n c e , t h e v e r t i c a l p r o f i l e of t e m p e r a t u r e , humidity, ozone c o n c e n t r a t i o n , e t c . ; see Condratjev and Timofeev 1970, S t r a n d a n d Westwater 1968, Twomey 1966). In a simplified form, t h e measured r a d i a t i o n u ( v ) d e p e n d s upon t h e v e r t i c a l t e m p e r a t u r e p r o f i l e T ( z ) , w h e r e z i s a n a l t i t u d e , and t h e t r a n s m i t t a n c e function of t h e a t m o s p h e r e p ( v , z ) :

w h e r e Z c o r r e s p o n d s t o t h e a l t i t u d e of a measurement tool; B ( v , T ) i s t h e P l a n c k ' s function. Both p ( v , z ) and B ( v , T ) are assumed t o b e known.

The most c r u c i a l assumption i s t h e possibility Lo a p p r o x i m a t e t h e function T ( z ) by some p a r a m e t r i c function T(z.19) with subsequent linearization of t h e in- Legral equation in t h e vicinity of a n initial estimate of t h e t e m p e r a t u r e p r o f i i e T ( z ) s o t h a t

a n d i n t e g r a t i o n witin a weight function h ( v ) o v e r f e a s i b l e f r e q u e n c y band V l e a d s t o t h e model d e s c r i b e d by ( I ) , (2), (6) o r (7) and (8).

3. OPTIMIZATION PROBLEMS IN EXPERIMENTAL DESIGN PROBIJW

Following S e c t i o n 1, l e t u s t r y t o formalize a design problem f o r e x p e r i m e n t s from S e c t i o n 2 . A s with t r a d i t i o n a l design t h e o r y ( s e e a b o v e c i t e d publications), t h e set of values

where t h e weights pi are t h e s h a r e s n i

/ N

of t o t a l number of measurements ( o r t h e s h a r e s ti / T of t o t a l Lime available), which h a v e t o b e done u n d e r t h e condi- tions zi ( o r a t t h e s u p p o r t i n g points z i ) , will b e called a design (of a n experiment).

In t h e t r a d i t i o n a l c a s e , t h e set XERm of f e a s i b l e c o n t r o l s ( o p e r a b i l i t y r e g i o n ) i s explicilly given. In t h e c o n s i d e r e d c a s e , X i s t h e mapping of a f e a s i b l e set

H

(in some functional s p a c e ) of c o n t r o l s h i (v ), and usually t h e c o n s t r u c t i o n of X (say, i t s boundaries) is a problem of g r e a t difficulty. T h e r e f o r e , i t could b e u s e f u l t o c o n s i d e r designs in t h e o r i g i n a l s p a c e aiso:

(8)

From (3) i t i s evident t h a t f o r model ( I ) , (2) t h e information matrix (and subse- quently d i s p e r s i o n m a t r i x ) d e p e n d s upon t h e location of t h e s u p p o r t i n g points z i , a n d if a t some points s e v e r a l measurements ni are d o n e , t h e n on functions hi a l s o , but d o e s not depend upon t h e r e s u l t s of measurements. In o t h e r words, t h e infor- mation matrix M d e p e n d s upon a design (, ( o r (,,).

Due t o t h i s f a c t , t h e design problem c a n b e formulated as t h e following minimi- zation problem

('

=

A r g min

@@(()I

t

where can n a v e b o t h possible s u b s c r i p t s . The function @ (optimality c r i t e r i a ) d e s c r i b e s t h e o b j e c t i v e s of a n e x p e r i m e n t e r .

If t h e whole set of p a r a m e t e r s p r e s e n t some i n t e r e s t , t h e n i t i s r e a s o n a b l e t o minimize t h e volume of t h e ellipsoid of c o n c e n t r a t i o n which i s p r o p o r t i o n a l t o iM((); -'I2 and one c a n u s e @[MI

=

M ( ( )

1

-'/'(everywhere / A I means t h e d e t e r - minant of m a t r i x A).

If i t i s n e c e s s a r y t o know a b e h a v i o u r of some l i n e a r function of T9: +?(z)T9, then i t i s r e a s o n a b l e t o minimize t h e a v e r a g e v a r i a n c e of t h i s function o v e r some region of i n t e r e s t . In t h i s c a s e

R a t h e r d e t a i l e d l i s t s of t h e most p o p u l a r optimality c r i t e r i a c a n b e found in Fedorov 1972; Silvey 1980.

In t h e f u t u r e i t i s r e a s o n a b l e t o distinguish between two t y p e s of designs:

continuous a n d d i s c r e t e o n e s .

In t h e f i r s t c a s e , weights pi c a n v a r y continuously between 0 and 1. This t a k e s p l a c e when t h e weight i s p r o p o r t i o n a l to t h e time of measurement. We c a n g o f u r t h e r a n d assume t h a t any p r o b a b i l i s t i c m e a s u r e (,

=

( ( d z ) or

tH =

( ( d h ) d e s c r i b e s some design. In e x p e r i m e n t a l p r a c t i c e , i t could b e impossible t o r e a l i z e , f o r i n s t a n c e , continuous m e a s u r e s . But f o r t u n a t e l y f o r any design with continuous m e a s u r e , i t i s possible to find t h e design with t h e same information m a t r i x , but with m e a s u r e c o n c e n t r a t e d in t h e f i n a l number of s u p p o r t i n g points. I t i s e a s y t o see t h a t in t h e c o n s i d e r e d s i t u a t i o n

In what follows below, t h e s u b s c r i p t z o r h will b e omitted without a n y comments if i t will not l e a d t o confusion.

Assuming t h a t @(NM)

=

a(N)*(M) (and i t i s t r u e f o r t h e majority of optimality c r i t e r i a used in p r a c t i c e ) minimization problem (11) can b e r e p l a c e d by

#' = A r g min *[M (()

t (12)

w h e r e n o values depend upon t h e toLa1 time o r t h e t o t a l number of available meas- urements. This means t h a t a continuous optimal design d o e s n o t depend upon them also.

(9)

This useful p r o p e r t y i s n o t valid in t h e d i s c r e t e c a s e ,

4 . CONTINUOUS OPTIMAL DESIGNS

F o r t h e s a k e of simplicity in t h i s section and a l l subsequent s e c t i o n s only t h e c a s e when

* [ M i

=

M - ' 1 and (' = A r g m a x M I t

will b e c o n s i d e r e d . O t h e r c r i t e r i a c a n b e handled in a similar way ( s e e Fedorov 1980; Silvey 1980). I t i s most convenient t o start with continuous v e r s i o n of designs (, defined by (9). Then t h e c e i e b r a t e d Kiefer-Woifovitz equivaience theorem ( s e e Fedorov 1972) can b e used and only o n e assumption i s n e c e s s a r y f o r i t s fulfillment:

(a) Operability r e g i o n X i s compact

Theorem 1

(1) T h e r e e x i s t s a n optimal design (; containing no more t h a n m ( m + 1 ) / 2 s u p p o r t i n g points.

(2) The following problems are equivalent:

-

maximization of

/

M ((, )

I .

-

minimization of max X ( z ) d ( z ,(,), zEX

-

m a x X ( z ) d ( z . ( , ) = m , z4Y

w h e r e X(z,)

=

m i 2 a n d d ( z , ( , ) = Z ~ M - ~ ( ( , ) ~ .

(3) A t t h e s u p p o r t i n g points of a n optimal design (; t h e function d ( z ,(,) ap- p r o a c h e s i t s maximum.

(4) The set of optimai designs i s convex.

In a number of comparatively simple situations Theorem 1 g i v e s a c h a n c e t o c o n s t r u c t optimal design analytically. F o r more compiicated models i t h e l p s t o develop numerical p r o c e d u r e s a n d t o u n d e r s t a n d some g e n e r a l f e a t u r e s of optimal designs.

F o r i n s t a n c e , if one manages t o p r o v e t h a t o p e r a b i l i t y r e g i o n X i s compact.

t h e n h e c a n b e s u r e t h a t ( s e e point (3) of t h e t h e o r e m ) a l l s u p p o r t i n g points of a n optimal design are some boundary points of X.

Example 1 Let

f T ( v )

=

( 1 . ~ ) . v < I , *(M)

= IMI-'",

The set X can b e easily c o n s t r u c t e d b e c a u s e of t h e simplicity of i n t e g r a l (2) a n d i t s boundary i s d e s c r i b e d b y t h e following c u r v e s :

(10)

From point 2 of Theorem 1 i t follows t h a t t h e s u p p o r t i n g points of a n optimal design must coincide with t h e points where t h e ellipse zrM-l((;)z i s t a n g e n t to X.

This ellipse must h a v e t h e l e a s t a r e a ( o r IM I ) between a l l ellipses containing X.

The simple calculations show t h a t t h e points with c o o r d i n a t e s (2;0), ( 6 - 1 . 2 6 - 4 ) . ( 6 - 1 , 4 - 2 6 ) could b e supporting ones.

From symmetry of X and point 4 of Theorem 1 i t follows t h a t t h e weights of t h e two l a s t points must b e equal. S t r a i g h t f o r w a r d maximization of t h e d e t e r m i n a n t

i M

i

gives

Finally, from t h e simple i n t e g r a l equations defined at t h e beginning of t h e example i t i s e a s y t o find t h a t

with t h e information m a t r i x

F o r comparison of t h e t r a d i t i o n a l design with two A-windows at t h e points v =*I, t h e same matrix e q u a l s

This means t h e r a t i o o f s t a n d a r d e r r o r s will b e 0.5A ( f o r GI) and 5 . 5 ~ ~ ( f o r Z,). S o t h e optimal design i s essentially more e f f e c t i v e t h a n t h e t r a d i t i o n a l a p p r o a c h , especially f o r small A.

Example 2.

The c h a r a c t e r i s t i c s of optimal designs ( f o r instance, t h e location of s u p p o r t - ing points) essentially depend upon t h e c h o s e n b a s i c function. To illuminate t h i s , l e t us consider t h e r e g r e s s i o n problem formulated in t h e p r e v i o u s example with a new b a s i c function f l ( v )

=

( s i n n v , c o s n v ) . I t c a n b e p r o v e d t h a t f o r any s l i t func- tion h ( v ) t h e v e c t o r (Krein, Nudelman 1973. VII:3)

must belong t o t h e c i r c l e

{x:z:

+ zZ2 ~ 2 1

The optimal designs f o r t h i s o p e r a b i l i t y region a n d r e s p o n s e function v r z

=

1 9 ~ 2 ~

+

v 2 z 2 c a n b e easily c o n s t r u c t e d . F o r i n s t a n c e , optimal design c a n consist of t h e s u p p o r t i n g points coinciding with a l l v e r t e x e s of any r e g u l a r polygon refined to t h e c i r c l e X and t h e i r weights must b e equal. One of t h e simplest optimal designs i s

To find o u t t h e c o r r e s p o n d i n g optimal design in s l i t function s p a c e t h e i n t e g r a l equations

(11)

1 1

zii =

Jhi ( v ) s i n r v d v a n d

zit =

Jht ( v ) c o s r v d v

-1 -1

must b e solved. One of t h e solutions i s

and

I t i s worthwhile t o n o t e t h a t t h e widths of s l i t function "windows" have t h e same o r d e r as i n t e r v a l s of typical v a r i a t i o n s of b a s i c functions.

5. NUMERICAL METHODS

If assumption (a) holds a n d t h e r e i s a way t o find X t h e n t h e following numeri- c a l c a n b e used f o r optimal design c o n s t r u c t i o n (Fedorov 1972):

Cs =

(1-a, )C, + a, t ( z , ) (13)

where t ( z s ) i s t h e design c o n c e n t r a t e d at t h e single point zs

=

A r g maxX(z)d ( z .(,)

S E X (14)

where

d ( 2 . t s )

=

z r M ) z

The s e q u e n c e la, j c a n b e , f o r instance:

s =' X(z,)d ( z , , t s ) *

( a )

z a , = -

, lim a, =O ( b ) as

=

s =o s -.- ~ ~ < ~ , ) d ( ~ , , t ~ ) - l ~ m

Both of them g u a r a n t e e t h a t

lim M(C)l = m i n M(C)l

2 -.' t

More s o p h i s t i c a t e d v e r s i o n s of t h i s method are discussed in Ermakov 1983;

F e d o r o v a n d Uspensky1975.

In s p i t e of t h e f o r m a l simplicity of i t e r a t i v e p r o c e d u r e (13), (14), i t s p r a c t i c a l usefullness i s r a t h e r r e s t r i c t e d : one must find o u t t h e way t o c o n s t r u c t X b e f o r e using t h i s p r o c e d u r e .

P r o c e d u r e (13), (14) c a n b e r e p l a c e d by equivalent p r o c e d u r e s in t h e s p a c e of functions h ( v ) . F o r t h a t o n e h a s t o r e p i a c e t h e v e c t o r X1"(z)z with t h e vec- t o r [ h ( v ) f ( v ) d v ( f o r cases ( a ) , ( c ) from (6) and (a)), a n d with t h e v e c t o r

v

Jh (v)f (V /

4 7

( f o r cases (b).(d) from (6) a n d (8))

v

F o r t h e s a k e of simplicity, t h e i t e r a t i v e p r o c e d u r e will b e c o n s i d e r e d f o r t h e f i r s t cases when i t c a n b e p r e s e n t e d in t h e following form:

(12)

t,.l =

( 1 - a , ) ( , + a , t ( h , ) . h,

=

Arg max d ( h , ( , ) ,

h € H where

d ( h , [ , )

=

j j h ( ~ ) h ( v ~ ) f ~ ( v ) M - ~ ( t , ) f ( v ' ) d v d v ' ,

v v

Unfortunately, maximization problem ( 1 7 ) is more complicated than (14). One o f t h e simplest could be t h e following one:

-

discretisize t h e set V (and t h e r e f o r e VxV' also), say with interval A;

-

collect all points v j on t h e corresponding grid which positively contribute t o t h e sum

d ( ~ , )

=

z f ( ~ ~ ) ~ - ~ ( [ , ) f ( v , , ) ( 1 8 ) jd'

-

put h , ( v j )

=

1 i f v j was chosen on t h e previous stage; otherwise h , ( v j )

=

0

-

t h e fulfillment o f t h e inequality (which is corollary t o Theorem 1 ) d (t,h,)zzm tests that h , can be used in ( 1 6 ) .

This procedure is admissible f o r applications, f o r instance, when V is one- dimensional and that is t h e case f o r a number o f applied problems ( s e e Section 2 ) .

N o t e 1.

Iterative procedure ( 1 6 ) will converge in sense ( 1 5 ) ( f o r both original and discrete versions) i f instead o f ( 1 6 ) only t h e inequality

d ( h , , t , ) > m will take place on e v e r y step.

N o t e 2.

The sequences i j

!

and f j ' j must be identical. Therefore i f j = j o is included in sum

( l a ) ,

then j ' = j o must be included also.

N o t e 3.

When t h e slit function h ( v ) can change its value at t h e modes o f A-grid, then one can tell about A-optimal designs

(ti)

which can be considered as some approxi- mation o f optimal designs defined by (12). The iterative procedure ( 1 6 ) , (17) and ( 1 8 ) guarantees that

The idea o f A-optimal designs can be advanced f u r t h e r . As it was observed in Example 2 , t h e widths o f slit function windows were related t o t h e intervals o f vari- ation o f basic functions. T h e r e f o r e , it is reasonable t o decompose t h e set V into a comparatively moderate number o f subsets Aj ( j = G ) , f o r instance, coinciding with t h e most typical fluctuations o f basic functions. Assume that integrals

(13)

can b e c a l c u l a t e d (numerically or analytically). Then t h e o p e r a b i l i t y region X c a n b e approximated by XA with elements

where F = ( F 1 ,..., F, ), u

=

( u l ,

. . . .

uk ) c U A a n d u j

=

1, if h ( v ) = l , v €Aj, and u . J =0; o t h e r w i s e , j

=l.k.

Observing t h a t drz =grPu. =o,u a n d t h e information ma- t r i x equals

w h e r e ( ( d u ) d e s c r i b e s a design f u with supporting points in UA , o n e c a n conclude t h a t r a n k F must b e equal t o m (number of estimated p a r a m e t e r s ) . T h e r e f o r e , t h e decomposition of V should contain at l e a s t m s u b s e t s A j ( k a m ) .

When k =m a n d of c o u r s e IF

I

+O, t h e n

1

M

i

=IF

1 1 M, 1

and t h e design problem i s r e d u c e d to t h e maximization of

1 M, 1 .

The l a t t e r problem coincides with t h e rou- tine problem of "optimal weighting," (See Ermakov 1983)

If k >m t h e n i t e r a t i v e p r o c e d u r e (13),(14) can b e used with t h e r e p i a c e m e n t

k

of t h e v e c t o r A ~ ' ~ ( Z ) Z with t h e v e c t o r

Pu.

[ o r

Pu.

/

/

u , ; c o m p a r e with comments

j =1

t o (16), (17)]:

u,

=

A r g max u F T M -'((,)Fu.

U (20)

The maximization probiem (20) i s a d i s c r e t e one a n d at e v e r y s - t h s t a g e i t demands n o more t h a n 2' calculations of uFrM-'((,)Fu

.

6. STRUCTURE OF SLIT FUNCTlON

In t h e p r e v i o u s s e c t i o n s , i t w a s assumed t h a t t h e s l i t function c a n equal 1 or 0 . Some "physical" a r g u m e n t s were behind t h i s assumption. The compactness of o p e r - ability region X ( s e e S e c t i o n 4) w a s a l s o a n e s s e n t i a l assumption which was done t o slimplify a l l final r e s u l t s . If o n e r e f u s e s t h i s assumption, t h e n instead of optimal designs, so-called optimal s e q u e n c e s ( s e e , f o r example. Ermakov 1983) must b e c o n s i d e r e d and t h a t l e a d s t o some t e c h n i c a l difficulties. The following r e s u l t s (which are s t r a i ~ h t f o r w a r d c o r o l l a r i e s of well-known r e s u l t s from c l a s s i c a l a p - proximation t h e o r y ; s e e , f o r example, Karlin and Studden 1966, C h a p t e r VIII) il- luminate t h a t both a b o v e mentioned assumptions a r e n o t v e r y r e s t r i c t i v e . F o r t h e s a k e of simplicity, w e c o n s i d e r a one-dimensional c a s e (V€R1):

Assume now t h a t :

( a ) OSh ( v ) S l , f o r a n y v € ( a , b )

(b) Functions f ( v ) c o n s t i t u t e a Tchebysheff system on t h e open i n t e r v a l ( a , b ) . w h e r e a a n d b are possibly infinite. This assumption r e q u i r e s t h a t t h e func- tions J' ( v ) b e continuous on ( a , b ) a n d t h e determinants

J ' ~ ( t r n )

I

. . .

J ' ~ ( t r n )

I

. . .

'

I

I '

. . . ' I

' I

i.rm(t,) f m ( t z )

. . .

J'm (tm

1

I t , € ( a . b ) , i = l , m

-

a r e positive.

(14)

T h e o r e m 2.

The o p e r a b i l i t y region

b

x =

lz

= f

f ( v ) h ( v ) d v : O s h ( v ) s l j

0

i s a c o m ~ a c t convex set in R m

.

From Theorem 1 it i s c l e a r t h a t a l l supporting points of any optimal design must b e boundary points of X. T h e r e f o r e , only t h e s e points had t o b e c o n s i d e r e d in t h e p r e v i o u s s e c t i o n s , a n d f o r them t h e following r e s u l t t a k e s place:

T h e o r e m 3.

The n e c e s s a r y and sufficient condition f o r z t o b e a boundary point of X i s t h e fulfillment of t h e condition

h ( u ) [ l - h ( v ) j

=

0 (21)

almost e v e r y w h e r e in ( a , b ) .

Let h ( v ) b e a function satisfying (21) and l e t I ( z ) b e t h e number of s e p a r a t e n o n d e g e n e r a t e i n t e r v a l s (windows of a s l i t function) where h ( v ) = l with t h e s p e c i a l convention t h a t a n i n t e r v a l whose c l o s u r e contains point a o r b , i s counted as 1 / 2 . F o r a n y point z CY. I' ( z ) s t a n d s f o r t h e l e a s t possible I ( z ) ( i t could b e s e v e r a l dif- f e r e n t functions h ( v ) g i v i n ~ t h e same z ) .

T h e o r e m 4.

A n e c e s s a r y a n d sufficient condition t h a t z belongs t o t h e boundary of X i s t h a t I ' ( z ) s ( m - 1 ) / 2 . Moreover, e v e r y boundary point c o r r e s p o n d s t o a unique h ( u ) with I ( z ) = I ' ( z ) .

Theorems 3 and 4 allow f o r t h e development of a comparativeiy simple algo- rithm of optimal design c o n s t r u c t i o n .

Let ;=(a . v l , . .

.

.urn b ) , where a i v l S

. . .

S u m - l s b . According t o Theorem 4, t h e r e e x i s t optimal designs with a l l s u p p o r t i n g points (in t h e o p e r a b i l i t y r e g i o n H ) which h a v e t h e following s t r u c t u r e s :

a n d h ( v ) = 1 - h ( v ) .

That aliows f o r t h e modification of t h e i t e r a t i v e p r o c e d u r e (16).(17) Lo t h e p r o c e d u r e with maximization in s p a c e which dimension i s l e s s o r e q u a l (m - l ) , w h e r e m i s a number o f b a s i c functions:

h,

=

Arg max d (z7,(,), 7 = 1 , 2 , (23)

7.1

(15)

and

P r o c e d u r e (22),(23) in a computational s e n s e coincides with i t e r a t i v e pro- c e d u r e s used f o r t r a d i t i o n a l design problems and c a n b e handled with software deveioped f o r t h e latter o n e ( s e e Fedorov. Uspensky 1975).

REFERENCES

Condratjev, K.J. and Timofeev (1970) The Thermal Remote Sounding of Atmosphere from S a t e l l i t e s . Leningrad, 410.

Ermakov, S.M., e d i t o r (1983) Mathematical Theory of Experimental Design. Mos- cow: Nauka, 3 9 1 (In Russian).

Fedorov. V.V. (1972) Optimal Design of Experiments. New York: Academic P r e s s , 292.

Fedorov. V . V . a n d A.B. Uspensky (1975) Numerical Aspects of t h e Least S q u a r e s Methods. Moscow: Moscow S t a t e University, 168.

Fedorov, V.V. a n d A.B. Uspensky (1977) On t h e Optimal Condition Choice of Spec- t r o s c o p i c Measurements. Moscow: Proc. of S t a t e Scient. a n d R e s e a r c h C e n t e r f o r t h e Study of E a r t h ' s Environment and Natural R e s o u r c e s . 4:42-53 (In Russian).

Feciorov, V.V. (1980) Convex Design Theory. Math. Oper. S t a t . . 11:403-413.

Karlin, S. and W.J. Studden (1966) Tchebycheff Systems: With Applications in Analysis a n a S t a t i s t i c s . New York: Wiley & Sons, 586.

Kozlov, V . P . (1981) Design of Regression Experiments in Functional S p a c e s , in

"Mathematical Methods in t h e Design of Experiments", ed. Penenko. V.V. Mos- cow: Nauka, Novosibirsk, 74-101 (In Russian).

Krein. M.G. a n d A.A. Nudelman (1973) Markov Moment Problem and E x t r e m a l P r o b - lems. Moscow: Nauka, 552.

Mehra, R.K. (1976) Optimal Input Signals f o r P a r a m e t e r Estimation in Dynamic Sys- tem. IEEE T r a n s . on Autom. Control AC-19:753-768.

Pazman, A. (1986) Foundations of Optimum Experimental Design. D o r d r e c h t : D.

Reidel Publishing Company, 228.

Silvey, S.D. (1980) Optimal Design. London: Chapman a n d Hall. 86.

S t r a n d , O.N. and E.R. Westwater (1968) Minimum RMS-Estimation of t h e Numerical Solution of a Fredholm l n t e g r a l Equation of t h e F i r s t Kind. SIAM J. Numer.

Anal. 5:287-295.

Twomey. S . (1966) I n d i r e c t Measurements of Atmospheric T e m p e r a t u r e P r o f i l e s f r o m Satellites: Mathematical Aspects of t h e Inversion Problem. Monthly Weather Review, 99:363-366.

Referenzen

ÄHNLICHE DOKUMENTE

The maximal cliques of G are independent sets of the complement graph G and so the Bron–Kerbosch algorithm can be used to set up the independent set 0–1 LP formulation of the

Experiments with thls model were also conducted in two ways: first - the subproblem CENTR was used as the pricing part of the algorithm and aubpmblem END generated

The conceptual basis of the model is tested numerically with the help of historical data on distinct national population- energy patterns.. The structural form of the model and its

The n l s t e r problem sends prices to the subproblems for linlung variables and receives optimal values of linking variables and optimal values of objctive

It is thought that this type of algorithms may help in filling the gap between, on the one hand, conjugate gradient (CG) methods, which use few locations in

These procedures can be con- sidered as very particular cases of some iterative procedures for optimal design in construction, but nevertheless they implicitly

For pulp, wane paper, paper and paverboard, however, the figures in parenthWs, for pulp and paper, are in thousand tons... Using level of

That is the final step in the formulation of model (1); screening experiments can be carried out now. 1) Input variables can be separated into groups with the help of