• Keine Ergebnisse gefunden

Antarctic phytoplankton in response to environmental change studied by a synergistic approach using multi- and hyper-spectral satellite data (PhySyn)

N/A
N/A
Protected

Academic year: 2022

Aktie "Antarctic phytoplankton in response to environmental change studied by a synergistic approach using multi- and hyper-spectral satellite data (PhySyn) "

Copied!
1
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Julia Oelker, Svetlana Losa, Astrid Bracher and John P. Burrows

References: Bracher  A,  Dinter,  T.,  Vountas,  M.,  Burrows,  J.  P.  ,  R.9gers,  R.,  Peeken,  I.  (2009)  QuanCtaCve  observaCon  of  cyanobacteria  and  diatoms  from  space  using  PhytoDOAS   on   SCIAMACHY   data.   Biogeosciences,   6,   751–764.   Dinter   T,   Rozanov,   V.   V.,   Burrows,   J.   P.,   Bracher,   A.   (2015)   Retrieving   the   availability   of   light   in   the   ocean   uClising   spectral   signatures  of  vibraConal  Raman  sca9ering  in  hyper-­‐spectral  satellite  measurements.  Ocean  Science,  11,  373-­‐389.Dutkiewicz,  S.,  Hickman,  A.  E.,  Jahn,  O.,  Gregg,  W.  W.,  C.  B.  Mouw,   C.  B.,  and  M.  J.  Follows  (2015)  Capturing  opCcally  important  consCtuent  and  properCes  in  a  marine  iogeochemical  and  ecosystem  model,  Biogeosciences  (accepted). Follows,  M.  J.,   Dutkiewicz,  S.,  Grant,  S.,  and  Chisholm,  S.  W.  (2007)  Emergent  Biogeography  Of  Microbial  CommuniCes  In  A  Model  Ocean,  Science,  315,  1843–1846.  Menemenlis,  D.,  Campin,  J.-­‐M.,   Heimbach,  P.,  Hill,  C.,  Lee,  T.,  Nguyen,  A.,  Schodlock,  M.,  and  H.  Zhang  (2008).  High  resoluCon  global  ocean  and  sea  ice  data  synthesis  (2008)  Mercator  Ocean  Quartely  Newsle9er,   31,   13–21.   Sadeghi,   A.,   Dinter,   T.,   Vountas,   M.,   Taylor,   B.   B.,   Altenburg-­‐Soppa,   M.,   Peeken,   I.,   Bracher,   A.   (2012)   Improvement   to   the   PhytoDOAS   method   for   idenCficaCon   of   coccolithophores   using   hyper-­‐spectral   satellite   data.   Ocean   Science,   8,   1055–1070.Taylor,   M.   H.,   Losch,   M.,   Bracher,   A.   (2013)   On   the   drivers   of   phytoplankton   blooms   in   the   AntarcCc  seasonal  ice  zone:  a  modelling  approach.  J.  Geophys.  Res.–Oceans  188:  63-­‐75.  Vountas  M,  Dinter,  T.,  Bracher,  A.,  Burrows,  J.  P.,  Sierk,  B.  (2007)  Spectral  studies  of  ocean   water  with  space-­‐borne  sensor  SCIAMACHY  using  DifferenCal  OpCcal  AbsorpCon  Spectroscop  (DOAS).  Ocean  Science,  European  Geosciences  Union,  3,  429-­‐440.  

BREMERHAVEN Am Handelshafen 12 27570 Bremerhaven Telefon 0471 4831-0 www.awi.de

Antarctic phytoplankton in response to environmental change studied by a synergistic approach using multi- and hyper-spectral satellite data (PhySyn)

Project description

The project focuses on the assessment of the impact of environmental change in the Southern Ocean on phytoplankton. Phytoplankton is the key organism determining the functioning of the marine ecosystem and biogeochemical cycle and it can be detected from space. In this study analytical bio-optical retrieval techniques are to be used to develop generic methods, which extract unique global long-term information on phytoplankton composition. The methods will be based on using all available high-resolution optical satellite data which are complemented by in-situ and multi-spectral satellite data.

Combined with modeling studies, this information will be used to attribute the relative importance of anthropogenic activity and natural phenomena on the marine ecosystem and biogeochemical cycling of the Southern Oceans during the last decades.

...  

                   POM                          

                       DOM                               02  

Alk                    Phy  

               Phy                        Phy  

Satellite Observations Modeling

Figure: The schematic diagram of the DARWIN biogeochemical model.

Following Taylor et al. (2013) we use the circulation model configuration based on a cubed‐sphere grid (Menemenlis et al. 2008) with mean horizontal spacing of ~18 km and 50 vertical levels with the resolution ranging from 10 m near the surface to ~450 m in the deep ocean. The model is forced by 6‐houly atmospheric conditions from the NCEP Climate Forecast System Reanalysis (CFSR).

Figure: Spatial distribution of the model PFTs  a"er  1  hour  of  Darwin-­‐based   model   integra7on   started   from   the   same   ini7al   condi7on   based   on   a   coarse   resolu7on  MITgcm  setup.

Chl   Chl   Chl  

Zoo   Zoo  

PIC  

CDOM  

C  

NO3  

NO2  

NH4  

SiO4  

Fe  

PO4  

A version of the Darwin ocean biogeochemical model coupled to the MITgcm general circulation model (Follows et al., 2007, Prowe et al., 2014, Dutkiewicz et al., 2015) is used to simulate the dynamics of 9 various phytoplankton functional types: Analogues of diatoms, other larger eukaryotes (Lg Euk), Synechococcus (Syn), high and low light Prochlorococcus (HL Pro and LL Pro), nitrogen fixing Trichodesmium (Tricho), unicellular diazotrophs (UniDiaz), small eukoryotes (Sm Euk) and cocolithophores (Coccol).

Julia Oelker, Svetlana Losa, Astrid Bracher and John P. Burrows

References

Dutkiewicz, S., Hickman, A. E., Jahn, O., Gregg, W. W., C. B. Mouw, C. B., and M. J. Follows (2015) Capturing optically important constituents and properties in a marine iogeochemical and ecosystem model, Biogeosciences (accepted). Follows, M. J., Dutkiewicz, S., Grant, S., and Chisholm, S. W. (2007) Emergent Biogeography Of Microbial Communities In A Model Ocean, Science, 315, 1843–1846. Menemenlis, D., Campin, J.‐M., Heimbach, P., Hill, C., Lee, T., Nguyen, A., Schodlock, M., and H. Zhang (2008). High resolution global ocean and sea ice data synthesis (2008) Mercator Ocean Quartely Newsletter, 31, 13–21. Taylor, M. H., Losch, M., Bracher, A. (2013) On the drivers of phytoplankton blooms in the Antarctic seasonal ice zone: a modelling approach. J. Geophys. Res.–Oceans 188: 63‐

75. Vountas M, Dinter, T., Bracher, A., Burrows, J. P., Sierk, B. (2007) Spectral studies of ocean water with space-borne sensor SCIAMACHY using DiAerential Optical Absorption Spectroscopy (DOAS). Ocean Science, European Geosciences Union, 3, 429-440. Bracher A, Dinter, T., Vountas, M., Burrows, J. P. , Röttgers, R., Peeken, I. (2009) Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data. Biogeosciences, 6, 751–764. Sadeghi, A., Dinter, T., Vountas, M., Taylor, B. B., Altenburg-Soppa, M., Peeken, I., Bracher, A. (2012) Improvement to the PhytoDOAS method for identiEcation of coccolithophores using hyper-spectral satellite data. Ocean Science, 8, 1055–1070. Dinter T, Rozanov, V. V., Burrows, J. P., Bracher, A. (2015) Retrieving the availability of light in the ocean utilising spectral signatures of vibrational Raman scattering in hyper-spectral satellite measurements. Ocean Science, 11, 373-389.

BREMERHAVEN Am Handelshafen 12 27570 Bremerhaven Telefon 0471 4831-0 www.awi.de

Antarctic phytoplankton in response to environmental change studied by a synergistic approach using multi- and hyper-spectral satellite data (PhySyn)

Project description

The project focuses on the assessment of the impact of environmental change in the Southern Ocean on phytoplankton. Phytoplankton is the key organism determining the functioning of the marine ecosystem and biogeochemical cycle and it can be detected from space. In this study analytical bio-optical retrieval techniques are to be used to develop generic methods, which extract unique global long-term information on phytoplankton composition. The methods will be based on using all available high-resolution optical satellite data which are complemented by in- situ and multi-spectral satellite data.

...

POM

DOM

0

2

Alk

Phy

Phy

Phy

Modeling

Figure: The schematic diagram of the DARWIN biogeochemical model.

Following Taylor et al. (2013) we use the circulation model configuration based on a cubed‐sphere grid (Menemenlis et al. 2008) with mean horizontal spacing of ~18 km and 50 vertical levels with the resolution ranging from 10 m near the surface to ~450 m in the deep ocean. The model is forced by 6‐houly atmospheric conditions from the NCEP Climate Forecast System Reanalysis (CFSR).

Figure: Spatial distribution of the model PFTs after 1 hour of Darwin‐based on model integration started from the same initial condition based on a coarse resolution MITgcm setup.

Ch l Chl

Ch l

ZooZo o

PIC

CDO M

C

NO3

NO2

NH SiO4

Fe4

PO4

A version of the Darwin ocean biogeochemical model coupled to the MITgcm general circulation model (Follows et al., 2007, Prowe et al., 2014, Dutkiewicz et al., 2015) is used to simulate the dynamics of 9 various phytoplankton functional types: Analogues of diatoms, other larger Eukaryotes (Lg Euk), Synechococcus (Syn), high and low light Prochlorococcus (HL Pro and LL Pro), nitrogen fixing Trichodesmium (Tricho), unicellular diazotrophs (UniDiaz), small Eukoryotes (Sm Euk) and cocolithophores (Coccol).

Use hyperspectral satellite data from SCIAMACHY and newer sensors to retrieve the biomass of phytoplankton groups in the Southern Ocean

Synergistically combine the product from hyperspectral data with multispectral data from MERIS and similar ocean color sensors

Establish time series of the phytoplankton biomass in the Southern Ocean from 2002 till 2015 or longer

Adjusting PhytoDOAS by use of absorption spectra of Antartic PFT

Sensitivity studies with hyperspectrally resolved radiative transfer modeling

Observations

Based on the Beer-Lambert law:

DOAS (Differential Optical Absorption Spectroscopy) equation is a minimization problem.

Including phytoplankton absorption → PhytoDOAS equation:

Atmospheric effects Oceanic effects Polynomial Atmospheric effects: Relevant trace gas absorption, ring effect

Oceanic effects: Phytoplankton and liquid water absorption, vibrational Raman scattering (VRS) Polynomial: Lower frequency structures such as Rayleigh and Mie scattering

, ,

Extracting the biomass of important phytoplankton groups in the Southern Ocean using differential optical absorption spectroscopy (DOAS) on hyperspectral satellite data

PhytoDOAS Retrieval Method

fit factors of atmospheric and oceanic effects atmospheric and oceanic absorption cross sections Backscattered spectrum from earth measured my satellite sensor

Sun spectrum measured by satellite sensor

Global Biomass of Phytoplankton Groups

In-situ Validation Data

ac-s In-Situ Spectrophotometer:

Flow-through system

Wavelength range: 400 nm to 730 nm 4 nm resolution

HPLC pigment data + ac-s spectrophotometer continuous absorption and attenuation measurements of sea water

Vountas et al. 2007, Bracher et al. 2009, Sadeghi et al. 2012, Dinter 2015

Objectives

Validation with in-situ data

Use developed Antarctic phytoplankton group product to evaluate the distribution of phytoplankton groups in the Southern Ocean as modeled by the Darwin ocean biogeochemical model coupled to the MITgcm

Study the variability of Antarctic phytoplankton focusing on trends and hotspot analysis over the past decade with link to other variables (e.g. sea surface temperature, mixed layer depth, surface wind speed, nutrients) from satellite and (coupled ecosystem- ocean-ice-) model data

Bracher et al. 2009 Sadeghi et al. 2012 Extracting the biomass of important phytoplankton groups in the Southern Ocean using differential optical absorption spectroscopy (DOAS) on hyperspectral satellite data.

PhytoDOAS Retrieval Method (Vountas et al. 2007, Bracher et al. 2009, Sadeghi et al. 2012, Dinter 2015)

The method is based on the Beer-Lambert law:

Here is backscattered spectrum from earth measured by satellite sensor;

is sun spectrum measured by satellite sensor.

DOAS (Differential Optical Absorption Spectroscopy) equation is a minimization problem. Including phytoplankton absorption → PhytoDOAS equation:

[ ]

= Arg min

Subject to relevant trace gas absorption, ring effect, phytoplankton and liquid water absorption, vibrational Raman scattering (VRS), lower frequency structures such as Rayleigh and Mie scattering.

are fit factors of the atmospheric and oceanic effects; are atmospheric and oceanic absorption cross sections.

 

Global Biomass of Phytoplankton Groups (Bracher et al. 2009, Sadeghi et al. 2012)

In-situ Validation Data

HPLC pigment data + ac-s spectrophotometer continuous absorption and attenuation measurements of sea water.

                 ac-­‐s  In-­‐Situ  Spectrophotometer:  

                 Flow-­‐through  system  

                 Wavelength  range:  400  nm  to  730  nm                    4  nm  resoluCon

Referenzen

ÄHNLICHE DOKUMENTE

As for the current oper- ational chlorophyll-a algorithms used in case-1 waters by MODIS, SeaWIFS and MERIS, we chose one single spe- cific absorption spectrum as standard for

In this study an improved Phytoplankton Differential Optical Absorption Spectroscopy (PhytoDOAS) method for the retrieval of major PFTs from satellite measurements utilizing the

In this study an improved Phytoplankton Differential Optical Absorption Spectroscopy (PhytoDOAS) method for the retrieval of major PFTs from satellite measurements utilizing the

Currently, nearly all large-scale marine ecosystem models apply the MM equation with constant K s to describe uptake (or growth) rates of phytoplankton as a function of

• The Antarctic seasonal ice zone (SIZ) has been found to support spring phytoplankton blooms on orders of magnitude greater. than in neighboring open

Comparisons of the PhytoDOAS PFT retrievals in 2005 with the modeled PFT data from the NASA Ocean Biochemical Model (NOBM) showed sim- ilar patterns in their seasonal distributions

In addition to SCIAMACHY data, which are needed as the satellite input of PhytoDOAS, to copmare and evaluate the retrieval results, specific products of two other satellite sensors

detecting and assessing effects of global warming on the composition and distribution of phytoplankton assemblages in the Southern