• Keine Ergebnisse gefunden

An Accelerated Method for Minimizing a Convex Function of Two Variables

N/A
N/A
Protected

Academic year: 2022

Aktie "An Accelerated Method for Minimizing a Convex Function of Two Variables"

Copied!
19
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

AN ACCELERATED METHOD FOR MINIMIZING A CONVEX FUNCTION OF TWO VARIABLES

F.A. PAIZEROVA April 1985 CP-85-17

C o t t a b o r a t i v e P a p e r s

report work which has not been performed solely at the International Institute for Applied Systems Analysis and which has received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organi- zations supporting the work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS

A-2361 Laxenburg,. Austria

(2)
(3)

PREFACE

In this paper the author considers the problem of minimiz- ing a convex function of two variables without computing the derivatives or (in the nondifferentiable case) the subgradients of the function, and suggests two algorithms for doing this.

Such algorithms could form an integral part of new methods for minimizing a convex function of many variables based on the

solution of a two-dimensional minimization problem at each step (rather than on line-searches, as in most existing algorithms.)

This is a contribution to research on nonsmooth optimization currently underway in System and Decision Sciences Program Core.

A.

B. KURZHANSKI Chairman

System and Decision

Sciences Program

(4)
(5)

AN ACCELERATED METHOD FOR M I N I M I Z I N G A CONVEX FUNCTION O F TWO

VARIABLES

F.A.

Paizerova

A

method f o r minimizing a convex c o n t i n u o u s l y d i f f e r e n t - i a b l e f u n c t i o n o f two v a r i a b l e s was proposed i n

[I],

where

i t

was shown t h a t i t s r a t e of convergence i s geometric with

c o e f f i c i e n t 0.9543.

W e

s h a l l d e s c r i b e two m o d i f i c a t i o n s of

this

method w i t h improved convergence r a t e s .

Let

Z E E ~ ,

a f u n c t i o n f be convex and continuously d i f f e r - e n t i a b l e on

E2. A s s u m e

t h a t we know t h a t a minimum p o i n t of f

i s

contained i n a convex q u a d r i l a t e r a l ABCD, The a r e a of t h i s q u a d r i l a t e r a l is c a l l e d t h e u n c e r t a i n t y a r e a .

L e t R

be t h e p o i n t of i n t e r s e c t i o n of t h e diagonals of t h e q u a d r i l a t e r a l .

L e t

us choose f o u r p o i n t s

M , N , Q , P

on i n t e r v a l s

AC

and

BD

which a r e a l l

a t

t h e same d i s t a n c e

E

from R (where e

> 0

i s f i x e d ) ,

Now l e t u s compute t h e f u n c t i o n f a t t h e s e p o i n t s and a t t h e p o i n t

R

( s e e F i g u r e

1 ) .

Case

1

f ( M 1

> f ( R ) ,

f ( N )

>

f ( R ) ( 2 )

I n t h i s c a s e

R

i s ( w i t h i n e-accuracy) a minimum p o i n t of f onAC and

BD,

and t h e n by t h e p r o p e r t i e s of continuously d i f f e r e n t - i a b l e f u n c t i o n s t h e p o i n t

R

is a minimum p o i n t of f on ABCD ( t o w i t h i n t h e g i v e n accuracy

c )

and t h e p r o c e s s terminates.

Case

2.. If

i n e q u a l i t y

( 1 )

i s s a t i s f i e d b u t i n e q u a l i t y

( 2 ) i s

n o t , then

R

i s a minimum p o i n t of f on

BD.

I-f f(M)

<

f ( R ) then

(6)

D

Fig. 1 Fig. 2

VZEBDC

and t h e r e f o r e a minimum p o i n t .of f l i e s w i t h i n t h e t r i a n g l e ABD.

I f f ( N ) < f ( R ) t h e n

f ( Z ) > f ( R ) VZEABD

and a minimum p o i n t of f l i e s w i t h i n t h e t r i a n g l e BDC.

Case 3. I f i n e q u a l i t y ( 2 ) i s s a t i s f i e d b u t ( 1 is n o t then we argue analogously.

These t h r e e c a s e s were d i s c u s s e d i n [ I ] and a r e t r e a t e d i n t h e same way h e r e . The d i f f e r e n c e between o u r method and t h a t of [ I ] i s demonstrated i n t h e f o l l o w i n g c a s e 4 .

Case 4. Suppose t h a t b o t h i n e q u a l i t i e s ( 1 ) and ( 2 ) a r e s a t i s - f i e d . Then t h e r e e x i s t two p o i n t s ( s a y , M and Q ) such t h a t

I t follows from t h e c o n v e x i t y of f t h a t

f ( z ) > f ( R ) VZEDRC

L e t us draw t h e l i n e VW which p a s s e s through t h e p o i n t R and

i s

p a r a l l e l t o t h e l i n e DC. O n t h e i n t e r v a l VW l e t us choose two p o i n t s G and H a t a d i s t a n c e e from H. I f f ( H )

-

> f ( R ) and

(7)

f ( G )

-

> f ( R ) t h e n R i s ( w i t h i n E-accuracy) a minimum p o i n t of the f u n c t i o n f ( Z ) on t h e l i n e VW ( s e e [21 ) and s i n c e f ( M ) c f ( R ) then

f ( z ) > f ( R ) TJZEVWCD

This c a s e was a l s o d i s c u s s e d i n [ I ] . The c a s e l e f t t o be d i s - cussed i s t h e one where e i t h e r f (H) c f ( R ) o r f ( G ) c f ( R ) .

A t t h i s p o i n t o u r method d i v e r g e s from t h e method d e s c r i b e d i n [ I ] . W e w i l l s u g g e s t two m o d i f i c a t i o n s of t h i s method. For t h e s a k e of argument assume t h a t f ( H ) < f ( R ) .

-

1 . F i r s t m o d i f i c a t i o n , I t i s assumed t h a t

Then ( s e e F i g u r e 1 )

TJZEVRCD Moreover,

f ( Z ) > f ( R ) VZEVCD

L e t u s draw t h e l i n e FF1 which p a s s e s through t h e p o i n t R and is p a r a l l e l t o t h e l i n e VC, On t h e i n t e r v a l FF, l e t us choose two p o i n t s T and S a t a d i s t a n c e E from R.

f ( T I

2

f ( R ) and f (S)

2

f ( R )

then R is (within E-accuracy) a minimum p o i n t of f on FF1 and

f ( Z ) > f ( R ) VZEFFICD f ( S ) c f ( R ) t h e n

f - ( Z ) > f ( R )

(8)

and furthermore

,

As a result we get the quadrilateral ABCF which contains a mini- mum point of the function f. Let us compute the ratio of the areas of the quadrilaterals ABCF and ABCD.

Assume that

Let h b e the height of the triangle ABC. Then

Here SABC is the area of the triangle ABC. We have

Let us aefine h2. Since

we have

This leads to

1 a a

'mc

= 'VRC =

2

RC"hZ = A C m h

,

2(l+a1)

(9)

Hence, t h e r a t i o of t h e a r e a of t h e q u a d r i l a t e r a l ABCF t o t h e a r e a of t h e q u a d r i l a t e r a l ABCD i s

S i n c e

a l (2+al

>

2

-

a ( 2 + a ) i f a l

2

a t h i s r e s u l t i m p l i e s ( l + a l ( 1 + a )

I f w e d e c r e a s e

the

u n c e r t a i n t y a r e a a s shown i n Figure 2 ,

similar

arguments l e a d u s a g a i n t o ( 4 ) .

I f a t some s t e p it t u r n s o u t t h a t RD =

a -

a 0 (where a. w i l l be d e f i n e d l a t e r ) t h e n w e draw a l i n e p a s s i n g through D and p a r a l l e l t o AC, and t h e n extend AB and BD u n t i l they i n t e r -

sect

t h i s l i n e (see F i g u r e 3 ) . I n s t e a d of t h e q u a d r i l a t e r a l ABCD l e t us t a k e t h e t r i a n g l e A I B C I . I n t h e c a s e of a q u a d r i - l a t e r a l w e had f o u r l i n e s p a s s i n g through R. I n t h e c a s e of a t r i a n g l e w e t a k e the p o i n t of i n t e r s e c t i o n of i t s medians

( t h e p o i n t R, ) i n s t e a d of R.

Fig. 4 Fig. 3

(10)

If a minimum point of f is not contained in khe quadri- lateral KBFRl (Fig.

3)

then we draw the line W passing through R1 and parallel to tne line AIC1. On the interval

VW

let us choose two points G and H at a distance

E

from R1.

If

f (GI 2 f (R1 and f (HI 2 f (R1

then

R

is (within e-accuracy) a nlinimum point of f on W and

1

f(Z)

>

f(R1) V Z E V B W

Consider the case f

(H) <

f (R,) . Then we conclude that

and furthermore,

f(Z)

>

f(R1) V Z E V B F

Thus, we have a new quadrilateral AIVFCl which contains a mini- mum point.

Let us define the ratio of the area of the quadrilateral AIVFCl and the quadrilateral ABCD. Let h be the height of the triangle ABC. We have

Hence,

1

'A~ w c l

=

3 (1+a) A I C l m h

and

(11)

L e t u s c o n s i d e r t h e c a s e where t h e t r i a n g l e A I R I C l (see F i g . 4 ) does n o t c o n t a i n a minimum p o i n t of f . L e t us draw t h e l i n e VW p a s s i n g through t h e p o i n t R1 and p a r a l l e l t o t h e l i n e A I C 1 , and argue a s above. L e t VBC1 be a t r i a n g l e which c o n t a i n s a minimum p o i n t of f . W e g e t

and t h e r a t i o of t h e a r e a of t h e

new

t r i a n g l e VBC1 and t h e qua- d r i l a t e r a l ABCD i s

7

2 ( l + a ) , i . e . ( 5 ) h o l d s again.

If a

-

< a O

-

0,335, t h e n w e must c o n s t r u c t a t r i a n g l e s i n c e i t g u a r a n t e e s a g r e a t e r d e c r e a s e i n t h e u n c e r t a i n t y a r e a , The q u a n t i t y a. is then a s o l u t i o n of t h e e q u a t i o n

The convergence of t h i s m o d i f i c a t i o n of t h e method from El]

i s g e o m e t r i c w i t h t h e r a t e

Fig. 5 Fig. 6

(12)

2. Second m o d i f i c a t i o n . L e t u s a g a i n (see F i g . 5) assume t h a t

f(M) < f ( R ) Then

f ( Z ) > f ( R ) V Z E O R C D

.

Furthermore,

f ( Z ) > f ( R ) VZEVCD

L e t u s draw t h e l i n e FF, p a s s i n g t h r o u g h R and p a r a l l e l t o t h e l i n e VC. On

tne

i n t e r v a l FFt l e t u s choose two p o i n t s T and S a t

a

d i s t a n c e E from R.

f ( T )

,

f ( R ) and f ( S )

2

f ( R )

t h e n R is ( w i t h i n € - a c c u r a c y )

a

minimum p o i n t o f f on FF1 and

L e t

Then

V Z E F R C D and f u r t h e r m o r e

Now l e t u s a g a i n draw t h e l i n e KL p a s s i n g t h r o u g h R and p a r a l l e l

-

t o FC and p r o c e e d

as

above.

A s a r e s u l t w e g e t t h e new q u a d r i l a t e r a l ABCK which con- t a i n s

a

minimum p o i n t o f f . How l e t u s compute t h e r a t i o o f tile a r e a s of t h e new q u a d r i l a t e r a l ABCX and t h e q u a d r i l a t e r a l ABCD.

(13)

Assume that

Let h be the L i g h t of the. triangle ABC. It follows from the computations above that

Let us find h3. Since SAFC =

1

A C - h 3 and 2

we

have

Therefore

a - a , a - a , .I

The ratio of the areas of the new quadrilateral

ABCK

and the quadrilateral ABCD is

(14)

S i n c e

it f o l l o w s from ( 6 ) t h a t

If w e d e c r e a s e t h e u n c e r t a i n t y a r e a a s shown i n F i g . 6 , w e a g a i n o b t a i n t h e

same

r e l a t i o n (7)

.

L e t (see F i g . 7 )

f (h) < f ( R ) Then

V Z E V R C D and f u r t h e r m o r e

f ( Z ) > f ( R ) TTZEVCD

L e t u s draw t h e l i n e FF1 . p a s s i n g t h r o u g h t h e p o i n t R and p a r a l l e l t o t h e l i n e VC. On the i n t e r v a l FF1 l e t u s c h o o s e two p o i n t s T and S a t a d i s t a n c e c from R. I f

f ( T )

2

f ( R ) and f ( S ) f f ( ~ )

t h e n R is ( w i t h i n &-accuracy) a minimum p o i n t o f f on FF1 and

L e t

f (T) < f ( R ) .

(15)

0

Fig.

7

Then

0

Fig.

8

Let us again draw the line

KL

passing through

R

and parallel to the line

VF1

and argue as above.

As

a result we get a new quacl-

rilateral

ABFIK

which contains a :nininun point of f. Find the ratio of the areas of the quadrilaterals

ABFIK

and ABCD.

Assume that

The triangles DRC and ABR are similar since

We have

=

a and BC is parallel to AB.

AB

The line

VW

is parallel to the line DC

by

construction. Thus,

W U A B .

The triangles

ABD

and VRD are also similar since the

(16)

c o r r e s p o n d i n g a n g l e s a r e e q u a l . T h e r e f o r e

Analogously t h e f a c t t h a t t h e t r i a n g l e s BCD and BWR a r e s i m i l a r i m p l i e s t h a t

T h e r e f o r e VR = WR and L ARV = L CRW. W e have W1 = WW1. The l i n e FF1 i s p a r a l l e l t o the l i n e VC by c o n s t r u c t i o n . S i n c e t h e t r i a n g l e s VWC a n a RWFl a r e s i m i l a r , w e have

Hence,

W e have

From t h e computations above i t f o l l o w s t h a t

a 1 a aa

RC =

-

1 + a l A c t W1 h2

- - -

h' 'VCD

- -

2 ( 1 + a 1 ) AC-h

,

Thus,

Then

(17)

The ratio of the areas of the new quadrilateral ABFIK and the quadrilateral ABCD is

(since a 1 = a).

If we decrease the uncertainty area as shown in Fig. 8 then we again have (8)

.

The estimate (8) is worse than (7)

.

In the case

we always have an estimate better than (8). If at some step

then we enlarge the quadrilateral to a triangle and instead

of

the quaarilateral ABCD we take the triangle A l BCl (Fig. 9)

.

Fig. 9 Fig. 10

(18)

L e t R1 be t h e p o i n t o f i n t e r s e c t i o n of t h e m e d i a n s o f t r i a n g l e AIBC1. L e t t h e r e be no minimum p o i n t of f i n t h e q u a d r i l a t e r a l KBFR1. Then l e t

u s

draw t h e l i n e VW p a s s i n g through t h e p o i n t R1 and p a r a l l e l

t o

t h e l i n e A I C 1 . On t h e i n t e r v a l VW choose t w o p o i n t s G and

H

a t a d i s t a n c e E from R1. I f

f ( G )

-

> f ( R 1 ) and f ( H )

-

> f ( R 1 )

t h e n R1 i s ( w i t h i n &-accuracy) a minimum p o i n t of f on VW and

f ( Z ) > f ( R 1 ) VZEVBW

I n t h e c a s e f ( H ) < f (R1 ) w e have

and mpreover

L e t

u s

draw t h e l i n e V,F

,

p a s s i n g through t h e p o i n t R, and p a r a l l e l t o t h e l i n e

YF,

and a r g u e a n a l o g o u s l y . L e t

a

q u a d r i - l a t e r a l Al W I C l b e o b t a i n e d which c o n t a i n s

a minimum

p o i n t o f f . L e t h be the h e i g h t of t h e triangle'ABC. W e have

-

(l+a)AIC1 oh-, S,,

-

1

'VBF

- 8 -

'VFR~ I

-

36 ( l + a ) A I C l * h

,

1

The r a t i o o f t h e new q u a d r i l a t e r a l AIWICl and t h e q u a d r i l a t e r a l Ai3CD i s

I f

w e

d e c r e a s e t h e t r i a n g l e a s shown

i n

F i g , 10, t h e n t h e r a t i o of t h e a r e a s of t h e new t r i a n g l e FBC1 and t h e q u a d r i l a -

(19)

t e r a l ABCD i s

The e s t i m a t e ( 9 ) i s worse t h a n t h e e s t i m a t e ( 1 0 )

.

then it i s n e c e s s a r y t o c o n s t r u c t a t r i a n g l e . The q u a n t i t y a. i s

a

s o l u t i o n of - t h e e q u a t i o n

This m o d i f i c a t i o n of t h e method d i s p l a y s g e o m e t r i c convergence w i t h a r a t e q 0.8425.

1. V.F. Demyanov. "On minimizing a convex f u n c t i o n on a p l a n e w , Zh. Vychisl. M a t . M a t , F i z . 1 6 ( 1 ) (1976) 247-251.

2. D . J . Wilde. Optimum Seeking Methods. P r e n t i c e - H a l l I n t e r n . S e r i e s i n t h e P h y s i c a l

and

Chemical Engineering S c i e n c e s , P r e n t i c e - H a l l , Englewood C l i f f s , N . J . , 1964.

Referenzen

ÄHNLICHE DOKUMENTE

[Rus93b] , Regularized decomposition of stochastic programs: Algorithmic tech- niques and numerical results, WP-93-21, International Institute for Applied Systems

The problem of minimizing nonconvex nondifferentiable func- tions poses a considerable challenge to specialists in mathe- matical programming.. Most of the difficulties arise from

These results disproved the modulation of the endogenous AR in the prostate cancer cell line LNCaP under DHRS7 depletion but supported the hypothesis of DHRS7

This theorem gives us a technique to improve a given valid cut (e.g. Tui's cut or the cut defined in Theorem 3.2).. become redundant for specifying the reduced feasible region Y A

to demonstrate that the full exploitation of special structure will enable us to generate a cut which is much deeper than Tui's cut and that the cutting plane algorithm can be used

In addition, instead of irregular space–time samples, we show that uniform dynamical samples at sub-Nyquist spatial rate allow one to stably reconstruct the function f away

It would be interesting, even for the plane, what information about not necessarily point-symmetric convex bodies (or even polygons) is contained in the behavior of the covariogram in

In particular, we obtain a reconstruc- tion of the potential function and its derivatives using only nodal data.. Results are a generalization of Law’s and