• Keine Ergebnisse gefunden

On Minimizing the Sum of a Convex Function and a Concave Function

N/A
N/A
Protected

Academic year: 2022

Aktie "On Minimizing the Sum of a Convex Function and a Concave Function"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

ON M I N I M I Z I N G THE SUM OF A CONVEX FUNCTION AND A CONCAVE FUNCTION

L,N, POLYAKOVA

J u n e 1 9 8 4 CP-84-28

CoZZaborative Papers r e p o r t work which h a s n o t been p e r f o r m e d s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d Systems A n a l y s i s and which h a s r e c e i v e d o n l y l i m i t e d r e v i e w , V i e w s o r o p i n i o n s e x p r e s s e d h e r e i n do n o t n e c e s s a r i l y r e p r e s e n t t h o s e o f t h e I n s t i t u t e , i t s - N a t i o n a l Member O r g a n i z a t i o n s , o r o t h e r o r g a n i - z a t i o n s s u p p o r t i n g t h e work,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 L a x e n b u r g , A u s t r i a

(2)
(3)

PREFACE

I n t h i s p a p e r , t h e a u t h o r p r e s e n t s a n a l g o r i t h m f o r m i n i - m i z i n g t h e sum o f a convex f u n c t i o n and a concave f u n c t i o n . The f u n c t i o n s i n v o l v e d a r e n o t n e c e s s a r i l y smooth and t h e r e - s u l t i n g f u n c t i o n i s q u a s i d i f f e r e n t i a b l e . The main p r o p e r t y of s u c h f u n c t i o n s i s t h e non-uniqueness of d i r e c t i o n s of s t e e p e s t d e s c e n t ( a n d a s c e n t ) , and t h e r e f o r e s p e c i a l p r e c a u t i o n s must be t a k e n t o g u a r a n t e e t h a t t h e a l g o r i t h m c o n v e r g e s t o a s t a t i o n a r y p o i n t .

T h i s .paper i s a c o n t r i b u t i o n t o r e s e a r c h on n o n d i f f e r e n t i a b l e o p t i m i z a t i o n c u r r e n t l y underway w i t h i n t h e System and D e c i s i o n S c i e n c e s Program.

A N D R Z E J W I E R Z B I C X I Chairman

System and D e c i s i o n S c i e n c e s

(4)
(5)

ON MINIMIZING THE SUM OF A CONVEX FUNCTION AND A CONCAVE FUNCTION

L.N. POLYAKOVA

D e p a r t m e n t o f A p p l i e d M a t h e m a t i c s , L e n i n g r a d S t a t e U n i v e r s i t y , U n i v e r s i t e t s k a y a n a b . 7 / 9 , L e n i n g r a d 199164, U S S R

Received 27 December 1 9 8 3 Revised 2 4 Rarch 1 9 8 4

We consider here the problem of minimizing a particular subclass of quasidifferentiable functions: those which may be represented as the sum of a convexfunctionanda

concave function. It is shown that in an n-dimensional space this problem is equivalent to the problem of

minimizing a concave function on a convex set. A successive approximations cethod is suggested; this

makes use-of'some of the principles of E-steepest-descent- type approaches.

Key w o r d s : Quasidifferentiable Functions, Convex Functions,

Concave Functions, E-Steepest-Descent Methods.

1

.

Introduction

The problem of minimizing nonconvex nondifferentiable func- tions poses a considerable challenge to specialists in mathe- matical programming. Most of the difficulties arise from the fact that there may be several directions of steepest descent.

To solve this problem requires both a new technique and a new approach. In this paper we discuss a special subclass of non- differentiable functions: those which can be represented in the form

(6)

where f is a finite function which is convex on En and f2 is a 1

finite function which is concave on E

.

Then f is continuous n

and quasidifferentiable on En

,

with a quasidifferential at x E En which may be taken to be the pair of sets

where

In other words, af(x) is the subdifferential of the convex

function f at x E En (as defined in convex analysis) and af (x) 1

is the superdifferential of the concave function f2 at x E En

.

Consider the problem of calculating

inf f (x)

.

xEEn

Quasidifferential calculus shows that for x E E tobe

*

a minimum n

point of f on En it is necessary that

We shall now show that the problem of minimizing f on the space En can be reduced to that of minimizing a concave function on a convex set.

(7)

L e t R d e n o t e t h e e p i g r a p h o f t h e convex f u n c t i o n f l

,

i . e . ,

R = e p i f = { z = [ x , ~ ] E En x E l h ( z )

-

f l ( X I

-

11 4 01 t

and d e f i n e t h e f o l l o w i n g f u n c t i o n on En x E l :

S e t R i s c l o s e d and convex and f u n c t i o n $ i s q u a s i d i f f e r e n - t i a b l e a t any p o i n t z E E

n x E l

.

Take a s i t s q u a s i d i f f e r e n t i a l a t z = [ x , p ] t h e p a i r o f s e t s D $ ( z ) = [ { O }

,

a f 2 ( x ) x i l l ]

,

where 0 E E n + l

.

L e t u s now c o n s i d e r t h e problem o f f i n d i n g

I t i s well-known ( s e e , e . g . , [ 31) t h a t i f a concave f u n c t i o n a c h i e v e s i t s i n f i m a l v a l u e on a convex s e t , t h i s v a l u e i s a c h i e v e d on t h e boundary o f t h e s e t .

Theorem 1 . For a p o i n t x * t o b e a s o l u t i o n o f p r o b l e m ( I ) , i t i s b o t h n e c e s s a r y a n d s u f f i c i e n t t h a t p o i n t [ x * , p * ] be a s o l u - t i o n t o p r o b l e m ( 3 ) , w h e r e P * = f ( x * )

.

Proof

N e c e s s i t y . L e t x* b e a s o l u t i o n o f problem ( 1 )

.

Then

11 + f ( x ) ? f l ( x ) + f 2 ( x ) > f l ( x * ) + f 2 1 x * ) V p 2 f l ( x ) , VxGEn= ( 4 ) 2

(8)

But ( 4 ) i m p l i e s t h a t

where p* = f l ( x * )

.

Thus t h e r e e x i s t s a z * = [ x * , p * ] E R such t h a t

$ ( z ) 1 )I ( z * ) Vz E R

.

T h i s p r o v e s t h a t t h e c o n d i t i o n i s n e c e s s a r y .

S u f f i c i e n c y . T h a t t h e c o n d i t i o n i s a l s o s u f f i c i e n t c a n b e proved i n a n a n a l o g o u s way by a r g u i n g Backwards from i n e q u a l i t y ( 5 ) .

2 . A n u m e r i c a l a l g o r i t h m

S e t E 2 0

.

A p o i n t x o E E i s c a l l e d an E - i n f - s t a t i o n a r y n

p o i n t o f t h e f u n c t i o n f on En i f

where

i . e .

, a

f ( x o ) i s t h e E - s u b d i f f e r e n t i a l o f t h e convex f u n c t i o n

'E

f l a t x O

.

F i x g E En and s e t

(9)

Theorem 2. For a p o i n t xo t o be an E - i n f - s t a t i o n a r y p o i n t o f t h e f u n c t i o n f on E~

,

i t i s b o t h n e c e s s a r y and s u f f i c i e n t t h a t

a,£ (x,)

min a4 2 0 .

Il

g ll = 1

N e c e s s i t y . Let xo be an E-inf-stationary point of f on En

.

Then from (6) it follows that

Eience

min max ( z , ~ )

V w

sf(xol

,

I I ~ I I = I

z&+a,f(~~)

-

and thus for every g E En, lgll=l we have

min w a f (xo)

However, this means that

proving that the condition is necessary. That it is also suf- ficient can be demonstrated in an analogous way, arguing back- wards from the inequality ( 9 )

-

(10)

-6-

Note that since the mapping

is Hausdorff-continuous if E

>

0 (see, e.g., [I]), then the following theorem holds.

Theorem 3. If E

>

0 t h e n t h e f u n c t i o n max (v,g) i s con- vaaEf (x)

t i n u o u s i n x o n E n f o r any f i x e d g E En

.

Assume that xo is not an E-in£-stationary point. Then we can describe the vector

aEf(xO) gE (x0) = arg min

Il

g ll = 1

a

9

as a direction of E-steepest-descent of function f at point

Xo

It is not difficult to show that the direction

where vOE E CEf(xO) WO E gf(x0) and

-

max min Ilv+wl = -llv + w

ll

= a E ( x o )

,

WET£ (x") fiaEf (x,) O E

o

is a direction of E-steepest-descent of function f at point x 0

-

Now let us consider the following method of successive ap- proximations.

(11)

F i x E

>

0 a n d c h o o s e an a r b i t r a r y i n i t i a l a p p r o x i m a t i o n x O E En

.

Suppose t h a t t h e Lebesque s e t

i s bounded. A s s u m e t h a t a p o i n t x E E~ h a s a l r e a d y b e e n f o u n d . If - a f ( x k )

-

C a_,£ ( x k )

,

t h e n xk i s a n E - i n f - s t a t i o n a r y p o i n t of f o n E~ ; i f n o t , t a k e

X k+ 1 = Xk + a k g E k a k = a r g min f ( x k + a g

,

a 2 0 & k

where g E k = g , ( x k ) i s a n E - s t e e p e s t - d e s c e n t d i r e c t i o n o f f a t Xk '

Theorem 4 . T h e f o l l o w i n g r e l a t i o n h o l d s :

l i m a , ( x k ) = 0

.

k-

P r o o f . W e s h a l l p r o v e t h e t h e o r e m by c o n t r a d i c t i o n . Assume t h a t a s u b s e q u e n c e i x k 1 of s e q u e n c e { x k } a n d a number a>O e x i s t

S

s u c h t h a t

(The r e q u i r e d s u b s e q u e n c e must e x i s t s i n c e D ( x o ) i s c o m p a c t . ) W i t h o u t l o s s o f g e n e r a l i t y , w e c a n assume t h a t x -x

*

I: ks

( c l e a r l y , x E D ( x O ) )

.

Then

(12)

where

The t e r m o ( a t g E k ) a p p e a r s i n t h e above e q u a t i o n due t o t h e con- s

c a v i t y of f 2

.

The f a c t t h a t f u n c t i o n f 2 i s concave i m p l i e s t h a t o ( a t g E k s ) 5 0 ' d a > O t WgEk E En t

S

and t h e r e f o r e

f ( x k + a g E k ) ( x k 1 +

la

max ( v t g E k ) d r

+

s s S O v E a f l (xk +Tg,k ) s

S S

+

a min (wt g

6 a f 2 ( x k E k S S

S i n c e

a

f ( x ) 3 a f ( x ) f o r e v e r y x E En

,

we have

E 1 1

max ( v t g ~ k s 2 max t

e a E f l

( x k +TgEk )

S S

and t h u s

(13)

f ( x k +ag s f ( x k )

+ l a

max ) d ~

+

s E k S s O v E a E f 1 ( x k + r g E k )

S S

+

a min

~ ~ ( X a 1 f(w,gEks ks

S i n c e t h e mapping a E f l i s H a u s d o r f f - c o n t i n u o u s a t t h e p o i n t x

* ,

t h e r e e x i s t s a 6

>

0 s u c h t h a t

where S r ( z ) = {x E E n ] llx-zll 6 r }

.

A l s o , t h e r e e x i s t s a number

K

>

0 s u c h t h a t

and hence

T h e r e f o r e

(14)

Inequality (10) contradicts the fact that sequence {f(xk)} is bounded, thus proving the theorem.

References

[I] E.A. Nurminski, "On the continuity of &-subgradient map- pings", C y b e r n e t i c s 5 (1977) 148-1 49.

[2] L.N. Polyakova, "Necessary condtitions for an extremum of a quasidifferentiable function", V e s t n i k L e n i n g r a d s k o g o

U n i v e r s i t e t a 13 ( 1 980) 57-62 (translated in V e s t n i k L e n i n g r a d U n i v . Math. 13 (1981) 241-247).

[3] R. T. Rockafellar

,

Convex Ana Z y s i s (Princeton University Press, Princeton, New Jersey, 1970).

Referenzen

ÄHNLICHE DOKUMENTE

In addition, instead of irregular space–time samples, we show that uniform dynamical samples at sub-Nyquist spatial rate allow one to stably reconstruct the function f away

[Rus93b] , Regularized decomposition of stochastic programs: Algorithmic tech- niques and numerical results, WP-93-21, International Institute for Applied Systems

In this paper the author considers the problem of minimiz- ing a convex function of two variables without computing the derivatives or (in the nondifferentiable case)

These results disproved the modulation of the endogenous AR in the prostate cancer cell line LNCaP under DHRS7 depletion but supported the hypothesis of DHRS7

(However, -we have not investigated this further.) Note also that the results show the hybrid method doing better than either of its specializations on

It would also include endogenous variables such as industries located in the different regions and waste flows, by-products available with quantities and costs, production processes

1 the large percentage of galleries with proportions over 1:8 in the 18th century is due to the four galleries of the Palazzo Doria Pamphili (nos. 150-153) that were created

In this context, Poland should push forward a euro- accession roadmap by the end of the year and ensure dialogue with both France and Germany to influence a