• Keine Ergebnisse gefunden

Grundlagen und Anwendungen der Physiologie-basierten Toxikokinetik-Modellierung

N/A
N/A
Protected

Academic year: 2022

Aktie "Grundlagen und Anwendungen der Physiologie-basierten Toxikokinetik-Modellierung"

Copied!
31
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Prof. Wilhelm Huisinga

Computational Physiology Group Universität Potsdam

Grundlagen und Anwendungen der Physiologie-basierten

Toxikokinetik-Modellierung

47. Sitzung der HBM Komission 24./25. März 2014, Berlin

(2)

Outline 1.  The potential

2.  The structure of physiologically-based toxicokinetic models

3.  Parameterization (incl. underlying model assumptions) and parameter sources

4.  Example

5.  Summary & References

(3)

•  Model organisms

•  mouse as a model for human

•  yeast as a simple eukaryote

•  Biological model:

—  interaction network

—  cartoon

•  Mathematical model:

—  representation of biological model in terms of mathematical language

—  in our context deterministic

differential or algebraic equations

The use of the term model in different contexts

org C

C C Q

d C

V ⎛ ⎞

CL

(4)

The potential

external exposure

systemic exposure (parent + metabolite) exposure at

site of action

effect

PBTK

MBTD

PBTK modeling offers a way to

•  integrate data from various sources

•  study ‘what-if’ scenarios

•  quantify the impact of

variability and uncertainty

•  identify critical parameters

•  ...

(5)

The potential

external exposure

systemic exposure (parent + metabolite) exposure at

site of action

effect

PBTK

MBTD

Important to consider

•  variability

•  uncertainty

•  species differences

•  in vitro-in vivo differences

(6)

•  Cell-culture in vitro assay data

à  Conclusions for toxicological risk assessment?

•  Link from external exposure to systemic concentration and/or concentration at target site?

•  Measure of exposure: Cmax, AUC, ...? Parent compound or metabolite?

Toxicity measured in in vitro assays

concentration of xenobiotic

measure of toxicity

(7)

The structure of

physiologically-based

toxicokinetic models

(8)

PBTK modelling

•  Main features:

—  mechanistic model of principal ADME processes:

(Absorption, Distribution, Metabolism, and Excretion)

—  compartments have anatomical interpretation

—  parameterized by physiological, anatomical and compound-specific data

•  Long history in toxicokinetics

—  Teorell (1937) first PBPK model of therapeutically important, non-volatile chemical

—  Review: Gerlowski & Jain, PBPK modelling: Principles and applications, J Pharm Sci 72 (10), 1983

•  More recent history in drug discovery and development

—  predominantly since 2000 due to large amount of parameters needed

—  breakthrough with seminal papers by Poulin&Theil, J Pharm Science (2000-2002)

(9)

Biological complexity

Molecular

dynamics Systems biology

Toxicokinetics

http:www.sirinet.net/~jgjohnson/intro.html

(10)

•  Top down approach

—  organs, tissue and other spaces, interconnected by the blood flow

—  Mass balance equations (ODEs) for concentrations in tissues/organs

Physiologically based pharmacokinetic models

Poulin & Theil, J Pharm Sci. (2002); Luepfert & Reichel, Chem Biodiv, (2005);

Von Kleist, & Huisinga, J Pharmacokinet Pharmacodyn (2007)

(11)

Mass balance differential equations for each tissues/organ

Well-stirred tissue model:

V

tis

d

dt C

tis

= Q

tis

! C

in

" C

tis

K

tis

#

$ % &

' ( " CL

int

! C

tis

inflowing

blood conc. out-flowing blood conc.

ss tis

tis

C

K = C

,

Steady-state tissue-to-blood partition coefficient:

(12)

Mass balance differential equations for lung

Rate of change in lung:

Blood:air partition coefficient alveolar space

P

B

Q

P

C

in

C

out

Q

co

C

ven

C

art

P

blo:air

= C

art

C

out

Poulin & Krishnan, Toxicol Appl Pharmacol (1996)

alveolare ventilation rate

(13)

Parameterization and

parameters sources

(14)

A rich source

of data

(human: adult

and children)

(15)

Accounting for inter-individual variability

(16)

A rich source of data (animals:

mice and rats)

(17)

Parameterization of PBPK models

Tissue-to-blood partition coefficient:

Species specific

•  blood flows, organ volumes

Drug specific

•  intrinsic clearance (CLint)

•  tissue-to-blood partition coefficients

•  Administration (dose,

ss tis

tis

C

K = C

,

Rate of change in tissue:

V

tis

d

dt C

tis

= Q

tis

! C

in

" C

tis

K

tis

#

$ % &

' ( " CL

int

! C

tis

inflowing

blood conc. out-flowing blood conc.

(18)

A-priori prediction of partition coefficients

tissue

• Idea: Consider tissue as composition of constituents important for xenobiotic distribution

tissue constituents

“Kunst aufgeräumt“ by Ursus Wehrli

ne u tr al lip id s

wat er phospholi pi ds pr ot ei n s et c

(19)

•  Ansatz based on

mass balance equation

More mathematical

ne u tr al lip id s

inte rs titia l w ate r phospholi pi ds

b in d in g p ro te in s cellular wat er

in vitro assay Octanol

Water

nl octanol

:

C

C C

P

ow

= C ≈ Approximate partition

coefficients based on

in vitro data

(20)

Hepatic metabolism

V

tis

d

dt C

tis

= Q

tis

! C

in

" C

tis

K

tis

#

$ % &

' ( " CL

int

! C

tis

intrinsic hetpatic clearance (potentially also saturable)

(21)

Determining hepatic intrinsic clearance from in vitro data

•  Hepatocyte assay

•  Microsomal assay

•  Scaling approach to hepatic intrinsic clearance

•  with scaling factors

(22)

Parameterization of PBPK models

Species specific

•  blood flows, organ volumes

•  tissue composition data

Drug specific

•  intrinsic clearance CLint

•  blood:plasma ratio B:P

•  fraction unbound fuP

•  octanol-water coeff Pow

•  pKa value

•  Administration (dose,

route, etc) blood ss

ss tis

tis

C

K C

,

=

,

Tissue-to-blood partition coefficient:

Poulin/Theil (2000), Rodgers/Rowland (2005), Schmidt (2008)

Rate of change in tissue:

V

tis

d

dt C

tis

= Q

tis

! C

in

" C

tis

K

tis

#

$ % &

' ( " CL

int

! C

tis

(23)

Example

(24)

Example

(25)

Example: exposure of styrene at 100 ppm for 8h

0 5 10 15

0 2 4 6 8

exposure of styrene at 100 ppm for 8 hours

time [h]

concentration [mg/l] in artery

newborn 1year 5years 10years 15years adult

0 5 10 15

0 5 10 15 20

exposure of styrene at 100 ppm for 8 hours

concentration [mg/l] in skeleton

newborn 1year 5years 10years 15years adult

0 5 10 15

0 20 40 60 80

exposure of styrene at 100 ppm for 8 hours

time [h]

concentration [mg/l] in fat

newborn 1year 5years 10years 15years adult

(26)

Non-linear relationship between external and systemic exposure

•  Underlying reason: saturable metabolism

1 ppm 100 ppm

(27)

Exposure ratio Child:Adult depending on external exposure (at 8h)

•  exposure ratios also depend on time.

(28)

Further examples

Gentry, Clewell, Anderson, ENVIRON, manuscript

(29)

The potential

external exposure

systemic exposure (parent + metabolite) exposure at

site of action

effect

PBTK

MBTD

Important to consider

•  variability

•  uncertainty

•  species differences

•  in vitro-in vivo differences

(30)

•  Gerlowski & Jain, PBPK modelling: Principles and applications, J Pharm Sci 72 (10), 1983

•  Poulin & Krishnan/Theil, 1995-2002

•  K. Abraham, H. Mielke, W. Huisinga and U. Gundert-Remy, Elevated Internal Exposure of Children in Simulated Acute Inhalation of Volatile Organic

Compounds: Effects of Concentration and Duration, Arch Toxicol 79 (2005)

•  M. Reddy et al, Physiologically-based Pharmacokinetic Modeling, Wiley 2005

•  WHO, Characterization and Application of PBPK models in Risk Assessment, 2010

•  H. Mielke, U. Gundert-Remy,

Physiologically Based Toxicokinetic Modelling as a Tool to Support Risk Assessment: Three Case Studies, J Toxicology, 2012

•  and many more.

Some references

(31)

Acknowledgement

•  U. Gundert-Remy (Berlin)

•  K. Abraham, H. Mielke (BfR, Berlin)

•  For information:

PhD Program PharMetrX, bridging pharmacy and mathematics at the Freie Universität Berlin and the Universität Potsdam/

Germany, supported by

Referenzen

ÄHNLICHE DOKUMENTE

prosthetischen Gruppen) leitet Elektronen an die Chinone (UQ), die einen H + - translozierenden Cyclus durchlaufen und Elektronen an den Cytochrom bc 1 -Komplex leiten.. Die

Elektronentransport und chemiosmotische Energiekonservierung durch Translokation von Protonen und Natrium- Ionen steht nur eine sehr geringe Redoxspanne zur Verfügung.

Ansatz 5: 3 min Licht + Luft, mit 50 µM TCS Organismen: Rhodospirillum und/oder Roseobacter. TCS ist ein (giftiges!) Protonophor, macht die Membran für Protonen durchlässig,

Dogma der biologischen Unfehlbarkeit Was auf biologische Weise gebildet wurde, lässt sich auch biologisch wieder abbauen.. Gilt ohne Ausnahme, aber

o verursachen die viele der Todesfälle durch Infektionen unter den Menschen o Malaria >100 Millionen Fälle pro Jahr, durch Plasmodien ausgelöst, Übertragung

• BSE-Erreger: nur Protein, das bösartige Veränderung eines Membran-Proteins auslöst

• BSE-Erreger: nur Protein, das bösartige Veränderung eines Membran-Proteins auslöst

At that point the new theories will point to the information that is most relevant to risk assessment and early warning, and that information will become the second type of data, the