• Keine Ergebnisse gefunden

Prediction of Arctic sea ice on subseasonal to seasonal time scales

N/A
N/A
Protected

Academic year: 2022

Aktie "Prediction of Arctic sea ice on subseasonal to seasonal time scales"

Copied!
41
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Prediction of Arctic sea ice on subseasonal to seasonal time scales

Lorenzo Zampieri

lorenzo.zampieri@awi.de

Alfred Wegener Institute for Polar and Marine Research

8 th International Workshop on Sea Ice Modelling Data Assimilation and Verification

November 3 rd , 2017

(2)

Overview

Research Motivation and Objectives S2S Forecasts and Observations The Verification Metrics

Predictive Skills of S2S Forecasts Systems

Comparison of Predictive and Prescriptive Systems Considerations on Metrics Behavior

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 1 / 26

(3)

Research Motivations

and Objectives

(4)

Key Questions

Do (sub)seasonal forecast systems have predictive skills for the sea ice edge position?

Are we able to properly verify the sea ice distribution in the Arctic?

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 2 / 26

(5)

Key Questions

Do (sub)seasonal forecast systems have predictive skills for the sea ice edge position?

Are we able to properly verify the sea ice distribution in the Arctic?

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 2 / 26

(6)

Forecasts and

True State

(7)

The Forecasts - S2S Database

Op. Centers Ocean Sea Ice Frequency Ens. Size Length

BoM 3 twice a week 33 62 days

ECCC weekly 21 32 days

ECMWF 1 twice a week 51 46 days

HMCR weekly 20 61 days

ISAC-CNR weekly 41 31 days

JMA twice a week 25 33 days

CMA 3 3 daily 4 60 days

ECMWF 2 3 3 twice a week 51 46 days

KMA 3 3 daily 4 60 days

M´ et´ eo France 3 3 weekly 51 32-61 days

NCEP 3 3 daily 16 44 days

UKMO 3 3 daily 4 60 days

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 3 / 26

Vitart et al. (2015)

(8)

The ”True State”

ASI sea ice concentration data produced by University of Bremen.

The resolution is ∼ 6 km.

Models own analysis

The idea behind the models own analysis is to approximate the real sea ice conditions with the control forecasts evaluated at t = 0.

Assuming that the initialization process is handled properly!

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 4 / 26

Spreen et al. (2008)

(9)

The ”True State”

ASI sea ice concentration data produced by University of Bremen.

The resolution is ∼ 6 km.

Models own analysis

The idea behind the models own analysis is to approximate the real sea ice conditions with the control forecasts evaluated at t = 0.

Assuming that the initialization process is handled properly!

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 4 / 26

(10)

Verification Metrics

(11)

IIEE - Integrated Ice Edge Error

—— Observation edge

—— Forecast edge

IIEE = O + U

IIEE = AEE + ME

Absolute Extent Error AEE = |O − U|

&

Misplacement Error ME = 2min(O, U )

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 5 / 26

Goessling et al. (2016)

(12)

IIEE - Integrated Ice Edge Error

—— Observation edge

—— Forecast edge

IIEE = O + U

IIEE = AEE + ME

Absolute Extent Error AEE = |O − U|

&

Misplacement Error ME = 2min(O , U )

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 5 / 26

(13)

SPS - Spatial Probability Score

SPS is the evolution of IIEE in the probabilistic forecasts world.

SPS is defined as the spatial integration of the local (Half) Brier Score.

SPS = Z

S

(p o [sic ≥ 15%] (~ x) − p f [sic ≥ 15%] (~ x)) 2 dS

SPS can be applied to deterministic forecast, in this case SPS = IIEE It allows a probabilistic description of the observations

SPS is an area (m 2 )

Dividing the SPS (or the IIEE) by the climatological length of the edge we obtain an estimation of the mean distance between the edges

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 6 / 26

Goessling and Jung

(14)

MHD - Modified Hausdorff Distance

MHD(A, B ) = max (

1

|A|

X

a∈A

d (a, B), 1

|B|

X

b∈B

d (A, b) )

d (a, B ) = inf

b∈B [d (a, b)]

d (A, b) = inf

a∈A [d (a, b)]

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 7 / 26

Dukhovskoy et al. (2015)

(15)

Benchmark values for IIEE and SPS

IIEE and SPS are not straightforward to interpret without reference values.

Those have been calculated using the observed sea ice concentration Persistence from the previous year (PER1)

Persistence from forecast beginning (PERF) Climatological median ice edge (CMID)

Jan 01 Jan 15 Feb 01 Feb 15 Mar 01

0.00.51.01.52.0

Benchmark values for IIEE and SPS from AMSR2 data

Forecast Time

106

(

km

)

2

PER1 PERF CMIE

Jul 01 Jul 15 Aug 01 Aug 15 Sep 01

01234

Benchmark values for IIEE and SPS from AMSR2 data

Forecast Time

106

(

km

)

2

PER1 PERF CMIE

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 8 / 26

(16)

Predictive Skills of

S2S Forecast Systems

(17)

Single Forecast Verification

Ens. members: 50 Start: 01.01.2016

Forc. length: 60 days

Jan 01 Jan 15 Feb 01 Feb 15 Mar 01

0.00.51.01.5

Verification of Sea Ice Edge Position Météo France − AMSR2 Forecast start: 2016−01−01

Forecast Time

106

(

km

)

2

IIEE SPS ME AEE benchmark

Jan 01 Jan 15 Feb 01 Feb 15 Mar 01

0.00.40.81.2

Ensemble Members Spread Météo France Forecast start: 2016−01−01

Forecast Time

106

(

km

)

2

IIEE(em−em)

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 9 / 26

(18)

Extensive visualization of the results

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 10 / 26

12/2006

08/2016

(19)

Extensive visualization of the results

●●

●●

●●●●

●●

●●

●●

●●

●●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●●

●●

●●●●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●

●●●●

●●●●●

●●

●●

●●●

●●

●●

●●

●●●

●●●

●●

●●●

●●●

●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●●

●●●

●●

●●

●●

●●●●●●

●●●●

●●

●●●

●●

●●

●●

●●

●●●●

●●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●●●

●●●

●●●

●●

●●●●

●●

●●

●●●

●●●

●●●●●

●●

●●●

●●

●●●

●●

●●

●●

●●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●●

●●●

●●●●●

●●●●

●●●●

●●●●

●●

●●

●●●●

●●

●●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●●●●

●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●●●●●●●

●●

●●

●●

●●●●

●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●

●●

●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●●●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Target Time

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Spatial Probability Score Model: UKMO Observations: ASI Sea Ice Concentration

10 6 km 2

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 11 / 26

(20)

UKMO Predictive Skills

●● ● ● ● ● ●● ●

● ● ● ● ●● ●

● ● ●●● ● ● ● ●●● ● ●●

● ●

●●

● ●

● ●

● ●●

●●

●●

−1.0 −0.5 0.0 0.5 1.0

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

Normaliz ed SPS

UKMO

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Underestimation [%]

Overestimation [%]

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Misplacement Err or [%]

Absolute Extent Err or [%]

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 12 / 26

(21)

CMA Predictive Skills

●●

● ●●

● ●

● ●

●●●

● ●

● ●

−3 −2 −1 0 1

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

Normaliz ed SPS

CMA

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

● ● ●● ● ●● ● ● ● ●●● ●● ● ● ● ● ● ●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Underestimation [%]

Overestimation [%]

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

● ● ●● ● ●● ● ● ● ●

●● ●● ● ● ● ● ● ●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Misplacement Err or [%]

Absolute Extent Err or [%]

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 13 / 26

(22)

ECMWF 2 Predictive Skills

●●

●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ●●●●●●●●●

−1.0 −0.5 0.0 0.5 1.0

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

Normaliz ed SPS

(&0:)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Underestimation [%]

Overestimation [%]

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Misplacement Err or [%]

Absolute Extent Err or [%]

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 14 / 26

(23)

KMA Predictive Skills

●●● ● ●

● ●● ● ● ● ●

●● ●

● ● ● ●● ●●●●● ●● ●

● ● ●

●●

−1.0 −0.5 0.0 0.5 1.0

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

Normaliz ed SPS

KMA

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Underestimation [%]

Overestimation [%]

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Misplacement Err or [%]

Absolute Extent Err or [%]

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 15 / 26

(24)

M´ et´ eo France Predictive Skills

● ●

● ● ●

● ●

−1.0 −0.5 0.0 0.5 1.0

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

Normaliz ed SPS

Météo France

●●●●●●●●●●●●●● ●●●●●● ●●●●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Underestimation [%]

Overestimation [%]

●●●●●●●●●●●●●● ●●●●●● ●●●●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Misplacement Err or [%]

Absolute Extent Err or [%]

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 16 / 26

(25)

NCEP Predictive Skills

●●● ●

● ●● ●

● ●● ●

● ● ● ●

● ●● ●

●●

●●●

●●

●● ●

●●

● ●

●●

−1.0 −0.5 0.0 0.5 1.0

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

Normaliz ed SPS

NCEP

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Underestimation [%]

Overestimation [%]

● ● ● ● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 20 40 60 80 100

Target Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

0 20 40 60 80 100 100 80 60 40 20 0 Misplacement Err or [%]

Absolute Extent Err or [%]

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 17 / 26

(26)

UKMO - CMA Comparison

Ens. members: 3 Start: 01.07.2016

Ens. members: 3 Start: 01.07.2016

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 18 / 26

(27)

S2S Forecasts Systems Predictive Skills

Forecast System

Season Issues

Winter Summer Assimil. Mlt. Frz.

CMA 7 7

ECMWF 2 7

KMA 7

M´ et´ eo France 7 7

NCEP 7 7

UKMO 7

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 19 / 26

(28)

ECMWF Prescriptive vs. Prognostic System

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 20 / 26

(29)

Verification Metrics

Behavior

(30)

Comparison of MHD and NIIEE

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 21 / 26

(31)

Comparison of MHD and NIIEE

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200 250 300

Target Time

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Norm. Integrated Ice Edge Error Model: UKMO Verification against UKMO own analysis

km

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 50 100 150 200 250 300

Target Time

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Mod. Hausdorff Distance Model: UKMO Verification against UKMO own analysis

km

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 21 / 26

(32)

Comparison of MHD and NIIEE

Forecast Lead Time Correlation Coeff. Scaling Factor

Day 1 0.915 0.75

Day 8 0.813 1.18

Day 18 0.872 1.23

Day 32 0.860 1.24

Day 44 0.770 1.24

Day 60 0.672 1.23

The NIIEE and the MHD estimations of the mean distance between the edges are comparable! However...

NIIEE is sensitive to the normalization procedure MHD is subject to noise likely caused by outliers MHD computation is much more demanding

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 21 / 26

(33)

MHD Problems - 1

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 22 / 26

(34)

MHD Problems - 2

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 23 / 26

(35)

Conclusions

(36)

Features of S2S Forecasts Systems

Despite the early development stage of Arctic sea ice predictions on the seasonal time scale some of the S2S models are promising, exhibiting better predictive skills than the observation-based climatology and persistence during certain periods of the year.

Evidence of critical aspects concerning the data assimilation

procedure and the tuning of the models, which can strongly affect the forecasts quality.

Expected benefits from an increased ensemble size could not be detected.

The comparison of different versions of the ECMWF forecast system shows the benefits brought by a coupled dynamical description of the sea ice instead of its prescription based on persistence and

climatological records.

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 24 / 26

(37)

Metrics Behavior

IIEE and SPS are effective verification metrics to describe the quality of the sea ice edge position.

Simplicity - Comprehensibility - Stability

MHD is also able to evaluate the quality of the forecasted ice edge position. However it is less flexible than the two previous ones and affected by biases.

Verification against satellite observation useful to monitor models skills.

Verification against models own analysis useful to study the model response to modification in data assimilation.

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 25 / 26

(38)

Thank you for your attention

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 26 / 26

(39)

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 1 / 3

(40)

Climatological Ice Edge Length

● ●

● ●

● ●

● ●

5 10 15 20 25 30 35

Time

Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan 01

Climatological Ice Edge Length − ASI Sea Ice Concentration

10 3 km

High res.

Low res.

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 2 / 3

(41)

Alternative applications

Lorenzo Zampieri (AWI) IICWG-DA8 November 3 rd , 2017 3 / 3

Referenzen

ÄHNLICHE DOKUMENTE

During the IceArc expedition of RV Polarstern in late summer 2012, we observed different types of ice algal aggregates under - neath and attached to the underside of the

§  Observed decrease in surface albedo [Perovich et al., 2011] , earlier melt onset, and longer melt season [Markus et al., 2009].. >  Increase in sea

quantities that limit the maximum thermodynamic ice growth in austral winter to about 1 m: (a) The snow cover on top of the ice and (b) the oceanic heat flux from below.. The data

Airborne EM sea-ice thickness surveys Multi-Frequency EM Study. Observation of physical sea

Piot and von Glasow [2008] showed that the precipitation of calcium carbonate (CaCO 3 ) in sea ice brine is a key process allowing for the rapid acidi fi cation of aerosols

The sea ice distribution in Fram Strait is thus intrinsically tied to the sea ice discharge in western Fram Strait and the advection of warm Atlantic water along the continental

Here, we present new biomarker data from surface sediments related to the modern spatial (seasonal) sea-ice variability in the central Arctic Ocean and adjacent marginal seas..

Net CO 2 uptake in sea-ice–covered oceans can be driven by; (1) rejection during sea–ice formation and sinking of CO 2 -rich brine into intermediate and abyssal oceanic water