• Keine Ergebnisse gefunden

Sea ice?

N/A
N/A
Protected

Academic year: 2022

Aktie "Sea ice?"

Copied!
14
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Polar 2018

Open Science Conference 2018/06/21

Sea-ice Properties derived from Ice Mass-balance Buoys using Machine Learning

A lfred-W egener-Institut1, U niversität B rem en2 P icture by P eter G ege

Louisa Tiemann1, Marcel Nicolaus1, Mario Hoppmann1, Marcus Huntemann1,2, Christian Haas1

(2)

Sea ice observations

Point measurements to global scale

Manual measurements

Floe scale distribution

Remote sensing

Autonomous instruments

(3)

Sea ice mass balance buoys (IMB)

Ocean

Sea ice • Thermistor chain IMBs

• 0.02 m sensor spacing

• Unique heating cycle

• Small and easy to deploy

• Established since 2010 by Jackson et al. (2013)

Air? Snow?

Sea ice?

Ocean?

(4)

Physical Properties and Processes

Exemplary process studies using thermistor chain IMBs

• Seasonal evolution of ice mass balance in a freshwater lake in Lapland, Finland, Cheng et al. 2014

• Platelet ice under landfast sea ice, Atka Bay Antarctica, Hoppmann et al. 2015

• sea ice mass balance and one-dimensional-

thermodynamic model comparison, Chukchi and Beaufort Seas Arctic, Zhongxiang et al. (2016)

• Flooding on first year ice in the marginal ice zone, Arctic Provost et al. 2017

• Complete IMB dataset?

• Arctic and Antarctic?

• Consistent processing?

• Seasonality and regional differences?

(5)

Random Forest Algorithm

• Ensemble of independent decision tree classifiers !

" #$

(Breiman, L. 2001)

• Classification by averaging over

probability of each tree vote (bagging)

• Supervised learning

• Features:

• Temperature (!)

• Temperature difference (Δ!&', Δ!#)')

• Vertical gradients (+! +ℎ ,⁄ +Δ!#)'⁄+ℎ)

• Standard deviations

(!, Δ!#)', 48, 72, 96 hours)

-. -&

-) -#

/##

/'' /#'

(6)

Random Forest Algorithm

• Ensemble of independent decision tree classifiers !

" #$

(Breiman, L. 2001)

• Classification by averaging over

probability of each tree vote (bagging)

• Supervised learning

• Features:

• Temperature (!)

• Temperature difference (Δ!&', Δ!#)')

• Vertical gradients (+! +ℎ ,⁄ +Δ!#)'⁄+ℎ)

• Standard deviations

(!, Δ!#)', 48, 72, 96 hours)

(7)

Sea ice mass balance buoy dataset

75 N 75 N

75 N 75 N 150 E

180 150 W

0 30 E

30 W

2014T14 2017T45 2015T19 2015T20 2016T39 2016T21 2014T34 2016T43 2014T13 2012T30 2015T25 2014T33 2012T32 2015T22 2012T31 2015T23

60 S

65 S

70 S

60 S

65 S

70 S 60 W

0 30 W

0

60 W 30 W

2016T41 2014T17 2014T9 2014T3 2012T4 2015T26 2014T8 2014T5 2016T37 2016T42 2015T27 2016T36 2015T28 2014T16 2014T6

(8)

Arctic – central – 2015 – mass balance

• Pronounced seasonal cycle in sea ice growth rates

• Range: 10 cm/month

• Highest growth rates: Autumn

• Variable snow thickness evident from interface temperatures

(9)

Antarctic – Weddell Sea – 2016 – mass balance

• deployed on multi-year ice

• Large melt rates

• thick snow cover

(10)

Sea ice parameters Arctic – regional differences

Specific heat capacity

• Bases on unique temperature differences profiles

• Range sea ice: 2.0 – 3.0 kJkg-1K-1

• Range snow: 0.8 – 1.7 kJkg-1K-1

• Vertical layering

• Specific heat capacity reveals processes at snow-ice interface

2015T19 2015T20 2015T25

Thermal conductivity

• Based on temperature profiles

• Parametrization (Pringle et al. 2007) for sea ice

• Range: 1.8 – 2.25 Wm-1K-1 during winter

• Lowest at sea ice bottom Heat capacityConductivity

(11)

Sea ice parameters Antarctic regional differences

2016T36 2016T41 2016T42

Specific heat capacity

• Bases on unique temperature differences profiles

• Range sea ice: 2.0 – 3.0 kJkg-1K-1

• Range snow: 0.8 – 1.7 kJkg-1K-1

• Vertical layering, maxima at the bottom

• Specific heat capacity reveals processes at snow-ice interface

Thermal conductivity

• Based on temperature profiles

• Parametrization (Pringle et al. 2007) for sea ice

• Range: 2.1 – 2.35 Wm-1K-1 during winter Heat capacityConductivity

(12)

Summary

• Random forest algorithm for sea ice mass balance

• Near-real time processing for Arctic and Antarctic IMBs

• Spatial and season Variability of key parameters:

• Thickness, growth rates, thermal conductivity, heat capacity

• Snow-ice interface processes

• Snow-ice formation in Antarctic in September/October

• Snow-ice formation in Arctic in June

• Growth rates:

• Pronounced seasonality

Sea ice live!

Poster Foyer!

Fri_277_OS-7_1320

(13)
(14)

Bibliography

- Breiman, Leo. (2001) “Random Forests.” Machine Learning 45(1): 5–32

- Cheng, Bin; Vihma, Timo; Rontu, Laura; Kontu, Anna; Kheyrollah Pour, Homa; Duguay, Claude;

Pulliainen, Jouni (2014) Evolution of snow and ice temperature, thickness and energy balance in Lake Orajärvi, northern Finland. Tellus A: Dynamic Meteorology and Oceanography, 66:1 - Hoppmann, Mario; Nicolaus, Marcel; Hunkeler, Priska A; Heil, Petra; Behrens, Lisa K; König-

Langlo, Gert; Gerdes, Rüdiger (2015) Seasonal evolution of an ice-shelf influenced fast-ice regime, derived from an autonomous thermistor chain. Journal of Geophysical Research- Oceans, 120(3), 1703-1724

- Provost, C., Sennéchael, N., Miguet, J., Itkin, P., Rösel, A., Koenig, Z., et al. (2017).

Observations of flooding and snow-ice formation in a thinner Arctic sea-ice regime during the N- ICE2015 campaign: Influence of basal ice melt and storms. Journal of Geophysical Research:

Oceans, 122, 7115–7134

- Zhongxiang,Tian; Cheng, Bin; Zhao, Jiechen; Vihma, Timo; Zhang, Wenliang; Li, Zhijun; Zhang, Zhanhai (2017) Observed and modelled snow and ice thickness in the Arctic Ocean with

CHINARE buoy data. Acta Oceanol. Sin. Sin. 36: 66

Referenzen

ÄHNLICHE DOKUMENTE

• Very variable, thicker ice in 2009 than 2008 – Sea Ice Thinning in the central Arctic. • Yes

Gascard et al. 2), (b) surface temperature (from snow pits, IMB, and radiation measurements) and snow grain size, (c) sea-ice and total (snow+ice) thickness measured with IMB

Results of helicopter-borne electromagnetic (HEM) measurements of total (ice plus snow) sea ice thickness performed in May 2004 and 2005 in the Lincoln Sea and adjacent Arctic Ocean

Unter der Annahme, da Chrom im Meerwasser entweder als lösliche Cr042- oder Cr(H20)4(OH)2+ vorliegt und im Meerwasser gelöste Sauerstoff sich im Gleichgewicht mit

To date, border adjustment measures in the form of emissions allowance requirements (EAR) under the U.S. proposed cap-and-trade regime are the most concrete unilateral trade

In the context of national responses, special attention is paid to the following issues: coordination between the central and local governments, market-based environmental

Currently, domestic supply provides about 94% of the total energy consumption in China, meaning that the overall energy dependence (namely, the ratio of the energy that a

Duke University organized the International Conference on Reconstructing Climate Policy: Moving Beyond the Kyoto Impasse, May 2003. The organizer invited me to specifically