• Keine Ergebnisse gefunden

VL-15: Der Satz von Cook & Levin

N/A
N/A
Protected

Academic year: 2022

Aktie "VL-15: Der Satz von Cook & Levin"

Copied!
12
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

VL-15: Der Satz von Cook & Levin

(Berechenbarkeit und Komplexit¨ at, WS 2017) Gerhard Woeginger

WS 2017, RWTH

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 1/45

Organisatorisches

I achste Vorlesung:

Mittwoch, Dezember 20, 14:15–15:45 Uhr, Roter H¨orsaal

I Webseite:

http://algo.rwth-aachen.de/Lehre/WS1718/BuK.php

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 2/45

Wiederholung

Wdh.: Alternative Charakterisierung von NP

Satz (Zertifikat Charakterisierung von NP)

Eine SpracheL⊆Σ liegt genau dann in NP,

wenn es einen polynomiellen (deterministischen) AlgorithmusV und ein Polynomp mit der folgenden Eigenschaft gibt:

x ∈L ⇐⇒ ∃y ∈ {0,1}, |y| ≤p(|x|) : V akzeptierty#x

Anmerkungen:

I Der polynomielle AlgorithmusVheisst auchVerifizierer I Das Worty∈ {0,1}heisst auchZertifikat

(2)

Wdh.: Komplexit¨ atsklasse EXPTIME

Definition: Komplexit¨ atsklasse EXPTIME

EXPTIMEist die Klasse aller Entscheidungsprobleme,

die durch eine DTMM entschieden werden, deren Worst Case Laufzeit durch 2q(n) mit einem Polynomq beschr¨ankt ist, Laufzeit-Beispiele:2

n, 2n, 3n, n!, nn. Aber nicht:22n

Satz

P ⊆ NP ⊆ EXPTIME

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 5/45

Wdh.: Optimierungs- versus Entscheidungsproblem

F¨ur ein Optimierungsproblem mit einer MengeLvon zul¨assigen L¨osungen und einer Gewichtsfunktionf :L →Ndefinieren wir das entsprechende Entscheidungsproblem:

Eingabe:Wie im Optimierungsproblem, plus Schrankeγ∈N Frage: Existiert eine zul¨assige L¨osung x∈ L

mit f(x)≥γ (f¨ur Maximierungsprobleme) respektive mit f(x)≤γ (f¨ur Minimierungsprobleme)?

I Mit Hilfe eines Algorithmus, der das Optimierungsproblem l¨ost, kann man das entsprechende Entscheidungsproblem l¨osen.(Wie?)

I Umgekehrt gilt:Mit Hilfe eines Algorithmus, der das

Entscheidungsproblem l¨ost, kann manoft auchdas entsprechende Optimierungsproblem l¨osen.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 6/45

Wdh.: Polynomielle Reduktionen

Definition

Es seienL1 undL2Sprachen ¨uberΣ1bzw. Σ2.

Dann istL1polynomiell reduzierbaraufL2(mit der Notation L1pL2), wenn eine polynomiellberechenbare Funktionf: Σ1→Σ2 existiert, so dass f¨ur allex ∈Σ1 gilt: x ∈L1 ⇔ f(x)∈L2.

Satz

FallsL1pL2 und fallsL2∈P, so giltL1∈P

Satz

COLORING≤p SAT

Vorlesung VL-15

Der Satz von Cook & Levin

I NP-Vollst¨andigkeit I Satz von Cook & Levin

I Kochrezept f¨ur NP-Vollst¨andigkeitsbeweise I NP-Vollst¨andigkeit von 3-SAT

I Karp’s Liste von Problemen

(3)

Die Komplexit¨ atslandschaft

NP

P

Graph- zusammenhang Primes

SAT

Clique Ind-Set VC

Ex-Cover

Ham-Cycle TSP Partition

Subset-Sum Rucksack

BPP Coloring

Warnung: Dieser Abbildung liegt die AnnahmeP6=NPzu Grunde.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 9/45

NP-Vollst¨ andigkeit

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 10/45

NP-schwere Probleme

Definition: NP-schwer

Ein ProblemLheisst NP-schwer(engl.:NP-hard), falls gilt:

∀L0∈NP: L0pL

Satz

WennLNP-schwer ist, dann gilt: L∈P ⇒ P=NP

Beweis:Ein polynomieller Algorithmus f¨urLliefert zusammen mit der ReduktionL0pLeinen polynomiellen Algorithmus f¨ur alleL0∈NP.

Fazit:F¨ur NP-schwere Probleme gibt es keine polynomiellen Algorithmen, es sei dennP=NP.

NP-Vollst¨ andige Probleme

Definition: NP-vollst¨ andig

Ein ProblemLheisstNP-vollst¨andig (engl.:NP-complete), falls gilt:

I L∈NP, und

I ListNP-schwer.

Die Klasse derNP-vollst¨andigen Probleme wird mitNPCbezeichnet.

Wir werden zeigen, dass SAT, CLIQUE, Ham-Cycle, PARTITION, Rucksack und viele weitere Probleme NP-vollst¨andig sind.

Unter der AnnahmeP6=NP besitzt also keines dieser Probleme einen polynomiellen Algorithmus.

(4)

Satz von Cook & Levin

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 13/45

Stephen Arthur Cook OC (1939)

Wikipedia: Steve Cook is an American-Canadian computer scientist and mathematician who has made major contributions to the fields of complexity theory and proof complexity.

His seminal paper“The complexity of theorem proving procedures”(presented at the 1971 Symposium on the Theory of Computing) laid the foundations for the theory of NP-Completeness.

The ensuing exploration of the boundaries and nature of the class of NP-complete problems has become one of the most active and important research areas in computer science.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 14/45

Leonid Anatolievich Levin (1948)

Wikipedia: Leonid Levin is a Soviet-American computer scientist. He obtained his master’s degree at Moscow University in 1970 where he studied under Andrej Kolmogorov.

Leonid Levin and Stephen Cook independently discovered the existence of NP-complete problems. Levin is known for his work in randomness in computing, average-case complexity, algorithmic probability, theory of computation, and information theory.

Der Satz von Cook & Levin

Der Ausgangspunkt f¨ur alle unsereNP-Vollst¨andigkeitsbeweise ist das Erf¨ullbarkeitsproblemSAT.

Problem: Satisfiability (SAT)

Eingabe:Boole’sche Formelϕ in CNF ¨uber der VariablenmengeX Frage: Existiert eine Wahrheitsbelegung vonX, dieϕerf¨ullt?

Satz (Cook & Levin)

SATistNP-vollst¨andig.

Ergo: WennP6=NP, so besitztSATkeinen polynomiellen Algorithmus.

(5)

Die Komplexit¨ atslandschaft

NP

P

Graph- zusammenhang Primes

SAT

Clique Ind-Set VC

Ex-Cover

Ham-Cycle TSP Partition

Subset-Sum Rucksack

BPP Coloring

Warnung: Dieser Abbildung liegt die AnnahmeP6=NPzu Grunde.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 17/45

Cook & Levin (1): Grundidee des Beweises

I Es seiL⊆Σein beliebiges Problem inNP.

Es seiM eine NTM, dieLin polynomieller Zeit erkennt.

I Wir m¨ussen/werden zeigen, dassL≤p SATgilt.

I Dazu konstruieren wir eine polynomiell berechenbare Funktion f, die jedesx ∈Σ auf eine Formelϕ=:f(x)abbildet, sodass gilt:

x ∈L ⇔ M akzeptiertx ⇔ ϕ∈SAT

Wir nehmen folgende Eigenschaften der NTM M an:

I M besucht keine Bandzelle links von der Startzelle.

I Eine akzeptierende Rechnung von M geht in den Zustandqaccept

¨

uber, und bleibt dann dort in einer Endlosschleife.

I Es gibt ein Polynom p(·), sodassM eine Eingabex genau dann akzeptiert, wenn es einen Rechenweg gibt, der nach p(|x|)Schritten im Zustandqaccept gelandet ist.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 18/45

Cook & Levin (2): Grundidee des Beweises

Beobachtung

Es seiK0=q0x die Startkonfiguration vonM. Die NTMM akzeptiert ein Wortx mit|x|=ngenau dann, wenn es eine Konfigurationsfolge

K0 ` K1 ` K2 ` · · · ` Kp(n) gibt, bei derKp(n) im Zustandqaccept ist.

Unsere Formelϕ wird derart konstruiert, dass ϕgenau dann erf¨ullbar ist,

wenn solch eine akzeptierende Konfigurationsfolge existiert.

Cook & Levin (3): Die Boole’schen Variablen

Die Variablen in der Formel ϕ

I Q(t,q) f¨urt∈ {0, . . . ,p(n)}undq∈Q

I H(t,j) f¨urt,j∈ {0, . . . ,p(n)}

I B(t,j,a) f¨urt,j ∈ {0, . . . ,p(n)}unda∈Γ Interpretation der Variablen:

I Die BelegungQ(t,q) =1besagt, dass sich die Berechnung zum Zeitpunkt t im Zustandqbefindet.

I Die BelegungH(t,j) =1steht daf¨ur, dass sich der Kopf zum Zeitpunkt t an Bandpositionj befindet.

I Die BelegungB(t,j,a) =1bedeutet, dass zum Zeitpunktt an Bandpositionj das Zeichena geschrieben steht.

(6)

Cook & Levin (4): Illustration der Variablen

0 1 1 0 0 1

0 1 1 0 0 1

0 1 1 0 1 1

B(0,0,0)=1 B(0,0,1)=0 B(0,1,0)=0 B(0,1,1)=1 B(0,2,0)=0 B(0,2,1)=1 B(0,3,0)=1 B(0,3,1)=0 B(0,4,0)=1 B(0,4,1)=0 B(0,5,0)=0 B(0,5,1)=1

B(1,0,0)=1 B(1,0,1)=0 B(1,1,0)=0 B(1,1,1)=1 B(1,2,0)=0 B(1,2,1)=1 B(1,3,0)=1 B(1,3,1)=0 B(1,4,0)=1 B(1,4,1)=0 B(1,5,0)=0 B(1,5,1)=1

B(2,0,0)=1 B(2,0,1)=0 B(2,1,0)=0 B(2,1,1)=1 B(2,2,0)=0 B(2,2,1)=1 B(2,3,0)=1 B(2,3,1)=0 B(2,4,0)=0 B(2,4,1)=1 B(2,5,0)=0 B(2,5,1)=1

q

q0

q00 Q(0,q) =1

H(0,0) =0 H(0,1) =0 H(0,2) =0 H(0,3) =1 H(0,4) =0 H(0,5) =0

t=0

t=1

t=2

Q(1,q0) =1

H(1,0) =0 H(1,1) =0 H(1,2) =0 H(1,3) =0 H(1,4) =1 H(1,5) =0

Q(2,q00) =1

H(2,0) =0 H(2,1) =0 H(2,2) =0 H(2,3) =0 H(2,4) =1 H(2,5) =0

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 21/45

Cook & Levin (6): Unser Arbeitsplan

Wir werden die akzeptierende Konfigurationsfolge in drei Phasen in die Formelϕ¨ubersetzen.

Arbeitsphase A: F¨ur jeden Zeitpunktt beschreiben die Variablen Q(t,q),H(t,j)und B(t,j,a)eine legale Konfiguration.

Arbeitsphase B: Die Konfiguration zum Zeitpunktt+1entsteht legal aus der Konfiguration zum Zeitpunktt.

Arbeitsphase C: Startkonfiguration und Endkonfiguration sind legal.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 22/45

Cook & Levin (7): Arbeitsphase A

F¨ur jeden Zeitpunktt konstruieren wir eine Teilformelϕt von Formelϕ, die nur dann erf¨ullt ist, wenn die Variablen Q(t,q),H(t,j)undB(t,j,a) eine legale KonfigurationKt beschreiben.

A1. Es gibt genau einen Zustandq∈Q mitQ(t,q) =1.

A2. Es gibt genau eine Bandpositionj∈ {0, . . . ,p(n)}mitH(t,j) =1.

A3. Es gibt f¨ur jedesj∈ {0, . . . ,p(n)}jeweils genau ein Zeichena∈Γ mitB(t,j,a) =1.

Cook & Levin (8): Arbeitsphase A

Boole’sches Werkzeug

F¨ur eine beliebige Variablenmenge{y1, . . . ,yk}besagt die folgende Formel in CNF, dass genau eine der Variablenyi den Wert 1 annimmt:

(y1∨y2∨ . . . ∨yk) ∧ ^

i6=j

( ¯yi∨y¯j)

Die Anzahl der Literale in dieser Formel istO(k2)und quadratisch in der Anzahl der Variablen.

Die drei erw¨unschten EigenschaftenA1/A2/A3 zum Zeitpunktt (f¨ur legale Konfigurationen) k¨onnen daher jeweils durch eine Formelϕt mit polynomiell beschr¨ankter L¨ange kodiert werden.

Phase A ist damit abgeschlossen.

(7)

Cook & Levin (9): Arbeitsphase B

Wir konstruieren f¨ur jeden Zeitpunktt eine Teilformelϕ0t von Formelϕ, die erzwingt, dass KonfigurationKt eine direkte Nachfolgekonfiguration von Konfiguration Kt−1 ist.

B1. Der Bandinhalt der KonfigurationKt stimmt an allen Positionen mit dem Bandinhalt der KonfigurationKt−1 ¨uberein, mit m¨oglicher Ausnahme jener Position, an der der Kopf zum Zeitpunktt−1ist.

B2. Zustand, Kopfposition und Bandinhalt an Kopfposition ver¨andern sich im Einklang mit der ¨Ubergangsrelationδ.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 25/45

Cook & Levin (10): Arbeitsphase B

EigenschaftB1 (Bandinhalt vonKt stimmt mit Bandinhalt von Kt−1

¨

uberein, ausgenommen Kopfposition) wird wie folgt kodiert:

p(n)

^

i=0

^

a∈Γ

B(t−1,i,a)∧ ¬H(t−1,i) ⇒ B(t,i,a)

Boole’sches Werkzeug

I x1⇒x2 ¨aquivalent zu ¬x1∨x2

¬(x1∧x2) ¨aquivalent zu ¬x1∨ ¬x2 (De Morgan)

I y1∧ ¬y2⇒y3 ¨aquivalent zu ¬(y1∧ ¬y2)∨y3

¨

aquivalent zu ¬y1∨y2∨y3

p(n)

^

i=0

^

a∈Γ

(¬B(t−1,i,a) ∨ H(t−1,i) ∨ B(t,i,a))

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 26/45

Cook & Levin (11): Arbeitsphase B

EigenschaftB2(Zustand, Kopfposition und Bandinhalt an Kopfposition ver¨andern sich gem¨ass ¨Ubergangsrelationδ) wird wie folgt kodiert.

F¨ur alleq∈Q, f¨ur alle j∈ {0, . . . ,p(n)−1}und f¨ur allea∈Γ verwenden wir die Teilformel

Q(t−1,q)∧H(t−1,j)∧B(t−1,j,a) ⇒ _

(q,a,q0,a0,κ)∈δ

(Q(t,q0)∧H(t,j+κ)∧B(t,j,a0))

wobeiκ die WerteL=−1,N=0undR =1annehmen kann.

Cook & Levin (12): Arbeitsphase B

· · ·

· · · B 0 0 1 1

δ 0 1 B

q1 {(q1,B,R),(q2,1,L)} {(q3,B,R)} {(q2,B,N)}

q3 {(q1,1,R)} {(q2,0,R)} {(q1,B,L)}

Start Ende Blank q2

q1 B

Σ ={0,1}

Γ ={0,1,B} Q={q1,q2,q3}

Q(t−1,q1)∧H(t−1,j)∧B(t−1,j,0) ⇒

Q(t,q1)∧H(t,j+1)∧B(t,j,B)

∨ Q(t,q2)∧H(t,j−1)∧B(t,j,1)

(8)

Cook & Levin (13): Arbeitsphase B

F¨ur alleq∈Q, f¨ur alle j∈ {0, . . . ,p(n)−1}und f¨ur allea∈Γ verwenden wir die Teilformel

Q(t−1,q)∧H(t−1,j)∧B(t−1,j,a) ⇒ _

(q,a,q0,a0,κ)∈δ

(Q(t,q0)∧H(t,j+κ)∧B(t,j,a0))

wobeiκ die WerteL=−1,N=0undR =1annehmen kann.

I DieFormel in Rotist nicht in CNF

I DieFormel in Rotbesteht aus h¨ochstens3∆ +3Literalen (wobei ∆der maximale Verzweigungsgrad der NTMM ist)

I DieFormel in Rotkann in eine ¨aquivalente Formel in CNF mit h¨ochstens≤33∆+3(3∆ +3)Literalen umgeformt werden Phase B ist damit abgeschlossen.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 29/45

Cook & Levin (14): Arbeitsphase C

Zum Schluss sorgen wir noch daf¨ur, dass Startkonfiguration und Endkonfiuration korrekt beschrieben werden.

C1. Startkonfiguration:

Q(0,q0) ∧ H(0,0) ∧

n−1

^

i=0

B(0,i,xi) ∧

p(n)

^

i=n

B(0,i,B)

C2. Endkonfiguration:

Q(p(n),qaccept)

Phase C ist damit abgeschlossen.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 30/45

Cook & Levin (15): Zusammenfassung

I Die Gesamtformelϕsetzt sich aus allen Teilformeln zusammen, die wir f¨urA1/A2/A3 undB1/B2undC1/C2konstruiert haben.

I Insgesamt sind das polynomiell viele Klauseln, die jeweils aus polynomiell vielen Literalen bestehen.

I Die L¨ange vonϕist daher polynomiell beschr¨ankt inn, undϕkann ausx in polynomieller Zeit berechnet werden.

I Die Formelϕgenau dann erf¨ullbar, wenn es eine akzeptierende Konfigurationsfolge der L¨ange p(n)f¨urM aufx gibt.

Satz (Cook & Levin)

SATistNP-vollst¨andig.

Kochrezept f¨ ur

NP-Vollst¨ andigkeitsbeweise

(9)

Kochrezept f¨ ur NP-Vollst¨ andigkeitsbeweise (1)

I Die NP-Vollst¨andigkeit vonSAThaben wir durch eine lange

“Master-Reduktion” von allen Problemen aus NP auf SATbewiesen

I Um die NP-Vollst¨andigkeit von anderen Problemen zu zeigen, k¨onnten wir nat¨urlich f¨ur jedes neue Problem eine ¨ahnlich m¨uhsame und ¨ahnlich langwierige Master-Reduktion erstellen

I Ein viel einfacherer Ansatz weist die NP-Vollst¨andigkeit von neuen Problemen mit Hilfe der NP-Vollst¨andigkeit vonSATnach

Satz

WennL NP-schwer ist, dann gilt: LpL ⇒ List NP-schwer Beweis:

F¨ur alleL0∈NP giltL0pLund LpL.

Die Transitivit¨at von≤p impliziertL0pLf¨ur alleL0∈NP.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 33/45

Kochrezept f¨ ur NP-Vollst¨ andigkeitsbeweise (2) Hier ist das Kochrezept:

1. Man zeigeL∈NP.

2. Man w¨ahle eine NP-vollst¨andige SpracheL.

3. (Reduktionsabbildung): Man konstruiere eine Funktionf, die Instanzen vonLauf Instanzen von Labbildet.

4. (Polynomielle Zeit): Man zeige, dassf in polynomieller Zeit berechnet werden kann.

5. (Korrektheit):Man beweise, dassf tats¨achlich eine Reduktion ist.

F¨urx ∈ {0,1}gilt x∈L genau dann, wennf(x)∈L.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 34/45

NP-Vollst¨ andigkeit von 3-SAT

3-SAT: Definition

I Einek-Klauselist eine Klausel, die aus exaktkLiteralen besteht I Eine CNF-Formelϕist ink-CNF, wenn sie ausk-Klauseln besteht

Beispiel einer Formel in 3-CNF

ϕ = (¯x1¯x2x3)

| {z }

3 Literale

x1x2¯x3)

| {z }

3 Literale

Problem: 3-SAT

Eingabe:Eine Boole’sche Formelϕin 3-CNF Frage:Besitztϕeine erf¨ullende Belegung?

3-SATist ein Spezialfall vonSATund liegt deshalb wieSATin NP

(10)

3-SAT: NP-Vollst¨ andigkeit (Beginn)

Satz

SAT≤p 3-SAT Beweis:

I Gegeben sei eine beliebige Formelϕin CNF (Instanz von SAT)

I Wir werden eine zur Formelϕ¨aquivalente Formelϕ0in 3-CNF konstruieren: ϕist erf¨ullbar ⇔ ϕ0 ist erf¨ullbar

I Aus einer 1-Klausel oder 2-Klausel machen wir eine ¨aquivalente 3-Klausel, indem wir ein oder zwei Literale duplizieren

I 3-Klauseln bleiben 3-Klauseln

I Aufk-Klauseln mit k ≥4wenden wir wiederholt die folgende Klauseltransformationan:

Die Klauselc = (`1+`2+`3+· · ·+`k)wird ersetzt durch die beiden neuen Klauseln(`1+· · ·+`k−2+h)und(¯h+`k−1+`k).

Hier bezeichnetheine neu eingef¨uhrte Hilfsvariable.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 37/45

Klauseltransformation: Beispiel

Klauseltransformation f¨ ur eine 5-Klausel

I Wir beginnen mit der 5-Klausel (x1+ ¯x2+x3+x4+ ¯x5)

I Im ersten Transformationsschritt wird daraus eine 4-Klausel und eine 3-Klausel gemacht: (x1+ ¯x2+x3+h1) (¯h1+x4+ ¯x5)

I Auf die 4-Klausel wird die Transformation dann erneut angewendet.

Dadurch entsteht nun(x1+ ¯x2+h2) (¯h2+x3+h1) ( ¯h1+x4+ ¯x5), und es sind nur noch 3-Klauseln vorhanden.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 38/45

Klauseltransformation: Korrektheit

Alte Klausel: c= (`1+`2+`3+· · ·+`k)

Neue Klauseln: c0= (`1+· · ·+`k−2+h)und c00= (¯h+`k−1+`k) (1) Wenn eine Wahrheitsbelegungc0 undc00 erf¨ullt, so erf¨ullt sie automatisch auchc:

I Wennh=0, dann ist`1+· · ·+`k−2 wahr

I Wennh=1, dann ist`k−1+`k wahr

(2) Wenn eine Wahrheitsbelegungc erf¨ullt, so kann sie auf herweitert werden, sodass die beiden Klauselnc0 undc00 erf¨ullt sind:

I Die Wahrheitsbelegung macht mindestens ein Literal ausc wahr

I Falls`1+· · ·+`k−2 wahr ist, setzen wirh=0

I Falls`k−1+`k wahr ist, so setzen wirh=1

3-SAT: NP-Vollst¨ andigkeit (Ende)

I Durch Anwendung der Klauseltransformation entstehen aus einer k-Klausel eine(k−1)-Klausel und eine 3-Klausel.

I Nach k−3Iterationen sind dann aus einer einzelnen altenk-Klausel genauk−2neue 3-Klauseln entstanden.

I Ausk ≥4alten Literalen entstehen also3k−6neue Literale.

I Diese Transformation wird solange auf die Formel ϕangewandt, bis die Formel nur noch 3-Klauseln enth¨alt.

I Wennϕaus pLiteralen besteht, so bestehtϕ0 aus h¨ochstens3p Literalen.

I Die Laufzeit der Reduktion ist daher polynomiell beschr¨ankt.

Satz

3-SAT ist NP-vollst¨andig.

(11)

Die Komplexit¨ atslandschaft

NP

P

Graph- zusammenhang Primes

SAT

Clique Ind-Set VC

Ex-Cover

Ham-Cycle TSP Partition

Subset-Sum Rucksack

BPP Coloring 3-SAT

Warnung: Dieser Abbildung liegt die AnnahmeP6=NPzu Grunde.

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 41/45

Karp’s Liste mit 21 Problemen

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 42/45

Richard Manning Karp (1935)

Wikipedia: Richard Karp is an American computer scientist, who has made many important discoveries in computer science, operations research, and in the area of combinatorial algorithms.

Karp introduced the now standard methodology for proving problems to be NP-complete which has led to the

identification of many practical problems as being computationally difficult.

IEdmonds-Karp algorithm for max-flow IHopcroft-Karp algorithm for matching IRabin-Karp string search algorithm IKarp-Lipton theorem

Karp’s Liste mit 21 NP-vollst¨ andigen Problemen

Richard Karp bewies 1972 die NP-Vollst¨andigkeit von 21 kombinatorischen und graphen-theoretischen Problemen, die sich hartn¨ackig einer effizienten algorithmischen L¨osung entzogen hatten.

SAT 3-SAT

INTEGER PROGRAMMING COLORING

CLIQUE CLIQUE COVER

INDEP-SET EXACT COVER

VERTEX COVER 3-DIM MATCHING

SET COVER STEINER TREE

FEEDBACK ARC SET HITTING SET

FEEDBACK VERTEX SET SUBSET-SUM

DIR HAM-CYCLE JOB SEQUENCING

UND HAM-CYCLE PARTITION

MAX-CUT

(12)

Landkarte mit Karp’s 20 Reduktionen

SAT INTEGER

PROG 3-SAT

COLORING

CLIQUE COVER

EXACT COVER 3-DIM

MATCHING

STEINER TREE

HITTING SET

SUBSET-SUM

JOB SEQUENCING PARTITION

MAX-CUT SET COVER FEEDBACK

ARC SET

FEEDBACK VERTEX

SET DIRECTED

HAM-CYCLE

HAM CYCLE

VERTEX COVER INDEP

SET

CLIQUE

BuK/WS 2017 VL-15: Der Satz von Cook & Levin 45/45

Referenzen

ÄHNLICHE DOKUMENTE

Ein schneller Algorithmus f¨ ur das Entscheidungsproblem liefert (durch wiederholte Anwendung) oft auch einen schnellen Algorithmus zum Berechnen eines expliziten L¨

Wir werden zeigen, dass SAT, CLIQUE, Ham-Cycle, PARTITION, Rucksack und viele weitere Probleme NP-vollst¨ andig sind.. Unter der Annahme P 6= NP (Standardannahme) besitzt also

Wir werden zeigen, dass SAT, CLIQUE, Ham-Cycle, PARTITION, Rucksack und viele weitere Probleme NP-vollst¨ andig sind.. Unter der Annahme P 6= NP (Standardannahme) besitzt also

BuK/WS 2017 VL-07: Satz von Rice 18/37... Satz

BuK/WS 2017 VL-07: Satz von Rice 16/37..

Die beschriebene Funktion f

Sind aber einer oder zwei Durchgänge der Kreuzung noch nicht mit Zeichen versehen, so wählt man einen davon und bringt zwei Zeichen an.. Durchschreitet man einen Durchgang, der nur

Wir erlauben 3 Farben: Wahr, Falsch und Unzul¨ assig Literale sollen nicht ’Unzul¨ assig’ gef¨ arbt werden k¨ onnen, weshalb wir jedes von ihnen durch eine Kante mit einem