• Keine Ergebnisse gefunden

VN (2πmE)3N/2 Γ (3N which is the result of the integration Ω (E

N/A
N/A
Protected

Academic year: 2022

Aktie "VN (2πmE)3N/2 Γ (3N which is the result of the integration Ω (E"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Karlsruher Institut f¨ur Technologie www.tkm.kit.edu/lehre/

Ubungen zur Theoretischen Physik F¨ SS 14

Prof. Dr. J¨org Schmalian Blatt 4

Dr. Una Karahasanovic, Dr. Peter Orth Besprechung 16.05.2014

1. Entropie aus der Anzahl der Zust¨ande:

English:

(a) The volume of the region in phase space with energy less than E is Ω (E) = VN (2πmE)3N/2

Γ (3N/2 + 1) (1)

which is the result of the integration Ω (E) = VN

Z N Y

i=1

d3piθ 2mE −

N

X

i=1

p2i

!

. (2)

The integral is most easily done my noticing

∂Ω (E)

∂E = 2mVN Z N

Y

i=1

d3piδ 2mE −

N

X

i=1

p2i

!

(3) which is easier to do. The number of states is determined via

N(E) = 1 N!

Ω (E)

h3N (4)

The term h3N is just the elementary volume in phase space and the prefactor N!1 takes care of the indistinguishability of the particles. It follows:

S =kBlog VN (2πmE)3N/2 N!Γ (3N/2 + 1)h3N

!

. (5)

(b) Using logN!'NlogN −N and Γ (3N/2 + 1)'(3N/2)! '(3N/2e)3N/2 gives S = 3N kB

2 +N kBlog V

4πmE 3h2N

3/2!

+N kB−N kBlogN

= 5N kB

2 +N kBlog V N

4πmE 3h2N

3/2!

(6)

(c) We can determine the pressure as

p=− ∂E

∂V V,N

(7)

(2)

which leads top= 23EV. Next we find the temperature from T = ∂E

∂S V,N

= 3 2

N kB

E (8)

which gives the familiarE = 32N kBT and leads to p= N kVBT. Deutsch:

(a) Bei einem klassichen nichtrelativistischen idealen Gas mit N Teilchen gilt f¨ur die Gesamtenergie:

H =

N

X

i=1

pi2 2m

Dabei ist das Spektrum f¨ur pi kontinuierlich, man kann also bereits bei zwei Teil- chen die Zust¨ande mit einer bestimmten Gesamtenergie E nicht mehr abz¨ahlen. Die einzige M¨oglichkeit, N(E) zu berechnen, geht also ¨uber die Zustandsdichte (siehe auch Aufgabe 3).

Wenn ν(E) die Zustandsdichte ist, so gibt ν(E)dE an, wie viele Zust¨ande pro Vo- lumen sich im Energieintervall [E, E+dE] befinden. Damit folgt dann:

ν(E) = 1 V

X

p

δ(E − H(p)) ⇒ N(E) = X

p

δ(E − H(p))

Da unser Spektrum kontinuierlich ist, benutzen wir wieder, wie in der Vorlesung X

p

→ VN h3N

N

Y

i=1

Z d3pi

wobei unser Impulsraum nat¨urlich 3N-dimensional ist.

Damit gilt dann:

N(E) = VN N!h3N

Z N Y

i=1

d3piδ E −

N

X

i=1

pi2 2m

!

= VN N!h3N

Z

dΩ(3N)p2(3N)dp(3N)δ E − p2(3N) 2m

!

∝ E(3N−2)/2

Vom 1. zum 2. Schritt wurden sph¨arische Koordinaten p23N =

N

X

i=1

pi2 =

i=N,j=3

X

i=1,j=1

p2i,j

benutzt und die Integration ¨uber ein 3N-dimensionales Kugelvolumen durchgef¨uhrt.

Dabei m¨ussen wieder die Rechenregeln f¨ur δ[g(x)], die in der L¨osung zu Aufgabe 3 n¨aher erl¨autert sind, ber¨ucksichtigt werden.

Das Wesentlich hieran ist nun, dass die Zustandsdichte f¨ur große N sehr stark mit der Energie E ansteigt. Dann liefern bei großen N also die Zust¨ande mit der Energie nahe bei E den Hauptbeitrag, kleinere Energien tragen nur unwesentlich bei. Deswegen

(3)

kann man in guter N¨aherung N(E) mit der Anzahl aller Zust¨ande mit Energie kleiner als E betrachten, was die Rechnung etwas vereinfacht:

N(E) ≈ Ω(E)

N!h3N = VN N!h3N

Z N Y

i=1

d3piθ E −

N

X

i=1

pi2 2m

!

= VN N!h3N

π3N/2(2mE)3N/2 Γ 3N2 + 1

Dabei wurde wieder wie bei der Zustandsdichte verfahren und benutzt, dass das Volumen einer d-dimensionalen Kugel mit Radius R gerade

Vd = πd/2Rd Γ d2 + 1

betr¨agt. (Alternativ h¨atte man nat¨urlich auch N(E) ¨uber E integrieren k¨onnen, doch die direkte Berechnung von Ω(E) ist leichter nachvollziehbar.) Nun kann man im thermodynamischen Limes großer N wieder die Stirling-Formel N! ≈

√2πN NeN

NeN

und mit der Definition der Gammafunktion ¨uber die Fa- kult¨at die N¨aherung Γ 3N2 + 1

3N2

! ≈ 3N2e3N2

verwenden und erh¨alt:

N(E) = 8e5/2V (πmE)3/2 33/2h3N5/2

!N

Daraus ergibt sich dann die Entropie zu:

S = kBlnN(E) ≈ N kBln 8V (πmE)3/2 33/2h3N5/2

! + 5

2N kB

(b) Wenn man nun annimmt, dass E = U = 32N kBT f¨ur ein ideales Gas gilt, dann erh¨alt man:

S ≈ N kBln

V(2mπkBT)3/2 N h3

+ 5

2N kB = N kBln V

N λ3

+ 5 2N kB wobei die thermische de Broglie-Wellenl¨ange λ = 2πmkh

BT eingesetzt wurde. Ver- gleichen wir dies mit der Entropie im kanoischen Ensemble, wie sie in der Vorlesung hergeleitet wurde:

SK = N kBln V

N λ3

+ 5 2N kB

so sieht man, dass im thermodynamischen Limes die Entropie in der urspr¨unglichen statistischen Definition und die in der kanonischen Gesamtheit gleich sind.

(c) Wir gehen aus von der Entropie, die wir in a) berechnet haben:

S ≈ N kBln 8V (πmE)3/2 33/2h3N5/2

! + 5

2N kB

Also gilt f¨ur die Funktion S offensichtlich S = S(U, V, N). Dann benutzen wir die

”thermodynamische Fundamentalbeziehung“:

T S = U + pV − µN ⇒ S = U + pV − µN T

(4)

Wir berechnen das Differential dS = ∂S

∂U V,N

dU + ∂S

∂V U,N

dV − ∂S

∂N V,U

dN = 1

TdU + p

TdV − µ TdN damit erhalten wir dann:

1

T = ∂S

∂U V,N

= 3 2

N kB

U ⇒ U = 3

2N kBT

und: p

T = ∂S

∂V U,N

= N kB

V ⇒ pV = N kBT wobei wir wiederE =U gesetzt haben.

Wir haben also jeweils f¨ur die Temperatur und den Druck die ideale Gasgleichung reproduziert, wobei wir von der statistischen Definition der Entropie ausgegangen sind.

2. Logarithmic spectrum:

(a) Using ZN =Z1N we find Z1 =

X

n=1

exp (−β∆ log (n)) =

X

n=1

n−β∆. (9)

This series is convergent only for β∆>1, i.e. kBT <∆. Then it follows that

Z1 =ζ(β∆) (10)

with the Riemann Zeta function

ζ(s) =

X

n=1

1 ns.

Close tos= 1 the function ζ(s) diverges as ζ(s)' 1

s−1. (11)

This behavior can be inferred by considering the integral Z

1

dx

xs = 1 s−1.

Indeed, one can estimate this integral from above and from below by replacing it by the discrete sums (dx→∆x= 1):

X

n=1

1

(n+ 1)s <

Z

1

dx xs <

X

n=1

1 ns, ζ(s)−1 < 1

s−1 < ζ(s).

(5)

This gives for kBT close to ∆ the following behavior of the free energy:

F 'N kBT log ∆

kBT −1

, (12)

the entropy:

S =−∂F

∂T = kBN∆

∆−kBT −kBNlog ∆

kBT −1

, (13)

and specific heat:

C =T∂S

∂T = kBN∆2

(∆−kBT)2. (14)

(b) The specific heat diverges at temperatures larger than ∆/kB which makes it im- possible to heat this system up to temperatures larger than this value. The regime T >∆/kB is not reachable.

Physically this is caused by the huge number of states which occur per energy interval. To see this we approximate the sum over n by an integral

Z = Z

dnexp (−βE(n)) (15)

and perform a substitution of variables to

E =E(n) = ∆ log (n) (16)

with

dn

dE = eE/∆

∆ (17)

follows

Z = Z dE

∆ exp E

∆−βE

(18) thus the exponentially diverging density of states causes the integral to diverge if

−1 > β, which is just the above criterion. Indeed it follows forkBT < ∆ Z = kBT

∆−kBT (19)

which agrees with the exact behavior for kBT ' ∆. The approximation of a sum by an integral is simply very good if the states are exponentially dense.

3. Maxwell’s relations

(a) Relation between cp, cV: We have that

cV = T ∂S

∂T

V,N

cp = T ∂S

∂T

p,N

(20)

(6)

We can then write

cV = T ∂S

∂T

V

=T∂(S, V)

∂(T, V) =T

∂(S,V)

∂(T ,p)

∂(T,V)

∂(T ,p)

= T

∂(S,V)

∂(T ,p)

∂V

∂p

T

= T

∂V

∂p

T

∂S

∂T p

∂V

∂p T

− ∂S

∂p T

∂V

∂T p

!

= cp− T

∂V

∂p

T

∂S

∂p T

∂V

∂T p

(21)

where the functional determinants have been defined in Q2 in Blatt 1, and we used the identities derived in that question (quantities p, V, T are linked to each other by equation of state).

Next, we derive Maxwell’s relations. We begin by writing the expression for Gibbs function (at constant N)

δG=−SδT +V δp = ∂G

∂T p

δT + ∂G

∂p T

δp (22)

Then if we use the commutativity of second derivatives, we get that

− ∂S

∂p T

= ∂V

∂T p

(23) Putting (23) into (21) we get that

cV =cp+T ∂V

∂T

p

2

∂V

∂p

T

(24)

(b) From (24) and the fact that κ =−V1 ∂V∂p

T > 0, it follows that always cp > cv, i.e the heat capacity at constant pressure is always bigger than the heat capacity at constant volume.

(c) We are given the values of

α = 1 V

∂V

∂T p

= 1 V

∂(V, p)

∂(T, p) κ = −1

V

∂V

∂p T

=−1 V

∂(V, T)

∂(p, T) (25)

(7)

We can then write

α κ =−

∂(V,p)

∂(T,p)

∂(T ,V)

∂(T,p)

=−∂(V, p)

∂(T, V) = ∂p

∂T V

(26) where the first identity that we used above has been proven in Blatt 01, Q2. After putting in the numbers, we get the answer of 34 bar/K, which is a huge number.

4. Zweiatomiges Gas

(a) Partition function. the partition function of N molecules can be written as

Z = (ZtZr)N N!

Zt = 1 h3

Z

d3pd3qe−βp2/(2m)=V

2πm h2β

32

= V λ3 λ =

r2πm h2β Zr =

X

l=0

(2l+ 1)el(l+1)2Tθrot (27)

HereZt is the translational part of the partition function of a single molecule (see lecture notes for more details),Zr is the rotational part of the partition function of a single molecule. State with the angular momentuml, is (2l+ 1)-degenerate (since ml =−l,−l+ 1, ...l – there 2l+ 1 such states). In priciple the summation over l is difficult to calculate and we will perform this summation only in the limiting cases of very low or very high temperatures.

(b) Low temperature limit. For T θrot, we can only keep the first two terms in the l summation of the partition function (27), to obtain

Zr ≈1 + 3eθrotT (28)

For the internal energy and heat capacity we find that find that

U = −∂lnZ

∂β = 3

2N kBT

| {z }

transl. contribution

+3N kBθroteθrotT

cv =

∂U

∂T

V

= 3

2N kB+ 3N kB θrot

T 2

eθrotT (29) where we used (27) and (28). We see that i) every translational degree of freedom contributesN kB/2, and ii) the rotational spectrum is gapped, hence the contributi- on is proportional toeT, where ∆ =θrot is the value of the gap (energy diffrerence between the ground state and the first excited state).

(8)

(c) High temperature limit, T θrot. In this case we can replace the sum overl by an integral

Zr =

X

l=0

(2l+ 1)el(l+1)2Tθrot

= 1

∆l Z

l=0

(2l+ 1)el(l+1)2Tθrot

= 2T θrot

Z

0

dxe−x= 2T θrot x = l(l+ 1)θrot

2T (30)

where ∆l= 1 is the spacing between adjacent l. The replacement of the sum by an integral is justified since ∆l = 1χ, where χ'T /θrot is the characteristic length of the exponential function in the integral.

We obtain

U = −∂lnZ

∂β = 3

2N kBT

| {z }

transl. contribution

+N kBT

cv =

∂U

∂T

V

= 3

2N kB+N kB (31)

This is in agreement with the equipartition theorem – 3 translation degrees of freedom, each contributingN kBT /2 to internal energy (and hence byN kB/2 to heat capacity), 2 rotational degrees of freedom, each contributing N kBT /2 to internal energy.

(d) Spin singlet case: S = 0. In this case the spin part of the wave-function is anti- symmetric, which means that the spatial part of the wave-function Yml must be symmetric (in order to get overall antisymmetric wave-function). This is the case only for even l = 0,2,4,6.... ThenZr =P

l=0,2,4(2l+ 1)el(l+1)2Tθrot.

Spin tripletS = 1 case. In this case the spin part of the wave-function is symmetric, which means that the spatial part of the wave-function Yml must be antisymmetric (in order to get overall antisymmetric wave-function). This is the case only for odd l= 1,3,5,7.... Then Zr =P

l=1,3,5...(2l+ 1)el(l+1)2Tθrot.

We have seen that the spin singlet S = 0 allows l = 0,2,4.., while spin triplet S = 1, allows only l = 1,3, .... The l = 0 state is the state with lowest rotation energyEr ∝l(l+ 1); and this state is only allowed ifS = 0. Hence spin singlet state is the ground-state.

Referenzen

ÄHNLICHE DOKUMENTE

It focuses on the conception of austriacisms from different points of view according to linguistic experts, the analysis of the terms from the novel of Nöstlinger and most

Finalmente, dado que la distribución de los residuos de la ecuación de corto plazo es unimodal y no presenta mayor masa de probabilidad en sus colas (o valores extremos),

The DNA chip contains a hierarchical set of oligonucleotide probes specific for different phytoplankton classes, genera and species occurring in the North Sea.. It

b) Zeigen Sie, dass der Hamilton-Operator H mit dem Operator σ ·P vertauscht, wobei P der Impulsoperator ist und σ die Pauli Spinoperatoren im Raum von vier Komponentenspinoren

In the event of a Local or Asian financial crisis our findings suggests that Malaysia will be the stock index affected the most as it is highly correlated

Where necessary, they modified earlier Egyptian traditions, for example when the heir to the throne was depicted or when the king was married to two powerful wives at the same

Determination of the minimal upstream region of hspA required for the maximum expression of hspA during heat shock and indole treatment.. The promoter region of hspA was delimited

Nevertheless, the framework of the fermionic projector differs from standard quantum theory in that for many-particle wave functions, the superposition principle does not hold on