• Keine Ergebnisse gefunden

The measurement of pH in saline and hypersaline media at sub-zero temperatures: Characterization of Tris buffers by

N/A
N/A
Protected

Academic year: 2022

Aktie "The measurement of pH in saline and hypersaline media at sub-zero temperatures: Characterization of Tris buffers by"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The measurement of pH in saline and hypersaline media at sub-zero temperatures:

Characterization of Tris buffers by Stathys Papadimitriou, Socratis Loucaides, Victoire Rérolle, Eric P. Achterberg, Andrew G. Dickson, Matthew Mowlem, Hilary Kennedy

Supplementary Information

This section includes the e.m.f. measurements in solutions of HCl in synthetic seawater (S = 35) and in synthetic seawater-derived brines (S = 45 – 100) in cells (B) and (C), respectively. These measurements, along with salinity, temperature, and pertinent solution composition information, are given in Table S1 below; they were used to determine the apparent standard potential (

E

o¿ ) of

cells (B) and (C) in the presence of sulphate in the synthetic solutions of this study as described in the section The apparent standard potential of the Harned cell with synthetic seawater (S = 35) and synthetic brine (S > 35) of the main article. This is followed by information about the standard error from the Regression output of individual fitted coefficients of equations (1) to (3) (Table S2), described in the section The standard potential of the Harned cell to the freezing point of synthetic seawater and brines, and equations (4) to (8) (Table S3), described in the section The pH of Tris buffers to the freezing point of synthetic seawater and brines.

This section also includes plots of the residuals in Eo¿ as a function of temperature between the experimental values and fitted values (a) from equation (1) for seawater (S = 35) and temperatures from 55 to –1.7 °C, and (b) from equation (2) for seawater and brines at their freezing point (Fig. S1). Finally, the residuals in pHTris as a function of temperature are shown in Figure S2 between the experimental values and fitted values (a) from equation (4) for the equimolal Tris buffer (molality ratio, RTris = mTris/ mTris−H+ = 1) in seawater (S = 35) at temperatures from 45 to – 1.7 °C, (b) from equation (5) for the equimolal Tris buffer in seawater and brines at their freezing point, and (c) from equation (6) for the non-equimolal Tris buffer (RTris = 0.5) for seawater and brines at their freezing point.

(2)

Table S1. The e.m.f. (E, in V) of the Harned cell with HCl solutions in synthetic seawater (S = 35) and synthetic seawater-derived brines (S > 35). The reported E values were corrected to a hydrogen fugacity of 101.325 kPa and were adjusted to the Eo of Bates and Bower (1954) ( EoBB ), with EoBB computed from the relevant temperature function in Dickson (1990b) (e.g., EoBB = 0.22240 V at 25

°C and 0.23659 V at 0 °C). The adjustment to EoBB was done using the average difference ( ΔEoBB , in V) of EoBB from the Eo values ( Eomeasured ) derived from e.m.f. measurements of dilute HCl solutions in de-ionized water at 0, 5, and 25 °C during the course of the investigation as described in the section The standard potential of pure HCl solutions. Therefore, the E values reported below derive from the measured e.m.f. (Emeasured) as E = EmeasuredΔEoBB . The ionic strength (I) and the concentrations of total sulphate ( mSO42− ), HCl (mHCl), and total chloride ( mCl ) in the synthetic salt solutions are in mol kg−1H2O .

S t (°C) I mSO42− mHCl mCl ΔEoBB E

3

5 24.996 0.722

5 0.02927 0.039996 0.56923 –0.000012 0.3414

9 0.34151 0.34152

0.004 0.3428

4 0.34292 0.34285

–0.001 0.3429

3 0.34298 0.34297

–0.619 0.3428

4 0.34293 0.34286

–1.165 0.3428

4 0.34296 0.34289

–1.712 0.3428

4 0.34297 0.34292 24.998 0.722

6 0.02927 0.030005 0.56923 –0.000012 0.3493

3 0.34931 0.34932

–0.001 0.3498

4 0.34976 0.34983

–0.624 0.3498

2 0.34974 0.34982

–1.206 0.3498

1 0.34972 0.34981

–1.707 0.3498

0 0.34970 0.34980 25.008 0.722

5 0.02927 0.020001 0.56919 –0.000012 0.3602

0 0.36017 0.36016

–0.014 0.3594

5 0.35948 0.35950

–0.008 0.3594

6 0.35951 0.35955

–0.620 0.3594

2 0.35945 0.35945

–1.169 0.3593

9 0.35942 0.35943

–1.717 0.3593

7 0.35940 0.35941 25.001 0.722

5 0.02927 0.020000 0.56919 –0.000012 0.3602

0 0.36020

(3)

–0.004 0.3595

8 0.35959

–0.616 0.3595

4 0.35956

–1.234 0.3595

0 0.35953

–1.711 0.3594

6 0.35951 24.992 0.722

4 0.02927 0.009869 0.56910 –0.000012 0.3788

1 0.37881

–0.003 0.3763

6 0.37630 25.010 0.722

5 0.02927 0.009992 0.56922 –0.000012 0.3784

8 0.37850

–0.006 0.3760

1 0.37600

(4)

Table S1 (Continued)

S t (°C) I mSO42− mHCl mCl ΔEoBB E

35 25.00

8 0.7226 0.02927 0.005003 0.56924 –0.00052 0.3967

8 0.39671 0.39672 –

0.014 0.3925

9 0.39257 –

0.008

0.3926

2 0.39259 –

0.620

0.3924

7 0.39242 –

1.169 0.3923

7 0.39236 –

1.717

0.3922

8 0.39226 45 24.99

7 0.9387 0.03803 0.040003 0.73955 0.00000 0.3351

1 0.33513 24.99

6

0.3351

1 0.33515 –

0.005

0.3365

8 0.33660 –

2.502 0.3366

3 0.33665 25.00

0 0.9387 0.03803 0.029999 0.73951 0.00000 0.3429

6 0.34296 –

0.003 0.3435

4 0.34354 –

2.499

0.3435

1 0.34352 24.99

7 0.9387 0.03803 0.025007 0.73952 0.00000 0.3478

7 0.34780 24.99

6 0.3478

5 –

0.005

0.3479 4 –

2.502 0.3478

7 25.00

0 0.9387 0.03803 0.020087 0.73951 0.00000 0.3537

2 0.35374 –

0.003

0.3531

6 0.35316 –

2.510 0.3530

3 0.35304 24.99

8 0.9378 0.03801 0.020080 0.73868 0.00000 0.3537

7 0.35378 –

0.006 0.3532

3 0.35320 –

2.499

0.3531

0 0.35307 24.99

7 0.9392 0.03803 0.015002 0.73985 0.00000 0.3614

8 0.36145

24.99 0.3614

(5)

6 7 –

0.005 0.3601

2 –

2.502

0.3599 2 25.00

0 0.9386 0.03803 0.010009 0.73948 0.00000 0.3722

1 0.37222 –

0.003 0.3698

4 0.36984 –

2.510

0.3695

5 0.36955 24.99

4 0.9379 0.03801 0.010004 0.73875 0.00000 0.3722

8 0.37225 0.37218 –

0.005

0.3699

1 0.36990 0.36979 –

2.494

0.3696

1 0.36962 0.36950 50 25.00

1 1.0484 0.04248 0.050000 0.82598 0.00002 0.3262

0 0.32617 0.32619 –

0.001

0.3283

8 0.32834 0.32834 –

2.821 0.3285

2 0.32846 0.32849 24.99

6 1.0485 0.04248 0.040005 0.82599 0.00000 0.3322

7 0.33227 –

0.002

0.3337

2 0.33375 –

2.795 0.3337

9 0.33381 25.00

1 1.0484 0.04248 0.030009 0.82599 0.00000 0.3401

6 0.34015 –

0.009 0.3407

8 0.34075 –

2.822

0.3407

6 0.34074 25.00

1 1.0487 0.04248 0.019997 0.82615 0.00000 0.3510

1 0.35096 –

0.009 0.3504

8 0.35043 –

2.822

0.3503

5 0.35031

(6)

Table S1 (Continued)

S t (°C) I mSO42− mHCl mCl ΔEoBB E

5

0 25.001 1.0485 0.0424

8 0.014998 0.82602 0.00000 0.35870 0.35863

–0.009 0.35737 0.35731

–2.822 0.35715 0.35710

6

0 24.997 1.2716 0.0515

1 0.050009 1.00179 0.00000 0.32092 0.32089

–0.004 0.32308 0.32305

–3.383 0.32327 0.32324

24.997 1.2718 0.0515

1 0.040007 1.00192 0.00000 0.32707 0.32704

–0.006 0.32853 0.32852

–3.422 0.32863 0.32862

24.996 1.2717 0.0515

2 0.030012 1.00185 0.00000 0.33487 0.33487

–0.007 0.33551 0.33547

–3.423 0.33552 0.33547

24.996 1.2715 0.0515

2 0.020005 1.00173 0.00000 0.34572 0.34575

–0.007 0.34520 0.34522

–3.423 0.34507 0.34510

24.996 1.2716 0.0515

1 0.014999 1.00179 0.00000 0.35341 0.35345

–0.007 0.35213 0.35214

–3.423 0.35190 0.35192

7

0 24.997 1.4995 0.0607

5 0.050029 1.18133 0.00000 0.31607 0.31606

–0.004 0.31832 0.31825

–3.995 0.31858 0.31851

24.998 1.4997 0.0607

5 0.040033 1.18146 0.00000 0.32219 0.32220

–0.002 0.32364

–3.999 0.32379

24.996 1.4997 0.0607

5 0.030014 1.18144 0.00000 0.33001 0.33003

–0.002 0.33066 0.33067

–4.010 0.33070 0.33070

24.996 1.4995 0.0607

5 0.020010 1.18134 0.00000 0.34093 0.34092

–0.002 0.34042 0.34038

–4.010 0.34030 0.34025

24.996 1.4996 0.0607

5 0.014997 1.18138 0.00000 0.34859 0.34858

–0.002 0.34732 0.34729

–4.010 0.34709 0.34705

8

5 25.002 1.8507 0.0749

8 0.050000 1.45801 0.00002 0.30962 0.30967

–0.002 0.31181 0.31181

–5.001 0.31217 0.31218

25.002 1.8506 0.0749 0.039999 1.45795 0.00002 0.31579 0.31580

(7)

8

–0.002 0.31722 0.31723

–5.001 0.31746 0.31746

25.002 1.8507 0.0749

8 0.030000 1.45800 0.00002 0.32365 0.32355

–0.002 0.32421 0.32421

–5.001 0.32429 0.32429

(8)

Table S1. Continued.

S t (°C) I mSO42− mHCl mCl ΔEoBB E

85 24.99

9 1.8506 0.07498 0.019999 1.45792 0.00002 0.33442 0.33461 –

0.001 0.33404 0.33404

4.940 0.33391 0.33393

24.99

9 1.8507 0.07498 0.015000 1.45800 0.00002 0.34235 0.34232 –

0.001 0.34101 0.34100

4.940 0.34074 0.34074

24.99

9 1.8507 0.07498 0.010000 1.45800 0.00002 0.35284 0.35289 –

0.001 0.35081 0.35070

4.940 0.35036 0.35031

24.99

9 1.8507 0.07498 0.010000 1.45800 0.00002 0.35318 0.35316 0.35320 –

0.001 0.35082 0.35081 0.35086

5.000 0.35037 0.35035 0.35039

100 25.00

0 2.2137 0.08968 0.050000 1.74397 0.00002 0.30330 0.30330 –

0.001 0.30534 0.30537

5.998 0.30577 0.30581

25.00

0 2.2135 0.08967 0.039999 1.74387 0.00002 0.30953 0.30936 –

0.001 0.31086 0.31071

5.998 0.31118 0.31105

25.00

0 2.2136 0.08968 0.030000 1.74391 0.00002 0.31736 0.31734 –

0.001 0.31784 0.31786

5.998 0.31798 0.31800

25.00

1 2.2135 0.08967 0.020000 1.74387 0.00002 0.32835 0.32823 –

0.002 0.32776 0.32780

5.999 0.32763 0.32764

25.00 2.2136 0.08969 0.015000 1.74393 0.00002 0.33625 0.33627

(9)

1 –

0.002 0.33489 0.33491

5.999 0.33461 0.33462

25.00

1 2.2136 0.08968 0.010000 1.74393 0.00002 0.34704 0.34699 –

0.002 0.34461 0.34463

5.999 0.34411 0.34411

25.00

0 2.2136 0.08968 0.010000 1.74393 0.00002 0.34700 0.34698 0.34671

0.001 0.34456 0.34457 0.34458

6.001 0.34405 0.34406 0.34406

(10)

Table S2. The t number from the Regression output of the individual fitted coefficients of equations (1) to (3). The t number is the ratio of the coefficient value to its standard error and its absolute value has a Student’s t distribution. Values in italics indicate less than 95% confidence level for the significance of the coefficient.

paramete r

t number

Equation (1) Equation (2) Equation (3)

constant 3.961 –4.366

T –2.821 4.411

T lnT 2.547

T2 –0.679 –4.361

I0.5 4.389

I0.5 T –2.877

I0.5 T lnT 2.525

I0.5 T2 –0.013

I –8.891

I T 9.515

I T lnT –9.924

I1.5 4.024

I1.5 T 5.498

I2 –15.906

(11)

Table S3. The t number from the Regression output of the individual fitted coefficients of equations (4) to (8). The t number is the ratio of the coefficient value to its standard error and its absolute value has a Student’s t distribution. Values in italics indicate less than 95% confidence level for the significance of the coefficient.

parameter

t number

Equation (4) Equation (5) Equation (6) Equation (7) Equation (8)

constant –11.929 –0.190 –3.709 2.208 1.530

T–1 15.155 0.189 3.711 –1.741

T –12.881 –0.190 –3.707 2.291 0.866

lnT 12.034 0.190 3.708 –2.223 –1.342

S –4.432 –0.444

S2 4.808 0.394

S T –4.389 –0.443

S2 T 4.916 0.369

S T–1 4.137

S2 T–1 –4.734

S lnT 4.255 0.444

S2 lnT –4.824 –0.389

(12)

Figure S1. Residuals in as a function of temperature. The residuals are between the experimental values and fitted values (a) from equation (1) for seawater (S = 35) and temperatures from 55 to –1.7 °C, and (b) from equation (2) for seawater and brines at their freezing point. The experimental values are from Table 2 in this study (+), from Table 3 in Dickson (1990b) (○), and from Table 3 in Campbell et al. (1993) (□). Note the difference in the temperature scale of the x-axis between panels (a) and (b).

(13)

Figure S2. Residuals in pHTris (in mol on the total proton scale) as a function of temperature. The residuals are between the experimental values and fitted values (a) from

Abbildung

Table S1. The e.m.f. (E, in V) of the Harned cell with HCl solutions in synthetic seawater (S = 35) and synthetic seawater-derived brines (S > 35)
Table S1 (Continued) S t (°C) I m SO 4 2− m HCl m Cl − ΔE o BB E 35 25.00 8 0.7226 0.02927 0.005003 0.56924 –0.00052 0.39678 0.39671 0.39672 – 0.014 0.39259 0.39257 – 0.008 0.39262 0.39259 – 0.620 0.39247 0.39242 – 1.169 0.39237 0.39236 – 1.717 0.39228 0.3
Table S1 (Continued) S t (°C) I m SO 4 2− m HCl m Cl − ΔE o BB E 5 0 25.001 1.0485 0.04248 0.014998 0.82602 0.00000 0.35870 0.35863 –0.009 0.35737 0.35731 –2.822 0.35715 0.35710 6 0 24.997 1.2716 0.05151 0.050009 1.00179 0.00000 0.32092 0.32089 –0.004 0.32
Table S1. Continued. S t (°C) I m SO 4 2− m HCl m Cl − ΔE o BB E 85 24.99 9 1.8506 0.07498 0.019999 1.45792 0.00002 0.33442 0.33461 – 0.001 0.33404 0.33404 – 4.940 0.33391 0.33393 24.99 9 1.8507 0.07498 0.015000 1.45800 0.00002 0.34235 0.34232 – 0.001 0.34
+5

Referenzen

ÄHNLICHE DOKUMENTE

We present experimentally determined physical and chemical characteristics of purified meta-Cresol Purple (mCP) pH indicator dye suitable for pH measurements in seawater

a. Check the mother board visually for shorts or open lines in the buses. Remove the ROM PAC from the Sorcerer, and remove all S-loo cards from the S-loo Expansion Unit,

A BASIC floating point variable resides in the BASIC Program Variable Area. The letters are also reversed as usual. Four-byte floating point value currently held by

[r]

In particular , the method comprises capturing a first small 35 A - scan , edge detection in the A - scan or by a segmentation set of data by means of OCT and using the

Although partial, the separation of these two compounds in the first phase of our study was sufficient for a good matching of the data from the two methods (equivalent to

Intended for terminal users whose data is primarily textual (as opposed to formatted data entry), the Entry Assist feature provides a number of useability

Columns headed Au show the difference in horizontal velocity between the Atlantic layer, taken as the mean of stations C1 and C2, and Mediterranean layer, the mean of C5 and C6,