• Keine Ergebnisse gefunden

Stochastic Programming with Incomplete Information

N/A
N/A
Protected

Academic year: 2022

Aktie "Stochastic Programming with Incomplete Information"

Copied!
45
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Working Paper

STOC-IC PROGRAMMING WITH I N c o I d P m INFORMA.TI0N

Rtka h p a E ovh

February 1986 WP-86-00

International Institute for Applied Systems Analysis

A-2361 Laxenburg, Austria

(2)

NOT FOR QUOTATION

WITHOUT THE PERMISSION OF THE AUTHOR

STOCHASTIC PROGRAMMING

WITH

INcowLErE INMIRMATION

F e b r u a r y 1986 WP-86-08

Working Papers are interim r e p o r t s on work of t h e International Institute f o r Applied Systems Analysis and have r e c e i v e d only limited review. Views or opinions expressed herein do not necessarily r e p r e s e n t t h o s e of t h e Institute or of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria

(3)

FOREWORD

One of t h e activities of t h e Adaptation and Optimization P r o j e c t of t h e System and Decision Sciences Program is t o develop mathematical methods and a p p r o a c h e s f o r t r e a t i n g models of systems c h a r a c t e r i z e d by limited information about parame- t e r distribution.

This p a p e r p r e s e n t s t h r e e a p p r o a c h e s which r e f l e c t different assumptions about t h e incomplete knowledge of t h e distribution and which c a n b e applied t o model building as well as t o sensitivity analysis, approximation and robustness stu- dies in stochastic programming problems. The suggested methods build a bridge between t h e purely deterministic a p p r o a c h e s of nonlinear programming stability and t h e tools of mathematical statistics.

Alexander B. Kurzhanski Chairman System and Decision Sciences Program

(4)

CONTENTS

Abstract

1. Introduction 2. Examples

3. Nonlinear programming stability results and estimated parameters 4 . Contaminated distributions

5 . The minimax approach References

(5)

STOCHASTIC PROGRAMMING WITH INCOMPLETE INFORISIIATION

J i t k a DupaE ovh

Abstract

The possibility of successful applications of stochastic programming decision models h a s been limited by t h e assumed complete knowledge of t h e distribution F of t h e random p a r a m e t e r s as well as by t h e limited scope of t h e existing numerical procedures.

We shall introduce selected methods which c a n b e used t o deal with t h e incom- plete knowledge of t h e distribution F, t o study robustness of t h e optimal solution and t h e optimal value of t h e objective function r e l a t i v e t o small changes of t h e underlying distribution and t o g e t e r r o r bounds in approximation schemes.

The r e s e a r c h w a s mostly c a r r i e d out at t h e Department of Statistics, Charles University, P r a g u e and i t w a s stimulated by a close collaboration of t h e a u t h o r with t h e ADO p r o j e c t of SDS. The p r e s e n t version of t h e p a p e r w a s written at IIASA Laxenburg.

1. Introduction

Quite a l a r g e c l a s s of stochastic programming decision problems can b e transformed t o t h e following mathematical programming problem

(6)

maximize g o ( x ; F )

s u b j e c t t o g i ( x ; F ) r O , 1 5 i S m ,

g , ( x ; F ) = O , m + 1 5 i S m + p , x E X

w h e r e X c R n i s a given nonempty set. The functions gi , 0 5 i 5 m

+

p , d o not depend on random p a r a m e t e r s d i r e c t l y b u t by means of t h e i r d i s t r i b u t i o n F only.

An example of (1.1) i s when a nonlinear p r o g r a m

maximize h o ( x ; o) (1.2)

s u b j e c t t o hk ( x ; o ) 2 0 ,1 S k 5 1 , hk ( x ; o)

=

0 ,1

+

I S k 5 s , E x 0

contains random p a r a m e t e r s o in hk (z ; o ) , 0 5 k 5 s , and t h e decision x E

5

h a s to b e chosen b e f o r e t h e values of t h e s e p a r a m e t e r s are o b s e r v e d .

Among o t h e r s , two well known decision models of s t o c h a s t i c programming c a n b e evidently written in form (1.1):

Stochastic program w i t h recourse

maximize

EF

tho ( x ; o )

-

q ( x ; o ) j (1.3)

s u b j e c t t o x E X C

w h e r e t h e penalty function q ( x ; o ) e v a l u a t e s t h e loss c o r r e s p o n d i n g t o t h e case t h a t t h e c h o s e n X E X d o e s n o t fulfill t h e c o n s t r a i n t s hk ( x ; o )

r

0 , 1 s k 5 1 , h k ( x ; o )

=

0,l

+

1 5 k S s , f o r t h e o b s e r v e d values of t h e random p a r a m e t e r s . The set X c

X,

i s defined by induced c o n s t r a i n t s which g u a r a n t e e t h a t q i s well defined.

Stochastic program w i t h probabilistic c o n s t r a i n t s maximize

EF

tho ( x , o)j

s u b j e c t t o

PF

{hk ( x ; o) 2 0 , k E Iij 2 ai , 1 S i S m , x E X C X ' ,

w h e r e Ii c 11,

. . .

,1 j,ai E <0,1

>

, 1 C i S m , are given in advance.

F o r both mentioned b a s i c t y p e s of decision models, numerous r e m a r k a b l e t h e o r e t i -

(7)

c a l r e s u l t s were achieved and numerical a p p r o a c h e s suggested. However, t h e numerical solution is r a t h e r complicated in general, mainly due t o t h e f a c t t h a t r e p e a t e d evaluation of function values and gradients i s needed which is r a t h e r time consuming and demands special simulation and/or approximation techniques.

The question of e r r o r bounds i s evidently both of p r a c t i c a l and t h e o r e t i c a l i n t e r e s t .

The optimal solution z (F) and t h e optimal value of t h e objective function in (1.1) depend on t h e chosen t y p e of model and on t h e distribution F which is usually assumed t o b e completely known and independent of t h e chosen decision z . How- e v e r , t h e distribution F i s hardly known completely in r e a l situations. The numeri- c a l r e s u l t s obtained should t h u s b e at l e a s t complemented by a n additional informa- tion about sensitivity of t h e optimal solution with r e s p e c t t o eventual changes of t h e distribution F. In t h e r o b u s t c a s e , a small change in t h e distribution F should cause only a small change in t h e optimal solution.

A f i r s t idea could b e t o study stability of t h e optimal solution of program (1.1) with r e s p e c t t o t h e underlying distribution F d i r e c t l y . However, t h e s p a c e of pro- bability measures provided with a metric corresponding t o t h e weak topology is not a l i n e a r one, s o t h a t t h e g e n e r a l r e s u l t s of p a r a m e t r i c programming are not appli- c a b l e directly.

In t h i s p a p e r t h r e e a p p r o a c h e s will b e presented. They r e f l e c t d i f f e r e n t assumptions on t h e (incomplete) knowledge of t h e distribution F. A s w e shall s e e , t h e y may b e used t o perform sensitivity analysis and postoptimality studies, t o g e t e r r o r bounds and t o solve problems of s t o c h a s t i c programming under a n explicitly given assumption of incomplete knowledge of t h e distribution F.

(i) Assuming t h a t t h e considered distribution is known t o belong t o a p a r a m e t r i c family of distributions, say F E IFy , y E

Yj,

w e can r e w r i t e program (1.1) making t h e dependence on t h e p a r a m e t e r v e c t o r y explicit:

(8)

maximize g, ( z ; y )

subject t o g i ( z ; y ) 2 0 , 1

s

i 5 m ,

g i ( z ; y ) = O , r n + l S i 5 m + p , z E X

where gi ( z ; y ) , 0 S i 5 m + p , are used instead of gi ( z ; Fy ) , 0 S i s m +p , respectively. The stability of t h e optimal solution of program (1.5) with r e s p e c t t o t h e p a r a m e t e r v e c t o r y E Y c a n b e studied t o a c e r t a i n e x t e n t through t h e methods of p a r a m e t r i c programming and through t h e methods developed f o r non- l i n e a r programming stability studies (see e.g. Armacost and Fiacco (1974), G a r s t k a

Having in mind t h e s t a t i s t i c a l background of t h e p a r a m e t e r values which are typically statistical estimates of t h e t r u e p a r a m e t e r values, t h e r e s u l t s of p a r a m e t r i c programming have been complemented by statistical a p p r o a c h e s (see

~ u p a g o v d (1983), (1984) f o r problem (1.3), Dupazovd (1986a) f o r problem (1.4)).

The r e s u l t s are summarized in Section 3.

(ii) The local behaviour of t h e optimal solution x ( F ) with r e s p e c t t o small changes of t h e underlying distribution F c a n b e studied via t-contamination F by a suitably chosen distribution G , i.e., instead of F, distributions of t h e form

Ft = ( 1 - t ) F + t G , o s t s1

are considered (see D u p a ~ o v d (1983), (1985a) f o r problem (1.3), ~ u ~ a z o v d (1986a) f o r problem (1.4)). The original stability problem t h u s r e d u c e s t o t h a t linearly p e r t u r b e d by a s c a l a r p a r a m e t e r t . This a p p r o a c h gives a basis f o r performing sensitivity analysis of t h e optimal solution z (F) and f o r post-optimality studies.

(See Section 4.)

(iii) In typical cases of incomplete knowledge of t h e distribution, F i s known t o belong t o a specified s e t F of distributions. One a p p r o a c h i s via minimax. W e shall discuss in Section 5 t h e c a s e when t h e c o n s t r a i n t s in (1.1) do not depend on F and are incorporated into X For convex compact set F, t h e m i n i m a x s o l u t i o n z ( F

*

)

(9)

is t h e optimal solution of t h e problem (1.1) corresponding t o t h e l e a s t favourable

* * *

distribution F E F and, similarly, t h e maximax solution z ( F ) c o r r e s p o n d s t o t h e most favourable distribution z (F**) E F. Even without compactness of F w e may g e t minimax and maximax bounds

max inf g o ( z ; F ) I E X F E F

and

max sup g o ( z ; F ) I E X F E F

which provide a n i n t e r v a l estimate f o r t h e optimal value max go ( z ; F ) f o r any

I E X

F E F. This f a c t can b e used t o draw conclusions about t h e dependence of t h e optimal solution on changes of F within t h e given set F and t o g e t e r r o r bounds in numerical methods.

In specific cases (reliability, worst case analysis) t h e minimax solution itself i s of g r e a t i n t e r e s t . In addition, i t is possible t o combine complete and incomplete knowledge of t h e distribution of specific random p a r a m e t e r s of t h e given problem ( ~ u ~ a 6 o v b (1985b)). Even in t h e minimax a p p r o a c h , however, t h e solution depends on t h e choice of t h e set of distributions F and i t i s necessary t o choose such a set which f i t s t o t h e p r e s e n t e d problem as well as possible, using a l l t h e available information. For getting e r r o r bounds (as a p a r t of a n i t e r a t i v e algorithm) one cannot probably i n c r e a s e t h e level of information too much.

A s t h e set F i s often defined by p r e s c r i b i n g values of c e r t a i n moments of t h e distributions F E F, t h e r e s u l t s of t h e moment problem can b e used t o g e t comput- a b l e minimax/maximax solutions and bounds (see ~ u ~ a 6 o v d (1977) ,(1978)). When t h e p r e s c r i b e d values 7 of moments are not known precisely enough, namely, when they are estimated on t h e basis of observed d a t a , t h e problem of stability of t h e minimax solution comes t o t h e f o r e and t o solve i t , methods mentioned sub (i) can b e applied.

(10)

2. Examples

To g e t some motivation, l e t us consider f i r s t a f e w examples.

Example 2.1. The cattle-feed problem (van d e Panne and Popp (1963)). The prob- l e m is t o find t h e amounts x j of input j which lead t o t h e minimum c o s t of t h e final mixture in which r e s t r a i n t s on t h e nutrition contents are satisfied. In t h e formula- tion, t h e protein content weight p e r c e n t a g e s p e r ton, a j , f o r each of f o u r con- s i d e r e d inputs are assumed t o b e normally distributed random v a r i a b l e s with means p, and v a r i a n c e s of , 1

a

j

a

4. Besides of deterministic l i n e a r c o n s t r a i n t s , one probabilistic c o n s t r a i n t

is constructed.

Under normality assumption, (2.1) can b e written in t h e following way

where ( a ) denotes t h e a

-

quantil of t h e N ( 0 , l ) distribution. The p a r a m e t e r s p j

.

o f . 1

a

j

a

4 , are estimated by sampling and in applications, t h e estimates are used instead of t h e t r u e p a r a m e t e r values. In Armacost and Fiacco (1974) t h e problem of stability of t h e optimal solution with r e s p e c t t o p a r a m e t e r values was solved, namely, derivatives of t h e optimal solution with r e s p e c t t o t h e p a r a m e t e r values were obtained.

Having in mind t h e s t a t i s t i c a l background of t h e considered p a r a m e t e r s w e shall aim t o complement t h e deterministic stability r e s u l t s by s t a t i s t i c a l ones.

Example 2.2. A simple s t o c h a s t i c model of w a t e r r e s e r v o i r design. The problem is t o minimize t h e r e q u i r e d capacity c of t h e r e s e r v o i r s u b j e c t t o t h e following con- s t r a i n t s :

(11)

F r e e b o a r d c o n s t r a i n t

P I s i S c - v i j 2 a l , l S i S n , Minimum s t o r a g e c o n s t r a i n t

P I s i 2 m i j 2 a z , l ~ i ~ n , Minimum r e l e a s e c o n s t r a i n t

P f x i r y i j 2 a , , l s i s n ,

where, in t h e p a r t i c u l a r time i n t e r v a l , si i s t h e s t o r a g e , v i i s t h e flood c o n t r o l f r e e b o a r d s t o r a g e , mi i s t h e minimum s t o r a g e , xi i s t h e t o t a l release a n d y i i s t h e p r e s c r i b e d minimum release.

Using l i n e a r decision r u l e , t h e v a r i a b l e s xi , si are e x p r e s s e d via .monthly inflows ri , ri whose marginal d i s t r i b u t i o n s Fi are supposed t o b e known. Usu- ally, log-normal d i s t r i b u t i o n i s used a n d i t s p a r a m e t e r s are estimated o n t h e b a s i s of r e l a t i v e l y long time s e r i e s of t h e o b s e r v e d monthly inflows. However, in p a r t i c - u l a r months, s p e c i f i c deviations from t h e assumed distribution may a p p e a r : in s p r i n g , t h e d i s t r i b u t i o n may b e r e l a t i v e l y c l o s e t o t h e normal one. Under t h e s e c i r c u m s t a n c e s , w e c a n a c c e p t t h e hypothesis t h a t t h e t r u e marginal d i s t r i b u t i o n s are m i x t u r e s of given log-normal a n d normal ones. We are i n t e r e s t e d t o d e s c r i b e

. c h a n g e s of t h e o r i g i n a l optimal decision d u e t o t h e influence of t h e a l t e r n a t i v e dis- tribution.

Even in t h i s simple example, t h r e e d i f f e r e n t t y p e s of v a r i a b l e s t y p i c a l f o r sto- c h a s t i c models of water r e s o u r c e s systems c a n b e distinguished at f i r s t sight:

-

c o n s t a n t coefficients a n d p a r a m e t e r s , s u c h as system r e l i a b i l i t i e s , flood con- t r o l f r e e b o a r d s t o r a g e , minimum s t o r a g e o r r u l e c u r v e a n d penalty coeffi- c i e n t s in t h e c o r r e s p o n d i n g r e c o u r s e model

-

random v a r i a b l e s with a known d i s t r i b u t i o n (i.e., with a w e l l estimated d i s t r i - bution), e.g. t h e monthly inflows

(12)

-

random v a r i a b l e s with a n incomplete knowledge of distribution, such as t h e f u t u r e demands ( ~ u p a z o v d (1985b)).

A d e e p e r insight into t h e modelled r e a l life problem, however, leads t o t h e conclusion t h a t t h e p a r a m e t e r s are far from being known precisely, t h a t t h e dis- tribution h a s been estimated from time s e r i e s of d a t a which are observed with a relatively high measurement e r r o r o r t h a t t h e t y p e of t h e distribution follows from t h e p a s t e x p e r i e n c e and t h e p a r a m e t e r s of t h e distribution are estimated on t h e basis of random input d a t a . On t h e o t h e r hand, t h e final decision should not b e too sensitive t o t h e changes of t h e p a r a m e t e r s and distributions, i t should b e r o b u s t enough.

Example 2.3. The STABIL model (Prdkopa et a l . (1980)) w a s applied t o t h e f o u r t h Five-Year Plan of t h e e l e c t r i c a l energy s e c t o r of Hungary. Besides numerous deterministic l i n e a r c o n s t r a i n t s , one joint probabilistic constraint

w a s used; t h e f o u r right-hand sides w i , 1 S i

s

4, were r e g a r d e d s t o c h a s t i c and t h e joint distribution of t h e s e random v a r i a b l e s w a s supposed t o b e normal. Due t o t h e lack of r e l i a b l e d a t a , some of t h e c o r r e l a t i o n s could not b e given precisely enough. That is why two a l t e r n a t i v e c o r r e l a t i o n matrices were considered in P r d k o p a e t al. (1980) and t h e numerical r e s u l t s were compared.

Alternatively, instead of given normal distributions N ( p , El) o r N ( p , E2) t h e i r mixture

(1-t) N ( p , El)

+

t N ( p , E2) (2.2) c a n b e considered which helps t o study t h e changes of t h e optimal solution in prin- ciple f o r 0 S t S 1 ; (2.2) c o r r e s p o n d s t o t h e g r o s s e r r o r o r contamination model.

Example 2.4. P r o j e c t planning. The problem i s t o fix t h e completion time T of t h e given p r o j e c t . The reduction of t h e completion time i s profitable a t t h e rate of

(13)

c r 0 and t h e eventual delay in t h e completion i s penalized with q 2 c p e r time unit. The p r o j e c t i s r e p r e s e n t e d by a network whose a r c s correspond t o t h e planned activities. Assume t h a t t h e r e i s one sink and one s o u r c e only and t h a t t h e activities a r e numbered by indices 1 S i S n

.

Whereas t h e s t r u c t u r e of t h e pro- ject (the network) is supposed t o be given, t h e completion times, say o i , of t h e activities a r e random variables and s o is t h e t o t a l completion time T . According t o o u r formulation, t h e decision T h a s t o be made b e f o r e t h e realizations of oils a r e known and one h a s t o solve t h e stochastic program

min IcT

+

q EF [T(w)

-

TI + j

T (2.3)

where F denotes t h e joint distribution of t h e n-dimensional random v e c t o r w and t h e explicit form of t h e ~ ( w ) can be derived.

In p r a c t i c e , t h e distribution F is hardly known completely. Using t h e PERT- method, one usually solves t h e problem (2.3) under assumption t h a t t h e random completion times wi a r e independently distributed with a Beta-distribution o v e r a given interval. The p a r a m e t e r s p , q of t h e Beta distribution a r e usually fixed on t h e basis of t h e available information about some c h a r a c t e r i s t i c s of t h e distribu- tion, such as t h e mean value, mode and variance.

EzampLe 2.5. (Seppala ( 1 9 7 5 ) ) . In his stochastic multi-facility problem Seppala considers t h e c a s e of stochastically dependent weight coefficients. In o r d e r t o eliminate t h e estimation of t h e correlation coefficients, h e introduces a p a r a m e t e r t o t h e model which weights t h e totally c o r r e l a t e d c a s e and t h e uncorrelated one.

3. N o n l i n e a r programming s t a b i l i t y r e s u l t s and e s t i m a t e d p a r a m e t e r s

A s o u r s t a r t i n g point, consider t h e following deterministic nonlinear program depending on a v e c t o r p a r a m e t e r y:

Let Y c R q b e a n open s e t , h : Rn XY -+ R m + P f l b e given continuously dif- ferentiable functions. For a fixed y E Y, t h e problem i s t o

(14)

maximize ho ( z ; y )

s u b j e c t t o h i ( z ; y ) 2 O , 1 5 i 5 m , h i ( z ; y ) = O , m + l S i S m + p . The corresponding Lagrange function h a s t h e form

m

L ( z . u . v : y ) = h o ( z ; y )

+

ui hi ( z ; y ) +

f

vi h,,, ( z ; y )

i =1 i =I

and by w ( y )

=

[ z ( y ) , u ( y ) , v ( y ) ] ER'" X R ? x R P , t h e Kuhn-Tucker point of M ( y ) will b e denoted. The knowledge of t h e Kuhn-Tucker conditions of t h e f i r s t and second o r d e r as well a s t h e knowledge of t h e l i n e a r independence condition and t h e s t r i c t complementarity conditions (Fiacco (1976), Robinson (1980)) will b e assumed throughout t h e t e x t .

Theorem 3.1. Let y O E Y a n d let w ( y O ) be t h e K u h n - T u c k e r p o i n t of M ( y O ) for w h i c h t h e K u h n - T u c k e r c o n d i t i o n s of t h e f i r s t a n d second o r d e r , t h e l i n e a r i n d e p e n d e n c e c o n d i t i o n a n d t h e s t r i c t c o m p l e m e n t a r i t y c o n d i t i o n s hold t r u e . Let o n a n e i g h b o u r h o o d of

[z

( y O ) ; y O ] , hi , 0 S i S m +p , be t w i c e c o n t i n u -

o u s l y d i f f e r e n t i a b l e w i t h .respect to z a n d c o n t i n u o u s d e r i v a t i v e s

a2

hi

( z

; 31)

e x i s t s f o r a l l 1 S k s q , 1 s j S n , O s i s m + p . ayk

azj

T h e n t h e following s t a t e m e n t s hold t r u e :

(a) For y E 0 , ( y o ) , t h e r e exists a u n i q u e once c o n t i n u o u s l y d w e r e n t i a b l e j'unction w ( y )

=

[ z ( y ) , u ( y ) , v ( y )] s a t i s f i i n g t h e K u h n - T u c k e r c o n d i - t i o n s of t h e f i r s t a n d second o r d e r , t h e l i n e a r i n d e p e n d e n c e c o n d i t i o n a n d t h e s t r i c t c o m p l e m e n t a r i t y c o n d i t i o n s f o r M (y).

( b ) Let I ( y ) c i l ,

. . .

, m

1

c o n t a i n t h e i n d i c e s of t h e a c t i v e i n e q u a l i t y con-

straints

h i ( z ( v ) ; y ) = O , i E I ( u ) , a n d denote b y

(15)

V , h I ( x ; y ) = [ V , h I ( x ; ~ ) , i ~ I ( y ) , V x h i ( x ; y ) , m + 1 ~ i ~ ~ + ~ l ~ V , h I ( x ; y ) = [ V , h I ( x ; y ) , i € I ( y ) , V , h i ( x ; y ) , m + l S i s m + ~ l .

Let f u r t h e r

and t h e remaining components of equal t o 0 .

av

The statements of Theorem 3.1 a r e a modification of r e s u l t s by Fiacco (1976), and Robinson (1974). Due t o t h e assumptions, t h e implicit function theorem c a n be applied t o t h e system of equations which correspond t o t h e active constraints in t h e Kuhn-Tucker conditions of t h e f i r s t o r d e r . Namely, t h e s t r i c t complementarity conditions play a n important r o l e reducing locally t h e program M ( y O ) t o a classi- c a l maximization problem with equality constraints.

The assumptions c a n b e weakened using r e s u l t s by Robinson (1980): Without assuming t h e s t r i c t complementarity conditions in M ( y ), l e t us denote

and formulate t h e strong second order sugpicient condition:

For each n # 0 with

n T v ,

hi ( x ; y ) = ~ , i E I + ( Y ) nT V , hi ( x ; y ) = 0 , m + l S i S m + p , t h e inequality nT

v:,

L ( w ( y ); y )n

<

0 holds t r u e .

Except f o r t h e differentiability of t h e Kuhn-Tucker points w ( y ) , th e f i r s t a s s e r - tion of Theorem 3.1 c a n b e parallelly reformulated. The differentiability p r o p e r t y

(16)

was studied, e.g., by Jittorntrum (1984). I t is possible t o g e t directional deriva- tives of w ( y ) in any direction under t h e s t r o n g second o r d e r sufficient condition without assuming s t r i c t complementarity conditions. W e shall u s e t h i s r e s u l t l a t e r in connection with t h e contamination method (see Section 4). The most g e n e r a l r e s u l t on differentiability is due t o Robinson (1984); f o r i t s application see t h e forthcoming p a p e r ~ u p a z o v d (1986b).

A s w e shall see later, t h e p a r a m e t e r v e c t o r y may c o r r e s p o n d t o t h e parame- ters of t h e underlying distribution F (see Theorem 3.2), t o t h e p a r a m e t e r of con- tamination ( s e e Section 4) and, eventually, t o t h e probability levels ai , 1

s

is m , in (1.4) or to o t h e r p a r a m e t e r s used to build a specific decision model of stochas- t i c programming.

Assume now t h a t t h e p a r a m e t e r v e c t o r y in M(y ) i s connected with statistical assumptions about t h e distribution F of random coefficients in a stochastic pro- gramming decision model. I t comes typically when F i s known to belong to a p a r a m e t r i c family of distributions IFy , y E

Y ] ,

so t h a t y i s t h e p a r a m e t e r v e c t o r identifying t h e distribution.

For t h e s t o c h a s t i c program with r e c o u r s e (1.3) i t means t h a t for a fixed dis- tribution Fy , M(y ) is t h e program

maximize go ( z ; y ):

=

EFY [ho (Z ; a )

-

~ ( z ; o ) ] on a set Xwhich does not depend on Fy, e.g.,

X = [ z ~ R ~ : g ~ ( z ) 2 O , l s i ~ m , g i ( z ) = O , m + l s i s m + p ],

f o r t h e stochastic program with probabilistic c o n s t r a i n t s (1.4), M ( y ) i s t h e pro- gram

maximize go ( z ; y ) :

=

EFnjho ( z ; o ) j

s u b j e c t t o g , ( z ; y ) : = P F Y l h , ( z ; o ) 2 O , n € I i ] - a i 2 0 , 1 5 i s m , EXO

(17)

In g e n e r a l o u r aim i s t o solve program (1.5) f o r t h e t r u e p a r a m e t e r v e c t o r , say

7 ) E Y. However, o u r decision can only b e based on t h e knowledge of a n estimate,

say y N , of 7 . A s a r e s u l t , t h e substitute program A l ( y N ) i s solved instead of M ( 7 ) . Under t h e asymptotic normality assumption on t h e distribution of t h e estimate y N in ~ ( y ~ ) , t h e deterministic stability r e s u l t s of Theorem 3.1 c a n b e complemented by statistical ones.

Theorem 3.2. Let y N be a n asymptotically normally distributed estimate of the t r u e parameter vector 7 t h a t i s based o n the sample of size N :

- ( y N

-

7 ) " N(O ,

C)

w i t h a k n o w n variance m a t r i z C . Let the a s s u m p t i o n s of Theorem 3.2 be f u l - filled for M ( 7 ) . Then the optimal solution z ( y N ) of h f ( y N ) i s asymptotically

normal

f l ( z : ( y N >

-

Z ( 7 ) ) " N ( O ,

n

w i t h the variance m a t r i x

i s the ( n , p ) submatrix of (3.3).

where

[

a y

]

R o o $ Under assumptions of Theorem 3.1, x ( y ) i s a continuously differentiable (vector) function on a neighbourhood of x ( 7 ) . Using t h e normality assumption and t h e &method [ Rao, 1973, p.3881, w e g e t t h e r e s u l t immediately.

Remark 3.3. All elements of

[el

are continuous on a neighbourhood of 7 , so t h a t t h e asymptotic distribution (3.4) c a n b e substituted by

see Rao (1973, p. 388).

(18)

Ezample 3.4. The application of Theorem 3.2 t o Example 2.1 i s straightforward.

Let y b e t h e v e c t o r consisting of asymptotically normal estimates s j , 1 S j S 4 , of t h e t r u e v a r i a n c e s a j , 1 S j S 4 . According t o Theorem 3.1, t h e derivatives

- az

e x i s t and t h e i r values were obtained by Armacost and Fiacco (1974). W e have a y

t h u s asymptotic normality of t h e optimal solution. To g e t t h e v a r i a n c e matrix of t h e resulting distribution, t h e v a r i a n c e matrix C (diagonal in o u r c a s e ) should b e known besides of

-. az

a y

Special cases 3.5. In some special cases, i t is possible t o g e t explicit formulas f o r t h e derivatives

- az

and t h u s f o r t h e v a r i a n c e matrix V of t h e asymptotic distribu-

a y

tion (3.4). W e shall introduce t h e r e s u l t s applied t o t h e simple recourse problem (see ~ u p a E o v d (1984)):

maximize go ( Z ; y ):

=

c T~

-

EFv

15

i =1 qi =I a i j z j

-

ui

]+I

on t h e set

X =

Iz € R n

: R = p ,

z

2 0 1 ,

where P is a given

( r

, n ) matrix of r a n k r , c and p are fixed v e c t o r s , qi

>

0 , 1 S i S m , are given and A

=

( a i j ) i s of t h e full column r a n k .

To g e t r e g u l a r i t y w e assume t h a t X i s nonempty, bounded with nondegenerated v e r t i c e s . F u r t h e r w e assume asymptotic normality of t h e estimates y N of t h e t r u e p a r a m e t e r v e c t o r q . The differentiability p r o p e r t i e s of g o ( z ; q ) in a neighbour- hood of

[ z

( 7 ) , q ] are implied by assuming t h a t t h e marginal densities f i are con-

tinuous and positive in neighbourhoods of t h e points

I n L=1

aij

z j

( 7 ) ; q ,1 S i zs m , respectively.

i

Two t y p e s of p a r a m e t r i c families will b e considered:

3.5.1. yi , 1 S i S m are location parameters. Then w e have f o r t h e nonzero

(19)

components z j ( 7 ) , j E J of t h e optimal solution z ( 7 )

where

Pj

=

@ y ) l < i < r e C

=

-AT QA t B = A T Q

j d

with

3.5.2. y i , 1

s

i S m a r e scale parameters, yi

>

0 Vi

.

Then

where

c

= - A ~ Q A , B = ~ ~ ~ d i a g a i j z j ( 7 ) . 1 s i s m

1

and Q i s given by ( 3 . 5 ) .

4. Contaminated distributions

Throughout this section, t h e functions g i , 0

s

i

s

m

+

p in ( 1 . 1 ) will b e assumed t o depend Linearly on t h e distribution F . This assumption i s evidently satisfied f o r t h e stochastic programs with r e c o u r s e as well as f o r those with pro- babilistic constraints, and in all c a s e s when gi are expectations of suitable func- tions derived from h i . Furthermore, we shall assume t h a t X

=

Rn , i t means only t h a t t h e original deterministic constraints and t h e induced ones have been incor- porated into t h e explicit c o n s t r a i n t s in ( 1 . 1 ) ( with gi ( z ; F ) independent of F , of course).

The local behaviour of t h e optimal solution z ( F ) of t h e program ( 1 . 1 ) with r e s p e c t t o small changes of t h e distribution F can b e studied via t-contamination of t h e distribution F by a suitably chosen distribution G , i.e., instead of F , distri- bution of t h e form

(20)

Ft = ( l - t ) F + t G ,

O s t

5 1 (4.1) will b e considered. In (4.1), Ft is called d i s t r i b u t i o n F t-contaminated b y d i s t r i - b u t i o n G. Due t o o u r assumption, t h e original stability problem t h u s r e d u c e s t o t h a t linearly p e r t u r b e d by a s c a l a r p a r a m e t e r

t

E

<

0 , 1

>:

maximize ( 1

- t )

go

( z

; F )

+

tg,

(z

; G )

s u b j e c t t o ( 1 - t ) g i ( z ; F ) + t g i ( z ; G ) 2 0 , I s i s m , ( 1 - t ) g i ( z ; F ) + t g , ( z ; G ) = 0 , m + 1 5 i 5 m + p .

In principle, i t is possible t o g e t t h e t r a j e c t o r y of t h e optimal solutions z (Ft ) , 0 5

t

5 1; f o r a n a p p r o p r i a t e method see e.g. G f r e r e r et al. (1983).

We shall aim t o obtain t h e ~ S t e a u x differential d z ( F ; G -F) of t h e optimal solution of (1.1) in t h e direction of G -F. To g e t t h e explicit r e s u l t s , one h a s t o check t h e differentiability and r e g u l a r i t y assumptions of Theorem 3.1 and t o com- p u t e matrices B ( O ) , D(0) corresponding t o t h e contamination p a r a m e t e r

t =

0 .

The knowledge of t h e Ggteaux differential of z ( F ) at F in t h e direction of G-F is useful not only f o r t h e f i r s t o r d e r approximation of t h e optimal solutions corresponding t o distributions belonging t o a neighbourhood of F b u t a l s o f o r d e e p e r statistical conclusions on robustness, namely, in connection with statistical p r o p e r t i e s of t h e estimate z ( F , ) of z ( F ) , which i s based on t h e empirical distribu- tion F,. F o r fixed c o n s t r a i n t s in (4.2) and f o r t h e special choices G

=

6, (degen- e r a t e d distribution c o n c e n t r a t e d at o n e point w ) , t h e Ggteaux differential d z ( F ; 6, -F) c o r r e s p o n d s t o t h e influence c u r v e R F ( w ) widely used in asymptotic statistics. Different c h a r a c t e r i s t i c s of R F ( w ) suggested by Hampel (1974) measure t h e e f f e c t of contamination of t h e d a t a by g r o s s e r r o r s , t h e local e f f e c t of round- ing o r grouping of t h e observations, etc. For a n example see ~ u p a z o v d (1985a).

Theorem 4.1. For t h e program maximize go

( z

; F )

s u b j e c t t o gi

(z

; F ) 2 0 , 1 5 i 5 m , g i ( z ; F ) = O , m + 1 5 i S m + p

(21)

assume:

( i ) g f ( 0 ; F ) :

R n

-,

R '

a r e twice c o n t i n u o u s l y d m e r e n t i a b l e , 0

s

i

s

m + p , ( i i ) t h e K u h n - i k c k e r c o n d i t i o n s of t h e f i r s t a n d second order, t h e l i n e a r

independence c o n d i t i o n a n d t h e s t r i c t complementarity c o n d i t i o n s a r e fulfilled for w ( F )

= [ z

( F ) , u ( F ) , v ( F ) ] E

R n

X

RT

X

RP

,

(iii) there i s a neighbourhood 19(z ( F ) )

c R n

o n w h i c h gi (* ; G ) , 0

s

i

s

m +p a r e twice c o n t i n u o u s l y dinerentiable.

.

Then:

( a ) There i s a neighbourhood 19(w ( F ) )

c R n

x

RT

X

RP

, a real n u m b e r

to >

0 a n d a c o n t i n u o u s f u n c t i o n w :

<

0 ,

t o )

-, 19(w ( F ) ) , w ( 0 )

=

w ( F ) s u c h t h a t for a n y

t

E

<

O , t o ) , w ( t )

=

[ x ( t ) ,

u ( t )

, v ( t ) ] i s t h e Kuhn-Tucker p o i n t of

(4.2) for w h i c h t h e second order sugpicient condition, t h e l i n e a r i n d e p e n - dence c o n d i t i o n a n d t h e s t r i c t complementarity c o n d i t i o n s a r e fulfilled.

( b ) The G t e a u z d i n e r e n t i a l dw ( F ;G -F) of t h e Kuhn-Tucker p o i n t w ( F ) of (4.3) in t h e d i r e c t i o n of G -F i s g i v e n b y

The r e m a i n i n g components of d w ( F ; G -F), w h i c h correspond t o t h e n o n - a c t i v e c o n s t r a i n t s in (4.3), equal t o 0.

R o o f is a straightforward application o f Theorem 3.1. We took t h e liberty o f adopting t h e notation t o our case; namely

wr(F>

= Cz

( F ) , ~1 ( F ) , i E I ( F ) , v ( F ) ]

with I ( F )

c

i l ,

. . .

, m j containing t h e indices o f t h e active inequality constraints g i ( z ( F ) ; F )

=

0 , g I ( x ( F ) ; G ) and g l ( x ( F ) ; F ) a r e vectors consisting of com- ponents g f ( x ( F ) ; G ) and g f ( z ( F ) ; F ) for i ~ I ( F ) , m + l s i s m + p ,

(22)

r e s p e c t i v e l y ,

V, g1 ( x ( F ) ; F ) i s a matrix consisting of columns V, gi ( x ( F ) ; F ) f o r i E I ( F ) a n d m + l S i S m + p .

Due t o t h e f a c t t h a t (4.2) i s linearly p e r t u r b e d , w e have

V:,L ( w ; t ) = V , L ( w ; G ) - V t L ( w ; F ) ,

vt

91 ( x ;

t )

=g1 ( X ; G ) -91 ( X ; F ) ,

s o t h a t

v:,

L ( w ( F ) ;

t ) =

V, L ( w ( F ) ; G )

vt

91 ( X ( F ) ;

t )

= B I ( X ( F ) ; G ) .

Remark 4.2. For fixed c o n s t r a i n s in (4.2), i.e., f o r gi ( x ; F ) independent of F , w e have evidently gi ( x ( F ) ; G )

=

gi ( x ( F ) ; F )

=

0 f o r i E I ( F ) or m +1

s

i

s

m +p

in ( 4 . 4 ) . In t h e case of s t o c h a s t i c program with r e c o u r s e maximize go ( x ; F )

on a s e t X d e s c r i b e d by fixed c o n s t r a i n t s g i ( x ) 2 0 , 1 S i S m , g i ( x ) = 0 , m + l S i S m + p , w e h a v e t h u s

Theorem 4.3. Let a s s u m p t i o n s of Theorem 4.1 hold t r u e . (a) Let t h e m a t r i x

L

= v:,

L ( w ( F ) ; F )

be n o n s i n g u l a r . T h e n t h e G t e a u x d w r e n t i a l of t h e i s o l a t e d Local m a x i m - i z e r x ( F ) of (4.3) in t h e d i r e c t i o n of G -F i s g i v e n by

d x ( F ; G - F )

=

-C-~V,L ( w ( F ) ; G ) w h e r e

c-1 =

[ I -L - l p ( p T ~ -1p) - 1 p T - j ~ -1

P

=

V, 91 ( x (F ) ; F )

a n d I i s t h e n - d i m e n s i o n a l

unit

m a t r i x .

(23)

(b) Let t h e m a t r i x P

=

V , g I ( x ( F ) ; F ) be of r a n k n . m e n t h e S t e a u x d m r e n - tiaL of t h e isoLated LocaL m a x i m i z e r x ( F ) of (4.3) in t h e d i r e c t i o n of G -F i s g i v e n b y

d z ( F ; G-F)

=

-(pT)-l gI ( z ( F ) ; G ) .

A.ooj'follows from (4.4) by well known formulas f o r inversion of t h e matrix

which is nonsingular and which contains t h e nonsingular s q u a r e submatrix L in t h e c a s e of (a) o r the nonsingular s q u a r e submatrix P in c a s e (b).

The assumptions of s t r i c t complementarity play a n essential r o l e in t h e proof of Theorem 4.1. They guarantee t h a t t h e interval

<

0 ,

t o )

on which w

( t )

i s t h e Kuhn-Tucker point of (4.2) i s nonempty. Aitsrnatively, t h e s t r i c t complementarity conditions can b e replaced by t h e s t r o n g second o r d e r sufficient condition which w a s s t a t e d in Section 3. Thanks t o t h e f a c t , t h a t we have a s c a l a r p a r a m e t e r only and t h a t w e are in f a c t i n t e r e s t e d in t h e right-hand derivatives of t h e optimal solu- tion with r e s p e c t t o t h e p a r a m e t e r at t h e given point

t =

0 , t h e r e s u l t of Jit- torntrum (1984) applied t o o u r problem gives t h e desired assertion on t h e Ggteaux differential.

Denote I + ( F )

=

ti G ( F ) : ui ( F )

>

01, I0 ( F )

=

ti G ( F ) : ui ( F )

=

01. Under s t r i c t complementarity conditions, I 0 ( F )

=

$.

Theorem 4.4. Let in a s s u m p t i o n s of m e o r e m 4.1, s t r i c t compLementatity condi- t i o n s be repLaced b y t h e s t r o n g second order suppicient condition. Then:

(a) There i s a neighbourhood ?P(w ( F ) )

c

Rn x

Ry

x RP , a reaL n u m b e r

to >

0

a n d a c o n t i n u o u s f u n c t i o n w :

< O , t o )

-, ?P(w ( F ) ) , w (0)

=

w ( F ) s u c h t h a t for a n y

t

E

<

0 , t o ) , w ( t )

= [ z ( t )

,

u ( t ) ,

v ( t ) ] i s t h e Kuhn-Tucker p o i n t

of (4.2) for w h i c h t h e strong second order s u m c i e n t c o n d i t i o n a n d t h e Linear independence c o n d i t i o n a r e fuLfiLLed.

(24)

(b) There i s a s e t R of i n d i c e s s u c h t h a t

I f ( F )

c

R

c

I + ( F )

u

I 0 ( F )

=

I ( F ) ,

for w h i c h t h e n o n z e r o c o m p o n e n t s of t h e G i t e a u z d i n e r e n t i a l d w ( F ; G -F) a r e g i v e n b y

'-I [ v z L ( w (F) ;

C ) 1

d w R ( F ; G-F)

= -

[ V, g~ (2 ( F ) ; F )

I T o

g~ (2 (F) ; G)

1.

S p e c i a l c a s e s 4.5. For specific decision models of stochastic programming, w e c a n g e t correspondingly t h e specific form of t h e assumptions as well as t h e explicit formulas f o r t h e ~ g t e a u x differentials. The assumptions c a n b e subdivided into t h r e e categories:

(A) The basic model assumptions, including t h e absolute continuity of t h e distribu- tion F.

(B)

The g e n e r a l assumptions such as t h e existence of t h e Kuhn-Tucker point f o r which s t r i c t complementarity conditions are fulfilled.

(C) The assumptions of differentiability, t h e linear independence condition and t h e 2nd o r d e r sufficient condition, which c a n b e fitted t o t h e considered model.

In t h e following s u r v e y of r e s u l t s , w e shall l i s t mostly t h e form of t h e assump- tions of t h e l a s t c a t e g o r y and w e shall give explicit formulas f o r t h e r e d u c e d vec- t o r s of t h e Gsteaux differentials containing t h e nonzero components only. The full statements can b e found in Dupa;ovd (1983), (1985a), (1986a).

4.5.1. S i m p l e r e c o u r s e problem (Dupazovd (1983))

with qi

>

0 , 1

s

i 5 m , A

=

(ai,) and c given and F such t h a t EFa exists.

A s s u m p t i o n s :

(25)

(i) Denote J

=

[ j : xj ( F )

>

0

1

; t h e matrix AJ

=

(aij)l

, ,,,

h a s full column r a n k . f € 3

(ii) The marginal d e n s i t i e s f , , 1 S i S m , are continuous a n d positive at t h e points

+

( F )

= z

aij x j ( F ) , 1

r

i S m , r e s p e c t i v e l y .

j

(iii) G i s a n m-dimensional distribution whose marginal d i s t r i b u t i o n functions Gi h a v e continuous d e r i v a t i v e s o n neighbourhoods of t h e points

+

( F ) , 1 S ?; i m , r e s p e c t i v e l y .

&tea- d i f l e r e n t i a l

d z j ( F ; G - F )

=

( A ~ K A ~ ) " (CJ -~!k), w h e r e

with

ki = q i Gi (Xi(F)), 1 i i s m , a n d

K = d i a g I q i f i ( + ( F ) ) , 1 i i s m

1 .

4.5.2. I n d i v i d u a l p r o b a b i l i s t i c c o n s t r a i n t s ( ~ u ~ a d o v d (1986a)) maximize c ( x )

n

s u b j e c t t o P p i

z

aij xj 2 O,

1

2 a, , 1 i i i m

1

j =I

with a, E (0 , I ) , , 1 i i i m a n d A

=

( a i j ) given; a i d e n o t e s t h e i -th row of A . A s s u m p t i o n s :

(i) c :

Rn

-,

R1

i s twice continuously d i f f e r e n t i a b l e .

(ti) The r a n k of AI

=

( a i j )

,

I equals t o c a r d Z(F)

=

c a r d I.

l r j r n

(iii) The marginal d e n s i t i e s f i , 1 9 i i m , are continuously d i f f e r e n t i a b l e on neighbourhoods of

+

(F)

= z

aij x j ( F ) , 1 i i i m , r e s p e c t i v e l y , a n d

j

(26)

(iv) G i s a n m-dimensional distribution whose marginal distribution functions Gt are twice continuously differentiable on neighbourhoods of t h e points

3

(F) , 1 5 i 5 m , respectively.

(v) For a l l 1

ERn

, 1 # 0, f o r which AIL

=

0 , inequality 1

V&

c ( z (F)) 1

<

0 holds

t r u e and t h e matrix

L = v : ~ L ( ~ ( F ) ; F ) = v : ~ c ( x ( F ) ) +

C

u ~ ( F ) ~ ~ ( ~ ( F ) ) u ~ ~ u ~ t E I C F )

is nonsingular.

where

GI

=

[Gi ( 3 (F))], ,IF) and "I

=

[at It E IF)

.

(4.9)

4.5.3. For t h e c a s e of individual probabilistic constraints and a l i n e a r objective function c ( z )

=

c T z , substantially weaker assumptions c a n b e used t o g e t a r e s u l t comparable with t h a t of Theorem 4.3; s e e ~ u p a G o v d (1986a).

Assumptions:

(i) c ( z ) = c T z

(ii) The optimal solution z (F) i s unique and nondegenerated.

(iii) The marginal densities f t

,

1 5 i 5 m are continuous and positive at t h e points

3

(F) , 1 5 i 5 m , respectively.

(iv) G i s a n m-dimensional distribution whose marginal distribution functions Gi have continuous derivatives on neighbourhoods of t h e points

3

(F) , 1 5 i 5 m , respectively.

a t e a u z d i n e r e n t i a l

(27)

where

PI

, GI , az are given by (4.8) and (4.9).

Comment. In t h e l a s t c a s e , t h e assumptions o n t h e distributions are comparable with those f o r t h e simple r e c o u r s e problem, which is quite natural. Contrary t o t h e case of nonlinear objective function, z ( F ) is t h e optimal solution of t h e l i n e a r program

maximize c T z s u b j e c t t o A z 2 b (4.11) where bi

=

Fi-l(ai ). Similarly, z ( t ) is t h e optimal solution of t h e l i n e a r program

maximize c T z s u b j e c t t o Ax 2 bt ,

where bit

=

Fiil ( a i ) , 1 S i S m , are t h e quantities of t h e contaminated marginal distribution function

Fit ( K )

=

(1

-

t ) Fi ( K )

+

tGi ( K )

.

Let u s approximate F i r l ( a i ) linearly (see e.g. Serfling (1980)):

and approximate z ( t ) by t h e optimal solution z ( t ) of t h e following l i n e a r p a r a m e t r i c program:

maximize c T z

n

-

Gi ( ~ ~ - ~ ( a ~ ) )

s u b j e c t t o aij z j 2 Fi-l(ai )

+

t , 1 S i S m .

j =l

Pi

(Fi-l(ai

1)

Let B = A : b e t h e optimal basis of t h e l i n e a r program dual t o (4.11); t h e n z ( F )

=

AZ-lbz and

5

( F )

=

Fi-l(ai) , i E I

.

According t o o u r assumptions, z ( F ) is unique and nondegenerated, s o t h a t B is optimal f o r t belonging t o a neighbour- hood of z e r o and

=

z ( F )

+

t d z ( F ; G-F)

(28)

using t h e r e s u l t (4.10).

4.5.4. One j o i n t p r o b a b i l i s t i c c o n s t r a i n t ( ~ u p a z o v d (1986a)) maximize c

( z

)

subject t o PFfAz r o j r a with a E ( 0 , 1 ) , A

=

(aU ) given.

A s s u m p t i o n s :

(i) c : Rn + R' i s twice continuously differentiable.

(ii) T h e r e i s a Kuhn-Tucker point w ( F )

= [z

( F ) ; u ( F ) ] f o r (4.13) such t h a t u ( F )

>

0 and t h e second-order sufficient condition i s fulfilled.

(iii) In a neighbourhood of X ( F ) :

=

A z ( F ) , t h e distribution functions F and G are twice continuously differentiable and

A VX F ( X ( F ) ) # 0

.

where

T 2

L

=

V& L ( w ( F ) ; F )

=

V& c ( z ( F ) )

+

u ( F ) A V x F (X ( F ) ) A ,

L ( F )

= v x ~

( X ( F ) ) ~ A L - ~ A T V ~ F ( X ( F ) )

.

Comment. Having solved t h e original problem (4.13), w e know z ( F ) a n d w e have t o compute u ( F )

,

L and t o evaluate G ( A z (F))

-

a , VX G ( A z ( F ) ) , OX F

(Az

( F ) ) t o g e t t h e Ggteaux differential. For a given z ( F ) , u ( F ) , F and G , i t depends on t h e d i f f e r e n c e between t h e values of t h e distribution functions F ( A z ( F ) ) , G ( A z ( F ) ) and on t h e r e l a t i v e differences of t h e i r g r a d i e n t s which are measured by

a%L

and

1 ( F )

(29)

Vx

F (Az (F)).

VX

G ( ) )

-

I(F)

For t h e gradient of F we have

Vx

F(X)

=

.'j

?')(x)

where .f

=

diag ifi

(4

) , 1 S i S m j and

F(')(x)

is t h e m-vector of t h e conditional distribution functions F ( x ( ~ )

I 4

) , 1 S i S m ; h e r e

x ( ~ )

denotes t h e (m

-

1)-

dimensional subvector of X in which t h e i -th component, Xi, w a s deleted. Similar formulas hold t r u e f o r

VX

G (X).

In Example 2.3, t h e two considered distributions F and G a r e multinormal ones and d i f f e r by t h e i r c o r r e l a t i o n matrices only. In this c a s e , gi

= pi

, 1 S i S m , t h e conditional distributions F ( x ( ~ )

1 4

) , G

(x('

)

I 4

) , 1 S i S m , a r e normal and

with

These circumstances make t h e numerical evaluation of t h e Ggteaux differential realistic.

5. The minimax approach

Assume now t h a t t h e set X of admissible solutions i s defined by fixed con- s t r a i n t s only and t h a t t h e objective function g,(z ; F) i s l i n e a r with r e s p e c t t o F (for a generalization t o t h e nonlinear c a s e see Gaivoronski (1985)). In this c a s e , we can set

9,(z ; F ) = E F f o (2 ; o ) ,

where f , (z , o) may e.g. correspond t o t h e difference h, (z ; o)

-

cp(z ; o) in t h e g e n e r a l stochastic program with r e c o u r s e (1.3). L e t F b e a given set of distribu- tions t o which F i s known t o belong. (The c a s e of t h e complete knowledge of t h e

(30)

distribution c o r r e s p o n d s t o

F =

I F { . ) Consider t h e two-person zero-sum game

H =

( X ,

F ,

g o ) ( 5 . 1 )

where X i s t h e set of s t r a t e g i e s of t h e f i r s t p l a y e r ,

F

i s t h e set of s t r a t e g i e s of t h e second p l a y e r and go is t h e pay-off function. Any optimal p u r e s t r a t e g y of t h e f i r s t p l a y e r in t h e game ( 5 . 1 ) will b e called t h e m i n i m a x s o l u t i o n of s t o c h a s t i c program

max g o ( x ; F ) f o r F

E F .

T EX ( 5 . 2 )

Under quite g e n e r a l assumptions on

F,

Xand

J',

, a minimax solution e x i s t s and s u p min go ( x ; F )

= FmpF

px:: go ( z ; F )

r E X F E F

(See e.g. 2dGkovd ( 1 9 6 6 ) , Theodorescu ( 1 9 6 9 ) . )

To find a minimax solution means in g e n e r a l t o solve a n optimization problem maximize inf go ( x ; F ) on t h e set X

.

F E F ( 5 . 3 )

If t h e set

F

of distributions i s defined, i n t e r alia, by p r e s c r i b e d values of c e r t a i n moments of t h e distributions F E

F,

i t is possible t o use g e n e r a l r e s u l t s of t h e moment problem t o g e t

inf g o ( z ; F) F E F

in a form suitable f o r f u r t h e r computations ( s e e ~ u ~ a z o v d ( 1 9 7 7 ) ) . W e s h a l l out- line t h e r e s u l t s of t h e moment problem briefly and w e s h a l l indicate t h e i r applica- tion in s t o c h a s t i c programming.

Let K : = ( n l ,

. . .

, n k ) :

R

+ R k , no :

R

+ R 1 b e Bore1 measurable mappings.

Denote c(R) t h e image of t h e set

R

u n d e r t h e mapping n, by Y :

=

conv n ( R ) t h e convex hull of n ( R ) and assume t h a t int Y

+

0. For y E int

Y

denote by

FY

t h e set of distributions of a random v e c t o r o on

(R

, B) such t h a t c l ,

. . .

, nk , no are i n t e g r a b l e with r e s p e c t t o a l l elements F E

F

and

(31)

The moment problem i s t o find

L ( y ) :

=

inf EF no ( w )

.

F E F,, Under t h e a b o v e assumptions,

w h e r e

In many important cases, e.g., f o r

n

compact, n l ,

. . .

, nk continuous, no lower semi-continuous, t h e infimum ( 5 . 5 b ) a n d t h e supremum ( 5 . 6 ) are a c h i e v e d . In t h i s c a s e , t h e r e e x i s t s a d i s t r i b u t i o n

P

E F a n d a v e c t o r d* E D s u c h t h a t

k

L ( y ) = E p n o ( u )

=

d * , +

C

d * j ~j

j = l a n d f o r t h e given y E i n t Y , problem ( 5 . 5 b ) r e d u c e s t o

Evidently, as a function of t h e p a r a m e t e r y , L ( y ) i s convex. P a r a l l e l r e s u l t s c a n b e given f o r t h e u p p e r bound U ( y ). I t i s important from t h e point of view of com- putation t h a t

FC

in ( 5 . 7 ) i s a discrete distribution. The c o r r e s p o n d i n g p r o b a b i l i t y m e a s u r e must evidently b e c o n c e n t r a t e d in t h e points o ER, f o r which

k

d o

* + x

d j

*

n j ( w )

=

no ( a ) . Denote

j = l

Then f o r almost a l l y E int Y , t h e r e i s a unique d* E D such t h a t y Econv B ( d * ) ,

1

y

=' x

p i n ( w i ) with n ( w i ) E B ( d * ) ,1 5 i 5 1 ,

i =1

(32)

and

Corresponding t o t h i s r e p r e s e n t a t i o n ,

For t h e s e and o t h e r r e l a t e d r e s u l t s see e.g. Kemperman ( 1 9 6 8 ) , t h e case of t h e inequality c o n s t r a i n t s on t h e moments w a s studied by Kemperman ( 1 9 7 2 ) , different a p p r o a c h e s t o t h e case of t h e noncompact

R

c a n b e found e.g. in R i c h t e r ( 1 9 5 7 ) . Kemperman ( 1 9 7 2 ) , Cipra ( 1 9 8 5 ) , Gassman and Ziemba (1985).

When applying t h e above r e s u l t s t o t h e minimax problem, i t i s quite n a t u r a l t o p u t F

=

Fy and

no ( w )

= Po

( z ; W )

.

The dependence of f o on t h e decision variables z t o g e t h e r with t h e final goal

-

t o solve t h e "outer" maximization problem

maximize inf

EF

f o ( z ; a ) on t h e set X

-

F E F

are t h e r e a s o n why t h e d i r e c t application i s possible only in special cases.

This will b e t h e case if t h e set of t h e considered d i s c r e t e distributions possessing t h e p r o p e r t i e s ( 5 . 8 ) would b e relatively small and independent on z o r if i t would b e possible t o r e d u c e t h e corresponding moment problem t o finite number of one- dimensional moment problems. A s a n example of t h i f i r s t mentioned possibility, w e have

Theorem 5.1. Let

R

c

R~

be a convex p o l y h e d r o n w i t h extreme p o i n t s o l ,

. . .

, c;N a n d Let y Eint

R.

Let f o : X x

R

-,

R '

be a concave f u n c t i o n of w for a n y fixed z E

X.

B n o t e b y Fy the set of d i s t r i b u t i o n s F for w h i c h

Referenzen

ÄHNLICHE DOKUMENTE

The Stochastic Nonlinear Programming System (SNLPI was developed above all out of necessity to solve practical problems. Above all these are problems of power

Laxenburg, Austria: International Institute for Applied Systems Analysis. Laxenburg, Austria: International Institute for Applied

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria... Kunhanski Program Leader System and Decision

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... Isidori, A., Nonlinear Control Systems, Springer,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... ENERGY DEVELOPMENT: IN RETROSPECT

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria... INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... ANNA'S LIFX