• Keine Ergebnisse gefunden

A Note on the Star-Kernel for Quasidifferentiable Functions

N/A
N/A
Protected

Academic year: 2022

Aktie "A Note on the Star-Kernel for Quasidifferentiable Functions"

Copied!
8
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

A NOTE ON THE &KERNEL FOE

QUASiDIPFEaSN'MABL6

FTJNCTIONS

Z. Q. Xia

July, 1987 WP-87-66

Working Papers a r e interim r e p o r t s on work of t h e International Institute f o r Applied Systems Analysis and have received only lim- ited review. Views o r opinions expressed herein do not neces- sarily r e p r e s e n t those of t h e Institute or of i t s National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria

(2)

The continuity of t h e star-kernel of quasidifferentials of a quasidif- ferentiable function with a star-equivalent bounded quasidifferential sub- family are studied and p a r t s of results are r e p r e s e n t e d in this note. I t also has been pointed out t h a t t h e directional subderivative and superderivative of a function can b e expressed as support functions of its star-kernel if t h e star-kernel c a n be generated by a quasidifferential of t h e function.

A. Kunhanski Program Leader System and Decision Sciences Program.

-

iii

-

(3)

A NOTE ON THE @KERNEL FOR QUASIDIFFERENTLAB FUNCTIONS

2.

9.

X i a

In t h i s s h o r t n o t e t h e demonstrations of some propositions r e l a t e d t o t h e u p p e r semicontinuity of t h e S k e r n e l f o r quasidifferentiable functions a n d some examples concerning t h e S k e r n e l will be given, [I], [2] a n d [3].

Suppose t h a t f ( z ) is a quasidifferentiable function, defined on S

c

Rn where S i s a n open s e t , with a @-equivalent bounded quasidifferential subfamily. The notations we will use c a n be found o u t in [3]. Their definitions will not be r e p e a t e d h e r e .

L.EIUMA 1

(a) u E a,f(z) - H ( z , u )

#

$ .

(b) w E _ W ( u )

- v ( u

@ d ) Z < w , d > , V d € R n . (c) u E a , p ( z ) - u E ( Z , ~ ) .

f ' ( z ; d ) S max <w , d >

-

w , u )

=

6 ~

I a,p(u

c ~ * ) ( o ) ) ,

F o r t h e s a k e of convenience, assume t h a t &' i s a closed set.

LEMMA

2 If T ( Z , u C3 d ) is u p p e r semicontinuous in ( z , u ) E S X

a,

f ( z ) f o r e a c h d €IRn, t h e n t h e mapping a,f(*) and

r(*

, *) are closed, i.e., u E a,f(z) and w E

H(z

, u ) ( o r

4 2

(u C3 *)(O)) whenever zi + x , ui -, u , w i -, w , a n d ui E a & ( z i ) , w i E ~ Y ( Z ~ , u i ) , i -,

=.

PROOF Suppose zi -, z ,ui -, u , w i -, w and ui E

BJ

(zi ) , w i E _W(zi , ui ), i -,

= .

According t o t h e L E M 1 (b), o n e h a s

f o r e a c h d E Rn

.

S i n c e

-

~ (, u C3 z d ) is u p p e r semicontinuous in ( z , u ) f o r e a c h d E R , o n e h a s

In o t h e r words, w E _W(Z , u )

.

I t follows from t h e L E M 1 (a) t h a t

The proof is completed. O

THEOREM 3. Suppose

DM

f ( z ) i s bounded uniformly in a neighborhood of z ,

N, ( a ) ,

where 6 is a positive number. If ~ (, u C3 z d ) is u p p e r semicontinuous in ( z , u ) E S x

a,

f ( z ) for e a c h d E Rn , t h e n

a,f

(*) is u p p e r semicontinuous.

PROOF By contradiction, suppose

a d ( . )

i s not u p p e r semicontinuous. Then t h e r e e x i s t s a n o p e n set 0, a n E

>

0 , a n d t h e r e e x i s t s sequences fzi

1

a n d f u i

1

such t h a t

(4)

S i n c e

y DM

f ( z ) is bounded, t h e r e e x i s t s a s u b s e q u e n c e

tuik 1

c o n v e r g e n t

2 E B ( O , E )

t o

u .

The

u

belongs t o OC b e c a u s e of 0 being a n o p e n set. Obviously,

u

!Z

a,

f

( z

). However, in t e r m s of t h e LEM. 2, we h a v e

s i n c e t h e mapping

a,

f ( * ) i s closed. This c o n t r a d i c t s t h e f a c t t h a t

u

!Z

a,

f ( z ) . T h e r e f o r e , a , f ( * ) is a n u p p e r semi-continuous mapping. The t h e o r e m is p r o v e d . 3 LEXMA 4. S u p p o s e

-

f

' ( z

; d ) i s lower semi-continuous in

z

E S f o r e a c h d E Rn a n d t h e mapping

_W(z

,

u )

is u p p e r semicontinuous in

( z

,

u )

E S X a , f ( z ) . Then t h e mapping a , f ( * ) i s closed.

PROOF S u p p o s e t h a t

S i n c e f o r a n y

u

E a,f

( z )

a n d f o r e a c h d E Rn ,

' ( z )

max < w , d > ,

-

w

€ & ( I , U )

o n e h a s t h a t f o r

fzC 1

a n d

{ui 1

t h e r e e x i s t s a s e q u e n c e lwC ] s u c h t h a t

f '(zi ,

d C ) S max

- <w

, d > ,

w E l ( 2 1 , u )

According t o t h e assumption of t h e u p p e r semi-continuity of t h e mapping _W(. , *) t h e r e e x i s t s a s u b s e q u e n c e ,

{wik

{, c o n v e r g e n t t o

w

s u c h t h a t

w € _ W ( Z ,

u ) .

On t h e o t h e r hand, we h a v e

f ' ( z , d ) S < w , d > ,

-

b e c a u s e of t h e lower semicontinuity of t h e function

-

f ' ( . , d ) . From t h i s , o n e h a s f ' ( z , d ) S max < w , d > .

-

w € & ( I , U )

Hence,

u

E

a , f ( z ) .

from LEY. 1 (d). The lemma h a s been p r o v e d .

THEOREM

5.

S u p p o s e f ' ( z , d ) i s lower semi-continuous in

z

E S f o r e a c h d E R n , a n d

DM

f ( z ) i s b k n d e d uniformly in a neighbourhood of

z

,

N,

(6), a n d

&(z

,

u

) i s u p p e r semicontinuous in

( z

,

u

) E S x a e f ( z ) . Then

day(.)

i s a Gpper

(5)

semicontinuous mapping.

THEOREM

6. If t h e r e e x i s t s a quasidifferential

La,

Y ( z ) #

5 , l ( z ) l

€ D M ,P(z) such t h a t

and

then

a@s(z) =-a, s<z>

+

zo s<z>

and

- -

a@s(z) = a, s ( z ) - a, s ( z ) ,

and

J ' ( z ; d )

=

max <u , d

>

, V d E R~

u @ @ f ( x ) and

PROOF. S i n c e V @ P ( z ) , z f ( z ) l € D M l ( z ) 6(*

1

B P ( z )

+ Z P ( ~ ) )

2 6 ( .

1 2,

J'(z> +

So

J'(z))

one h a s

~ ' ( 2 ; 0)s 6 ( .

1 3,

f ( z ) + Z o f ' ( z ) )

-

In o t h e r words,

j"(z ; 0 )

=

6(.

12,

f ( z )

+ z,

f ( z ) ) .

-

Theref o r e ,

a, s(z) + z,s(z)

c

a,s(z).

According t o t h e definition of

3 ,

[3], w e have _u,(z> c_a, l ( z ) +

z,

f ( z )

(6)

S o t h e equality (3) holds. Similarly, (4) c a n b e p r o v e d in t h e same way. In t h i s case where t h e conditions (1) a n d (2) a r e s a t i s f i e d o n e h a s t h a t f o r a n y

u

E

a , f ( z )

a n d f o r a n y d E Rn t h e r e l a t i o n s

q(u LL d )

=

-

u E e a f ( z ) max

< u

,

d >

and

-

q(u LLd)

=

max <u

.

d

>

2

' s @ f ( z )

are t r u e . Hence, t h e e q u a l i t i e s (5) a n d

( 6 )

are t r u e . The t h e o r e m h a s b e e n proved. I7

EXAMPLE?

L e t f E

c'w").

Then

a , f ( z ) = t v f ( z ) 1

,

P f ( z ) = l o ] .

EXAMPLE 8 Let f b e a convex function defined in Rn

.

S u p p o s e 0,

f ( z > = La, f ( z )

*

[Oil

= [ a m )

,

i o j i .

D f ( z > = L a f ( z )

#

Z f ( z ) l

,

w h e r e

a f ( z )

i s t h e s u b d i f f e r e n t i a l of f at z in t h e convex s e n s e . S i n c e

a f ( z ) - - a f ( z ) = _ a p ( z ) ,

o n e h a s

a f ( z ) + Z P ( Z ) = a f ( z )

+

( Z f ( z ) - - a m ) ) -

=@, 4 ( z ) + 5, f ( z ) )

+

( Z f ( z ) - a f ( z ) )

a n d

- - -

a m ) - a f ( z ) = (5,

P ( Z )

- a ,

~ ( 2 ) )

+ ( Z J ( Z ) - 5 ~ ( ~ ) ) .

and

From Th. 6, o n e h a s

a , f ( z ) = a f ( z )

*

P f ( z ) = to1

EXAMPLE

9. Let f b e a c o n c a v e function defined in Rn a n d Do

f ( z ) = [I01 a, f ( z ) l

=[to{

D

- a ( - f > ( z > l

(7)

and

I ) f ( z )

=

L a f ( z ) # Z f ( z ) l . Then

a , f ( z )

=a, -

f ( z )

=

- a ( - f ) ( z )

and

- -

* f ( z )

= a, f ( ~ ) - a,

f ( z ) .

EXAMPLE

10. Let f 1 be a convex function and f 2 b e a concave function defined in Rn , and f

=

f 1

+

f 2 . Then

0, f ( z )

= Lao

f ( z )

, 5 ,

f ( z ) l

=

18 f l ( z ) 8 -8 ( - f 2 ) ( z

)I

= D,

f l ( z ) ,

- a,

f 2

( z ) I .

For any

La

f ( z ) ,

5

f ( z

)I

E DM f ( z ) one h a s from (6) and Ex.9 t h a t BP(z) + Z . f ( z )

=

C B f l ( z ) + Z f l ( z ) ) + caf,<z> + Z f 2 ( z ) )

=

a f l ( z ) + ( B f l ( z )

- -

O f ( z ) )

+ w 2 ( z ) - 2 f 2 ( z ) )

-

a ( - f 2 ) ( z )

=

( Z f l ( Z )

-

Z f l ( 2 ) ) + CBP2(z) - B f 2 ( z ) ) + ( a f l ( z )

-

a ( - f 2 ) ( z ) ) ,

where

D f l ( z )

=

w l ( z )

.

5 f l ( z ) l and

9

D f 2 ( z >

=

W 2 ( z ) a f 2 ( z ) I

.

I t follows from (8) t h a t

# ( z ) +

~ P ( z )

3 2 d l ( z ) + 5 d 2 ( z )

=

apl(z)

-

a ( - p 2 ) ( z ) . On t h e o t h e r hand, since

and

9 9

8 f 2 ( z )

-

5 f 2 ( z )

=

( ~ Q P ~ ( z )

-

812(z))

-

(&9'2(z) - 2 d 2 ( z ) ) , one h a s

-

a f ( z )

- Z J ( Z ) =

( Z f 1 ( z ) - 5 f l ( z ) ) + w 2 ( z ) - u 2 ( z ) ) + ( b d 2 ( z ) - 5 d 2 ( z ) ) .

(8)

Hence

- - -

a f ( z )

- a f ( z )

3

3 d 2 ( z ) -

a d 2 ( z ) ) . From ( 9 ) , ( 1 0 ) and Th. 6 w e now have

a d ( z ) = a f l ( z ) - a f 2 ( z )

= B d l ( z ) + Bd2(z)

and

-

a @ f ( z

)

= 5,,.f2(z) - adZ(z 1) .

EXAMPLE

11Let f 1 and f 2 b e convex, and f

=

f 1

-

f 2 .

T h e n w e h a v e

~ J ( z )

= a f i ( z ) - a f 2 ( z )

and

P ' ( z ) = a f 2 ( 2 ) - a f 2 ( z ) .

ACKNOWLEDGWENT

The a u t h o r i s deeply indebted t o Mrs. Adolfine Egleston f o r h e r g r e a t help.

REFERENCES

[ I ] Demyanov, V.F. a n d Rubinov, A.M. (1980). On Q u a s i d i f l e r e n t i a b L e f i n c t i o n - aLs Soviet Math. Dokl. Vol. 2, N o . 1 , pp. 14-17.

[ Z ] Demyanov, V.F. and Rubinov, A.M. (1985/1986). Q u a s i d i f l e r e n t i a L C a l c u l u s IIASA, Laxenburg Austria/ Springer-Verlag.

[ 3 ] Xia,

Z.Q.

(1986). The @Kernel for a Q u a s i d i f l e r e n t i a b L e f i n c t i o n . R e p o r t , SDS, IIASA, Laxenburg, Austria.

Referenzen

ÄHNLICHE DOKUMENTE

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria... Donella Meadows,

The main purpose in this paper is t o explore ways and means of finding the kernel quasidifferentials in the sense of Demyanov and Rubinov for a certain

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria.. Kurzhanski Chairman System and Decision Sciences Program.. Nonlinear programming stability

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... DECISION SUPPORT SYSTEX

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg,

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 Laxenburg, Austria... Anatoli Yashin Deputy Leader