• Keine Ergebnisse gefunden

Designing Approximation Schemes for Stochastic Optimization Problems, in Particular for Stochastic Programs with Recourse

N/A
N/A
Protected

Academic year: 2022

Aktie "Designing Approximation Schemes for Stochastic Optimization Problems, in Particular for Stochastic Programs with Recourse"

Copied!
67
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT F O R QUOTATION WITHOUT P E R M I S S I O N O F T H E AUTHOR

D E S I G N I N G APPROXIMATION SCHEMES FOR S T O C H A S T I C O P T I M I Z A T I O N PROBLEMS,

I N P A R T I C U L A R F O R

S T O C H A S T I C PROGRAMS WITH RECOURSE

J o h n B i r g e R o g e r J - B W e t s N o v e m b e r ' 1 9 8 3 W P - 8 3 - 1 1 1

W o r k i n g

P a p e r s a r e i n t e r i m r e p o r t s o n w o r k of t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s and have received o n l y l i m i t e d r e v i e w . V i e w s o r o p i n i o n s e x p r e s s e d h e r e i n do n o t n e c e s s a r i l y repre- s e n t t h o s e of t h e I n s t i t u t e o r of i t s N a t i o n a l M e m b e r O r g a n i z a t i o n s .

I N T E R N A T I O N A L I N S T I T U T E F O R A P P L I E D S Y S T E M S A N A L Y S I S A - 2 3 6 1 L a x e n b u r g , A u s t r i a

(2)

PREFACE

The System and Decision Sciences Area has been involved in procedures for approximation as part of a variety of projects involving uncertainties. In this paper, the authors discuss approximation methods for stochastic programming problems. This is especially relevant to the Adaptation and Optimization project since it directly applies to the solution of optimization problems under uncertainty.

Andrzej P. Wierzbicki Chairman

System and Decision Sciences Area

(3)

DESIGNING APPROXIMATION SCHEMES FOR STOCHASTIC OPTIMIZATION PROBLEMS,

I N PARTICULAR FOR

STOCHASTIC PROGRAMS WITH RECOURSE

John B i r g e and Roger J-B. Wets

I n d u s t r i a l and O p e r a t i o n s E n g i n e e r i n g Department o f Mathematics U n i v e r s i t y o f M i c h i g a n U n i v e r s i t y o f Kentucky

ABSTRACT

Various a p p r o x i m a t i o n schemes f o r s t o c h a s t i c o p t i m i z a t i o n problems i n v o l v i n g e i t h e r approximates o f t h e p r o b a b i l i t y mea- sures and/or approximates o f t h e o b j e c t i v e f u n c t i o n a l , a r e i n - v e s t i g a t e d . We d i s c u s s t h e i r p o t e n t i a l imp1 e m e n t a t i o n as p a r t o f g e n e r a l procedures f o r s o l v i n g s t o c h a s t i c programs w i t h r e - course.

Supported i n p a r t by g r a n t s of t h e N a t i o n a l Science Foundation.

(4)

1.

INTRODUCTION

We t a k e

( 1 . 1 ) f i n d x E Rn t h a t m i n i m i z e s E f ( x ) = E{f ( x ,

6

( o ) ) )

a s p r o t o t y p e f o r t h e c l a s s o f s t o c h a s t i c o p t i m i z a t i o n problems u n d e r i n v e s t i g a - t i o n , where

N N

5

i s a random v e c t o r which maps t h e p r o b a b i l i t y s p a c e (R,A,P) on (R

, B

, F ) w i t h F t h e d i s t r i b u t i o n f u n c t i o n and c RN t h e s u p p o r t o f t h e p r o b a b i l i t y m e a s u r e i n d u c e d by

5

( i . e . F i s t h e s e t o f p o s s i b l e v a l u e s assumed b y 5 ) , and

f : R " X R ~ + R u { + a ) i s a n e x t e n d e d r e a l - v a l u e d f u n c t i o n . We s h a l l assume:

( 1 . 3 ) f o r a l l x , WH f ( x , C ( o ) ) i s m e a s u r a b l e

,

and t h e f o l l o w i n g i n t e g r a b i l i t y c o n d i t i o n :

( 1 . 4 ) i f P [ o

I

f ( x , C ( w ) ) < + a ] = l t h e n E f ( x ) < + a

.

We r e f e r t o E f = ~ { f ( 0

,c

( a ) ) } a s a n e x p e c t a t i o n f u n c t i o n a l . Note t h a t i t c a n a l s o b e e x p r e s s e d a s a L e b e s g u e - S t i e l t j e s i n t e g r a l w i t h r e s p e c t t o F:

r

A wide v a r i e t y o f s t o c h a s t i c o p t i m i z a t i o n p r o b l e m s f i t i n t o t h i s ( a b s t r a c t ) framework ; i n p a r t i c u l a r s t o c h a s t i c programs w i t h ( f i x e d ) recourse [ I.]

( 1 . 6 ) f i n d x r R:' s u c h t h a t Ax = b

,

and z = c x + O_(x) i s m i n i m i z e d where A i s an m xn - m a t r i x , b E R m l ,

1 1

a n d , t h e recourse f u n c t i o n i s d e f i n e d by

(5)

The ( m 2 x n 2 ) - m a t r i x W i s c a l l e d t h e recourse matrix. F o r e a c h w : T(w) i s m xn 2 1' q(w) E Rn2 and h(w) E R m 2 . P i e c i n g t o g e t h e r t h e s t o c h a s t i c components o f t h e p r o - blem, we g e t a v e c t o r

<

RN w i t h N = n + m + (m r n ) , and

2 2 2 1

We s e t

( 1 . 9 ) f ( x , < ) = r c x + Q ( x , < ) i f AX = b , x 1 0 ,

1 + -

o t h e r w i s e

.

P r o v i d e d t h e r e c o u r s e problem i s a . s . bounded, i . e . ( 1 . 1 0 ) P [ w 1 3 ~ s u c h t h a t ~ W s q ( ~ ) ] = I ,

which we assume h e n c e f o r t h , t h e f u n c t i o n Q and t h u s a l s o f , d o e s n o t t a k e on t h e v a l u e - m

.

The m e a s u r a b i l i t y o f f ( x , * ) f o l l o w - d i r e c t l y from t h a t o f

6

t+ Q ( x , < )

[ l , S e c t i o n 31. I f

6

h a s f i n i t e s e c o n d moments, t h e n Q(x) i s f i n i t e whenever w - Q ( x , < ( w ) ) i s f i n i t e [ l , Theorem 4.11 and t h i s g u a r a n t e e s c o n d i t i o n ( 1 . 4 ) .

Much i s known a b o u t problems o f t h i s t y p e [ l ] . The p r o p e r t i e s of f a s d e - f i n e d t h r o u g h ( 1 . 9 ) , q u i t e o f t e n m o t i v a t e and j u s t i f y t h e c o n d i t i o n s u n d e r which we o b t a i n v a r i o u s r e s u l t s . The r e l e v a n t p r o p e r t i e s a r e

( 1 . 1 1 ) ( h , T ) t + Q ( x , < = ( q , h , T ) ) i s a p i e c e w i s e l i n e a r convex f u n c t i o n f o r a l l f e a s i b l e x c K = K n K 2 ,

1 where

K 1 = { X

1

AX=^, X L O )

K 2 = { X IY<(w) E = ,

-

3 y ~ O s u c h t h a t W y = h ( w ) - ~ ( w ) x ) ,

( 1 . 1 2 ) q t + Q ( x , < = ( q , h , T ) ) i s a concave p i e c e w i s e l i n e a r f u n c t i o n

,

and

( 1 . 1 3 ) x + Q ( x , < ) i s a convex p i e c e w i s e l i n e a r f u n c t i o n which i m p l i e s t h a t

(6)

(1.14) x!+O_(x) is a Lipschitzian convex function

,

finite on K as follows from the integrability condition on c(-).

2 '

When T is nonstochastic, or equivalently does not depend on w , it is some- times useful to work with a variant formulation of (1.6). With T = T(w) for all w, we obtain

(1.15) find x E ,':R

x

E Rm2 such that

AX = b

,

TX =

x ,

and

= cx + y

(x)

is minimized where

(1.16) ~ ( X ) = E { $ ( X , E ( U ) ) } = ~ $ ( X ~ E ( ~ ) ) P ( ~ ~ ) and

This formulation stresses the fact that choosing x corresponds to generating a tender X = Tx to be "bid" against the outcomes h(w) of random events. The func- tions $ and Y have basically the same properties as

Q

and C?, replacing naturally the set K2 by the set L2 = {x-Tx

1

x E K2

1

=

{X I

Y h (a) e

-

zh, 3 Y 1 0 such that WY = h(w) -Tx}

The function f is now given by

L +-

otherwise

.

A significant number of applications have the function $ separable, i.e.

$(X.S) = qi(Xi,Ei) such as in stochastic programs with simple recourse [l, Section 61. This will substantially simplify the implementation of various approximation schemes described below. When separability is not at hand, it will sometimes be useful to introduce it, by constructing appropriate approximates for

$ or

Q,

see Section 3.

(7)

Another common f e a t u r e o f s t o c h a s t i c o p t i m i z a t i o n problems, t h a t one should n o t l o s e t r a c k o f when d e s i g n i n g approximation schemes, i s t h a t t h e random b e h a v i o r o f t h e s t o c h a s t i c elements o f t h e problem can o f t e n be t r a c e d back t o a few i n d e - pendent random v a r i a b l e s . T y p i c a l l y

(1.19) 5 ( ~ ) = C ~ ( ~ ) ~ ~ + C ~ ( ~ ) E ~ + ~ * * + S ~ ( W ) ~ M where t h e

a r e independent r e a l - v a l u e d random v a r i a b l e s , and

a r e f i x e d v e c t o r s . In f a c t many a p p l i c a t i o n s

- -

such a s t h o s e i n v o l v i n g s c e n a r i o a n a l y s i s

- -

i n v o l v e j u s t one such random v a r i a b l e < ( * ) ; n a t u r a l l y , t h i s makes t h e components o f t h e random v e c t o r 5 ( * ) h i g h l y dependent. L a s t , b u t n o t l e a s t , o n l y r a r e l y do we have i n p r a c t i c e a d e q u a t e s t a t i s t i c s t o model w i t h s u f f i c i e n t a c c u r - acy j o i n t phenomena i n v o l v i n g i n t r i c a t e r e l a t i o n s h i p s between t h e components of

5.

Hence, we s h a l l d e v o t e most o f o u r a t t e n t i o n t o t h e independent c a s e , remaining a t a l l t i m e s v e r y much aware of t h e c o n s t r u c t i o n ( 1 . 1 9 ) .

T h i s w i l l s e r v e a s background t o o u r s t u d y o f approximation schemes f o r c a l c u l a t i n g

A f t e r t a k i n g c a r e o f some g e n e r a l convergence r e s u l t s ( S e c t i o n 2 ) , we b e g i n o u r s t u d y w i t h a d e s c r i p t i o n o f p o s s i b l e approximates o f f i n t h e c o n t e x t o f s t o c h a s - t i c programs w i t h r e c o u r s e ( S e c t i o n 3 . ) We t h e n examine t h e p o s s i b i l i t y of ob- t a i n i n g lower o r upper bounds on E f by means o f d i s c r e t i z a t i o n ( o f t h e p r o b a b i l i t y measure) u s i n g c o n d i t i o n a l e x p e c t a t i o n s ( S e c t i o n 41, measures w i t h e x t r e m a l

(8)

s u p p o r t ( S e c t i o n 5)

,

e x t r e m a l m e a s u r e s ( S e c t i o n 6) o r m a j o r i z i n g p r o b a b i l i t y mea- s u r e s ( S e c t i o n 7 ) . I n e a c h c a s e we a l s o s k e t c h o u t t h e i m p l e m e n t a t i o n o f t h e r e - s u l t s i n t h e framework o f s t o c h a s t i c programs w i t h r e c o u r s e , r e l y i n g i n some c a s e s on t h e a p p r o x i m a t e s t o f o b t a i n e d i n S e c t i o n 3 . I n t h e l a s t s e c t i o n , we g i v e some f u r t h e r e r r o r bounds f o r i n f E f t h a t r e q u i r e t h e a c t u a l c a l c u l a t i o n o f E ( x ) a t some p o i n t s .

f

(9)

The purpose o f t h i s s e c t i o n i s t o f r e e u s a t once from any f u r t h e r d e t a i l e d argumentation i n v o l v i n g convergence o f s o l u t i o n s , i n f i m a , and s o on. To do s o we r e l y on t h e t o o l s p r o v i d e d by e p i - c o n v e r g e n c e . Let {g; g v

,

v = l , .

.

. ) be a c o l - l e c t i o n of f u n c t i o n s d e f i n e d on R n w i t h v a l u e s i n

R =

[-ca,+w]

.

The sequence

v n

{g

,

v = l ,

. . . I

i s s a i d t o epi-converge t o g i f f o r a l l X E R

,

we have

(2 1 ) v v v

l i m i n f g (x ) 2 g ( x ) f o r a l l {x

,

v = l ,

. . . I

converging t o x

,

Vt"

and

(2.2) v v v

t h e r e e x i s t s {x

,

v = l ,

. .

. ) converging t o x such t h a t l i m s u p g (x ) 2 g ( x )

.

Vt03

Note t h a t any one o f t h e s e c o n d i t i o n s i m p l i e s t h a t g, t h e epi-limit o f t h e g v

,

i s n e c e s s a r i l y lower s e m i c o n t i n u o u s . The name epi-convergence comes

from t h e f a c t t h a t t h e f u n c t i o n s {g v

,

v = l ,

. .

.) e p i - c o n v e r g e t o g i f and o n l y i f t h e s e t s { e p i g v

,

v = l ,

. . . 1

converge t o e p i g = { ( x , a )

I

g ( x ) 5 a); f o r more d e t a i l s c o n s u l t [ 2 , 3 ] . Our i n t e r e s t i n epi-convergence stems from t h e f o l l o w i n g p r o p e r - t i e s [ 4 ] .

2.3 THEOREM. Suppose a sequence of functions v = l

, . . .

) epi-converges to g.

Then

( 2 . 4 ) v

l i m s u p ( i n f g ) 2 i n f g

,

Vt"

and, if

k v

x E argmin g Vk = {x

I

g x 2 i n f g V k )

fop some subsequence of functions {gVk, k = l , .

.

. ) and x = l i m x k

,

it fottows

tkzt

k-

x E argmin g

,

and l i m ( i n f g vk ) = i n f g

.

k-

Moreover, if argmin g t 8, then l i m ( i n f g') = i n f g if and only if x c argmin g

Vt"

(10)

i m p l i e s the e x i s t e n c e o f sequences {E" 0, v = l , .

. .

) and { x V

,

v = l ,

. .

. ) w i t h

l i m ~ = 0 , und l i m x = x , v

Vt03 V v-

such t h a t for a l l v = l ,

...,

V V

x E E -argmin g = {x

I

g ( x ) I i n f g V + ~ v )

.

V V

2 . 5 COROLLARY. Suppose a sequence o f functions {g V

,

v = l ,

. . . I

epi-converges t o g,

and

there e x i s t s a bounded s e t D such t h a t

argmin g V n D t 0

f o r a l l v s u f f i c i e n t l y large. Then l i m ( i n f g ) = i n f g

vtco V

and t h e minimwn o f g i s a t t a i n e d a t some point i n t h e closure o f D:

PROOF. S i n c e D i s bounded, i t f o l l o w s t h a t t h e r e e x i s t s a bounded s e q u e n c e {x V

,

v = l ,

. . .

) w i t h

v v

x E argmin g n D

.

T h i s means t h a t a s u b s e q u e n c e c o n v e r g e s { x v k , 1 , .

.

t o a p o i n t x b o t h i n t h e c l o s u r e o f D and i n argmin g a s f o l l o w s from e p i - c o n v e r g e n c e . Theorem 2 . 3 a l s o y i e l d s

l i m g V k ( x Vk ) = g ( x ) = i n f g

.

k-

T h e r e r e m a i n s o n l y t o a r g u e t h a t t h e e n t i r e s e q u e n c e { ( i n f g V ) , v = l , . . . ) c o n v e r g e s t o i n f g . But t h i s s i m p l y f o l l o w s from t h e o b s e r v a t i o n t h a t t h e p r e c e d i n g a r g u - ment a p p l i e d t o any s u b s e q u e n c e y i e l d s a f u r t h e r s u b s e q u e n c e c o n v e r g i n g t o i n f g . I]

The f o l l o w i n g p r o p o s i t i o n p r o v i d e s v e r y u s e f u l c r i t e r i a f o r v e r i f y i n g e p i - c o n v e r g e n c e .

(11)

v -

2 . 6 PROPOSITION. [S, P r o p o s i t i o n 3.121 Suppose {g : R n + R , v = l ,

... 1

i s a col- l e c t i o n o f functions pointwise converging t o g,

i .

e . for a l l x, g ( x ) = l i m gV ( x )

.

v-

Then t h e gv epi-converge t o g, i f they are monotone increasing, or monotone de- creasing w i t h g lower semicontinuous i n t h i s l a t t e r case.

For e x p e c t a t i o n f u n c t i o n a l s , we o b t a i n t h e n e x t a s s e r t i o n as a d i r e c t c o n s e - quence o f t h e d e f i n i t i o n o f e p i - c o n v e r g e n c e and F a t o u ' s lemma.

2 . 7 THEOREM. Suppose { f ; f v , v = l , .

. .

} i s a c o l l e c t i o n o f functions defined on RnxQ w i t h values i n R u { + a ) s a t i s f y i n g conditions ( 1 . 3 ) and ( 1 . 4 ) , such t h a t for a l l

5

E

E

t h e sequence { f V ( ,<)

,

v = l ,

. . .

) epi-converges t o f ( - , c )

.

Suppose more- over t h a t t h e functions f V are bounded below uniformly. Then t h e expectation functionals E epi-converge t o E

f V f '

When i n s t e a d o f a p p r o x i m a t i n g t h e f u n c t i o n a l f , we a p p r o x i m a t e t h e p r o b a - b i l i t y measure P, we g e t t h e f o l l o w i n g g e n e r a l r e s u l t t h a t s u i t s o u r n e e d s i n most a p p l i c a t i o n s , s e e [ 6 , Theorem 3.91

,

[ 7 , Theorem 3.31

.

2.8 THEOREM. Suppose {P v = l ,

. . . I

i s a sequence of p r o b a b i l i t y measures con- v

'

verging i n d i s t r i b u t i o n t o t h e p r o b a b i l i t y measure P d e f i n e d on Q, a separable m e t r i c space w i t h

A

t h e Bore2 sigma-field. Let

be continuous i n w for each fixed x i n K , where

and l o c a l l y L i p s c h i t z i n x on K w i t h L i p s c h i t z constant independent o f w. Sup- pose moreover t h a t for any X E K and E > O t h e r e e x i s t s a compact s e t SE and v such

E

t h a t for a l l v 2 v

E

(12)

R\SE

mul with V={w

(

f ( x , w ) =+a), P(V) > O if and only if PV(V) '0. Then the sequence of expectation fvnctionats {E:, v = l ,

. . .

) epi- and poinhjise converges to E f J where

PROOF. We b e g i n by showing t h a t t h e E V p o i n t w i s e converge t o E F i r s t l e t

f f '

x E K and s e t

From ( 2 . 9 ) ' i t f o l l o w s t h a t f o r a l l E > O , t h e r e i s a compact s e t SE and i n d e x vE s u c h t h a t f o r a l l v r vE

[

Ig(w) IPv(dw) < E

.

Let ME

- -

SupwEsE I g ( w ) ( . We know t h a t M i s f i n i t e s i n c e S i s compact and g i s

E E

c o n t i n u o u s , r e c a l l t h a t X E K . Let g be E a t r u n c a t i o n o f g d e f i n e d by

The f u n c t i o n g E i s bounded and c o n t i n u o u s and we have t h a t f o r . a l 1 we R

Hence from t h e convergence i n d i s t r i b u t i o n o f t h e Pv

r 7

and a l s o f o r a l l v l v

E '

(13)

R\SE Now l e t

We have t h a t f o r a l l

v

2 vE

and a l s o t h a t

Combining t h e two l a s t i n e q u a l i t i e s w i t h (2.10) shows t h a t f o r a l l E > O , t h e r e e x i s t s

v

such t h a t f o r a1 1

v

2

v

E E

and t h u s f o r a 1 1 x E K ,

l i m E

v

( x ) = E f ( x )

.

Vt03 f

I f x

4

K, t h i s means t h a t

which a l s o means t h a t f o r a l l

v

from which i t f o l l o w s t h a t f o r a l l

v

l i m E

v

(x) = +a = E f ( x )

.

V*W f

n

v

And t h u s , f o r a l l X E R

,

E f ( x ) = l i m E f ( x ) . T h i s g i v e s us n o t o n l y p o i n t w i s e

v-

convergence, b u t a l s o c o n d i t i o n ( 2 . 2 ) f o r e p i - c o n v e r g e n c e .

(14)

To c o m p l e t e t h e p r o o f , i t t h u s s u f f i c e s t o show t h a t c o n d i t i o n ( 2 . 1 ) i s s a t i s f i e d f o r a l l X E K . The f u n c t i o n x w f ( x , < ( w ) ) i s L i p s c h i t z i a n on K , w i t h L i p s c h i t z c o n s t a n t L i n d e p e n d e n t o f w . F o r any p a i r x , x w i n K , we h a v e t h a t f o r a l l w

which i m p l i e s t h a t

Let u s now t a k e xw as p a r t o f a s e q u e n c e {x w

,

w = l , .

.

.) c o n v e r g i n g t o x . I n t e g r a t - i n g on b o t h s i d e s o f t h e p r e c e d i n g i n e q u a l i t y and t a k i n g lirn i n f , we g e t

LH03

w w

E ( x ) = l i m E f ( x ) - L l i m d i s t ( x , x )

f w- LH03

= l i m i n f (E;(X) - L d i s t ( x , x w ) )

LH03

w V

lirn i n f E f ( x )

,

LH03

which c o m p l e t e s t h e p r o o f .

O

2.11 APPLICATION. Suppose {P w = l ,

...)

i s a sequence of probability measures w

'

t h a t converge i n d i s t r i b u t i o n t o P, a l l w i t h compact support $2. Suppose

w i t h the recourse function Q defined by ( 1 . 8 ) and Q by ( 1 . 7 ) . Then the Qw both e p i - and pointwise converge t o Q.

I t s u f f i c e s t o o b s e r v e t h a t t h e c o n d i t i o n s o f Theorem 2 . 8 a r e s a t i s f i e d . The c o n t i n u i t y o f Q(x,S) w i t h r e s p e c t t o

<

( f o r x E K ) f o l l o w s from ( 1 . 1 1 ) and

2

( 1 . 1 2 ) . The L i p s c h i t z p r o p e r t y w i t h r e s p e c t t o x i s o b t a i n e d from [ l , Theorem 7 . 7 1 ; t h e p r o o f o f t h a t Theorem a l s o shows t h a t t h e L i p s c h i t z c o n s t a n t i s i n d e p e n d e n t o f

5,

c o n s u l t a l s o [ 8 ] .

(15)

2.12 IMPLEMEIVTATION. From t h e p r e c e d i n g r e s u l t s i t f o l l o w s t h a t we have been g i v e n g r e a t l a t i t u d e i n t h e c h o i c e o f t h e p r o b a b i l i t y measures t h a t approximate P . However, i n what f o l l o w s we c o n c e r n o u r s e l v e s a l m o s t e x c l u s i v e l y w i t h d i s c r e t e p r o b a b i l i t y measures. The b a s i c r e a s o n f o r t h i s i s t h a t t h e form o f f ( x , c ) - - o r Q(x,c) i n t h e c o n t e x t o f s t o c h a s t i c programs w i t h r e c o u r s e - - r e n d e r s t h e numer- i c a l e v a l u a t i o n o f E f ( o r Ef) p o s s i b l e o n l y i f t h e i n t e g r a l i s a c t u a l l y a ( f i n i t e ) v sum. Only i n h i g h l y s t r u c t u r e d problems, s u c h a s f o r s t o c h a s t i c programs w i t h s i m p l e r e c o u r s e [ 9 ] , may i t b e p o s s i b l e and p r o f i t a b l e t o u s e o t h e r a p p r o x i m a t i n g measures.

(16)

3. APPROXIMATING T H E RECOURSE FUNCTION Q

When f i s convex i n

5,

i t i s p o s s i b l e t o e x p l o i t t h i s p r o p e r t y t o o b t a i n s i m p l e b u t v e r y u s e f u l l o w e r bounding a p p r o x i m a t e s f o r E

f '

3 . 1 PROPOSITION.

Suppose <*

f ( x , 5 )

i s convex,

( 5 R

,

R = l ,

. . .

, v )

i s a f i n i t e c o l l e c - t i o n of points i n , and for

R = 1 ,

. . . , ,

i . e .

v'

i s a subgradient o f

f ( x , - )

a t 5'. Then

( 3 . 2 ) E f (XI 2 E{ max [vR<(w) + ( f ( x , t R )

-

v k R )

I} .

1 r Rrv

PROOF. To s a y t h a t v R i s a s u b g r a d i e n t o f t h e convex f u n c t i o n o f f ( x , 0) a t

5

G

,

means t h a t

S i n c e t h i s h o l d s f o r e v e r y R, we o b t a i n

R R R R

f ( x , S ) 2 max [ v

5 +

( f ( x , S - v

5 11 .

1 l Rlv

I n t e g r a t i n g on b o t h s i d e s y i e l d s ( 3 . 2 ) .

O

3.3 APPLICATICIN.

Consider t h e s t o c h a s t i c program w i t h recourse

( 1 . 6 )

and suppose

R R E

t h a t only

h

and

T

are s t o c h a s t i c . Let

( 5 = (h ,T )

,

R = l ,

. . .

, v )

be a f i n i t e number of r e a l i z a t i o n s o f

h

and

T, x e K 2

and f o r

k = l ,

...,

v,

R R R

n E argmax [ n ( h - T x)

1

nW I q ]

.

( 3 . 4 ) R

e ( x ) 2 E{ max n (h (o) - T(w) x) l l R l v

(17)

T h i s i s a d i r e c t c o r o l l a r y o f P r o p o s i t i o n 3 . 1 . We g i v e a n a l t e r n a t i v e p r o o f which c o u l d be o f some h e l p i n t h e d e s i g n o f t h e i m p l e m e n t a t i o n . S i n c e x e K

2 '

f o r e v e r y c = ( h , T ) i n 3, t h e l i n e a r program ( 3 . 5 ) f i n d n e R~~ s u c h t h a t nW 5 q

and w = n ( h - Tx) i s maximized

i s bounded, g i v e n n a t u r a l l y t h a t i t i s f e a s i b l e a s f o l l o w s from a s s u m p t i o n ( 1 . 1 0 ) . Hence f o r R = l ,

. . . ,

v ,

R R R R

Q ( x , S

1

= n (h - T x )

,

and moreover s i n c e n R i s a f e a s i b l e s o l u t i o n o f t h e l i n e a r program ( 3 . 5 ) , f o r a l l

C E

3

Q ( x , c ) 2 n (h R - Tx)

.

S i n c e t h i s h o l d s f o r e v e r y R , we g e t Q ( x , c ) 2 max n (h - T x ) R

.

l<R<v'

I n t e g r a t i n g on b o t h s i d e s y i e l d s ( 3 . 4 ) .

3.6

IMPLEMENTATION.

I n g e n e r a l f i n d i n g i n e x p r e s s i o n ( 3 . 4 ) , t h e maximum f o r e a c h

5 --

o r e q u i v a l e n t l y f o r e a c h ( h , T ) e 3

- -

c o u l d b e much t o o i n v o l v e d . But we may a s s i g n t o e a c h re a s u b r e g i o n of f, w i t h o u t r e s o r t i n g t o ( e x a c t ) maximiza- t i o n . The l o w e r bound may t h e n n o t b e a s t i g h t a s ( 3 . 4 ) , b u t we c a n r e f i n e i t by t a k i n g s u c c e s s i v e l y f i n e r and f i n e r p a r t i t i o n s . However, o n e s h o u l d n o t f o r g e t t h a t ( 3 . 4 ) i n v o l v e s a r a t h e r s i m p l e i n t e g r a l and t h e e x p r e s s i o n t o t h e r i g h t c o u l d b e e v a l u a t e d n u m e r i c a l l y t o a n a c c e p t a b l e d e g r e e o f a c c u r a c y , w i t h o u t m a j o r d i f - f i c u l t i e s . Note t h a t t h e c a l c u l a t i o n o f t h i s l o w e r bound i m p o s e s no l i m i t a t i o n s on t h e c h o i c e o f t h e

5

R

.

However, i t i s o b v i o u s t h a t a w e l l - c h o s e n s p r e a d o f t h e

R R

( 5

,

R = l ,

...,

v ) w i l l y i e l d a b e t t e r a p p r o x i m a t i o n . F o r example, t h e

5

c o u l d b e

(18)

t h e c o n d i t i o n a l e x p e c t a t i o n o f c ( - ) w i t h r e s p e c t t o a p a r t i t i o n i n g S = {S R = l ,

...,

v ) R '

o f

:

which a s s i g n s t o each S a b o u t t h e same p r o b a b i l i t y . Also t h e u s e o f a R

l a r g e r c o l l e c t i o n o f p o i n t s , i . e . i n c r e a s i n g v , w i l l a l s o y i e l d a b e t t e r lower bound.

3.7 CONVERGENCE. Suppose that c w f ( x , S ) is convex. For each v = l ,

...,

Zet

S V = {Se, v = l , ,} denote a partition of t with v

the conditionaZ expectation of 5 ( * ) given

sV

Suppose moreover that S v p + 1 R'

and that (3.8)

Then, with v V R e 8 f ( x , e V " and

5

( 3 . 9 ) v max [ v R V S ( u ) + f ( x , E V R )

-

v l r R l L

v

we have that the sequence of functions {E:, v = l , .

.

. } is monotone increasing, and for aZZ x:

Ef(x) = l i m Ef(x) v

.

v-

Hence the sequence {EV v = l ,

. .

. } is both pointwise- and epi-convergent.

f '

PROOF. From P r o p o s i t i o n 3.1, i t f o l l o w s t h a t EVf r E f f o r a l l v . The i n e q u a l i t y

t h e n f o l l o w s s i m p l y from t h e f a c t t h a t S = S v . Now o b s e r v e t h a t

(3.10) vR vR v

max [vvRS + f ( x , ~ ~ ' ) - v

5 1

2 g ( x , ~ ) lrRrL

v

where gv i s d e f i n e d a s f o l l o w s :

(19)

It follows that

L

which gives us

v v

Ef(x) 2 lim E (x) 2 lim E{g (x,S(w))) = Ef(x) ;

LH03 f

w

the last equality following from assumption (3.8).

We have thus shown that the sequence { E ~ , v v = l , is monotone increasing and pointwise converges, and this implies epi-convergence, see Proposition 2.6.

O

If f(x,=) is concave, the inequality in (3.2) is reversed and, instead of a lower bound on Ef, we obtain an upper bound. In fact, we can again use Proposi- tion 3.1, but this time applied to -f.

3.11 APPLICATION. Consider t h e s t o c h a s t i c program w i t h recourse (1.6) and sup-

R R

pose t h a t only t h e v e c t o r q i s s t o c h a s t i c . Let

15

= q

,

R=l,

...,

v) be a f i n i t e nwnber o f r e a l i z a t i o n s o f q, x E K2 and f o r

a=

1,

. . . ,

v

(3.12) Q(x) 5 E{ min q (w) ye)

.

1 5 R5v

Again this is really a corollary of Proposition 3.1. A slightly different proof proceeds as follows: Note that for all q =

S

E

E,

for every R, is a feasible, but not necessarily optimal, solution of the linear program

find y E R : ~ such that Wy = p-Tx, and w = q y is minimized.

Hence

Q(x,S> I min q~

R

llR5v

from which (3.12) follows by integrating on both sides.

(20)

The r e m a r k s made a b o u t I m p l e m e n t a t i o n 3 . 6 a n d t h e a r g u m e n t s u s e d i n C o n v e r g e n c e 3 . 7 s t i l l a p p l y t o t h e c o n c a v e c a s e s i n c e we a r e i n t h e same s e t t i n g a s b e f o r e p r o v i d e d we work w i t h - f o r -Q.

P r o p o s i t i o n 3 . 1 p r o v i d e s u s w i t h a l o w e r bound f o r Ef when < * f ( x , < ) i s convex, t h e n e x t r e s u l t y i e l d s a n u p p e r bound.

3.13 PROPOSITION.

Suppose

<

t+ f ( x , <) i s convex, { < R

,

R = l ,

. . . ,

v ) i s a f i n i t e c o l - l e c t i o n of points i n

:.

Then

where

-

v

( 3 . 1 5 ) f ( x , < ) v = i n f

I f t h e function < B f ( x , < ) i s sublinear, the f v can be defined a s follows:

v v

( 3 . 1 6 ) f ( x , < ) v = i n f

L

(Note t h a t f V ( x , <) i s +m i f t h e corresponding program i s i n f e a s i b l e . )

PROOF.

C o n v e x i t y i m p l i e s t h a t f o r a l l h 1- > O ,

. . . ,

hvrO w i t h v

"

= 1, and

<

= he<' we h a v e

from which ( 3 . 1 4 ) f o l l o w s u s i n g ( 3 . 1 5 ) . S u b l i n e a r i t y ( c o n v e x i t y and p o s i t i v e homogeneity) a l s o y i e l d s ( 3 . 1 7 ) b u t t h i s t i m e w i t h o u t

1'

h = 1, and t h i s i n

R = l R t u r n y i e l d s ( 3 . 1 4 ) u s i n g ( 3 . 1 6 ) t h i s t i m e .

O

3.18 APPLICATION.

Ray functions. C o n s i d e r t h e s t o c h a s t i c program w i t h r e c o u r s e i n t h e form ( 1 . 1 5 ) and s u p p o s e t h a t o n l y h i s s t o c h a s t i c , i . e . w i t h f i x e d m a t r i x T a n d r e c o u r s e c o s t c o e f f i c i e n t s q . Now suppose t h a t f o r g i v e n X , we h a v e t h e v a l u e s o f

R R

{ $ J ( x , < =h ) , R = l , .

.

. , v ) f o r a f i n i t e c o l l e c t i o n o f r e a l i z a t i o n s o f h ( * ) .

(21)

Let

5

E I and d e f i n e ( 3 . 1 9 ) $'(x, S) = i n f

R= 1 Then

Y(x) 5 y V ( x ) = $ v ( x , S ( w ) ) p ( d w )

The above f o l l o w s from t h e s e c o n d p a r t o f P r o p o s i t i o n 3 . 1 3 p r o v i d e d we o b s e r v e t h a t from t h e d e f i n i t i o n ( 1 . 1 7 ) o f $, we h a v e t h a t

i s s u b l i n e a r . From t h i s i t f o l l o w s t h a t f o r any A E R:

whenever

and t h i s l e a d s t o t h e c o n s t r u c t i o n of i n ( 3 . 1 9 ) . I]

3.20 IMPLEMENTATION. F i n d i n g f o r e a c h

5,

t h e o p t i m a l v a l u e o f a l i n e a r program a s r e q u i r e d by t h e d e f i n i t i o n o f i n ( 3 . 1 9 ) , c o u l d i n v o l v e much more work t h a n i s a p p r o p r i a t e t o i n v e s t i n t h e c o m p u t a t i o n o f a n u p p e r bound. One way t o remedy t h i s i s t o s u b d i v i d e

E

s u c h t h a t e a c h

5

i s a u t o m a t i c a l l y a s s i g n e d t o a p a r t i c u l a r r e g i o n spanned by a s u b s e t o f t h e ( 5 R

,

R = l ,

...,

v ) o r t o t h e s u b s e t whose p o i n t s a r e s u c h t h a t

One c a s e i n which a l l o f t h i s f a l l s n i c e l y i n t o p l a c e i s when a s t o c h a s t i c program w i t h r e c o u r s e o f t y p e ( 1 . 1 5 ) c a n b e a p p r o x i m a t e d by a s t o c h a s t i c program w i t h simple recourse [ l , S e c t i o n 61 where t h e f u n c t i o n $ ( x , C ) i s s e p a r a b l e ,

(22)

and

+ -

h e r e < . = ( q . , q . , h . ) . The f u n c t i o n

Y

i s t h e n a l s o s e p a r a b l e and c a n be e x p r e s s e d a s

1 1 1 1

m 2

where

( T h i s i s t h e

linear

v e r s i o n o f t h e s i m p l e r e c o u r s e p r o b l e m . )

3.23

APPLICATION. Approximation

by

simple recourse.

C o n s i d e r a s t o c h a s t i c program w i t h r e c o u r s e o f t h e t y p e ( 1 . 1 5 ) , w i t h o n l y h s t o c h a s t i c and c o m p l e t e r e c o u r s e

[ l , S e c t i o n 61, t h i s means t h a t t h e r e c o u r s e m a t r i x W i s s u c h t h a t p o s W = { t

1

t = W y , y 2 O ) = R~~

,

i . e . t h e r e c o u r s e problem i s f e a s i b l e w h a t e v e r be h o r X. F o r i = l ,

...,

m 2 , d e f i n e ( 3 . 2 4 )

ql

= i n f { q y

I

Wy = e i

,

y 2 0 )

,

and

( 3 . 2 5 ) q I = i n f { q y

1

W = - e i

,

y 2 0 )

,

where e i s t h e u n i t v e c t o r w i t h a i 1 i n t h e i t h p o s i t i o n , i . e .

i T

e = (0

,...,

O , l , O

,...,

0)

.

The r e c o u r s e f u n c t i o n $ ( x , S ) i s t h e n a p p r o x i m a t e d by t h e r e c o u r s e f u n c t i o n ( 3 . 2 1 ) o f a s t o c h a s t i c program w i t h s i m p l e r e c o u r s e u s i n g f o r q and q i t h e +

i

v a l u e s d e f i n e d by ( 3 . 2 4 ) a n d ( 3 . 2 5 ) . T h i s i s a s p e c i a l c a s e o f t h e r a y f u n c - t i o n s b u i l t i n A p p l i c a t i o n 3 . 1 8 ; e a c h (S-X) f a l l s i n a g i v e n o r t h a n t and i s t h u s a u t o m a t i c a l l y a s s i g n e d a p a r t i c u l a r p o s i t i v e l i n e a r c o m b i n a t i o n o f t h e c h o s e n

(23)

p o i n t s ( t e i

-x,

i = l

,...,

m2). To improve t h e approximation we have t o i n t r o d u c e a d d i t i o n a l v e c t o r s

5

R

,

which b r i n g s us back t o t h e more g e n e r a l s i t u a t i o n de- s c r i b e d i n A p p l i c a t i o n 3.18.

3.26 A P P L I C A T I O N . Consider a s t o c h a s t i c program w i t h r e c o u r s e o f t y p e ( 1 . 1 5 ) , w i t h o n l y q s t o c h a s t i c . The f u n c t i o n

i s n o t o n l y concave and p o l y h e d r a l ( 1 . 1 2 ) , i t i s a l s o p o s i t i v e l y homogeneous.

R R

For any f i n i t e c o l l e c t i o n

15

= q

,

R = l ,

. . .

, v ) we have t h a t

R R R

T h i s a g a i n f o l l o w s d i r e c t l y from P r o p o s i t i o n 3.13; n o t e t h a t @ ( x , q ) = q y where

R R

y E argmin[q y

I

Wy = h-X, y 2 01.

3.28 IMPLEMENTATIOIV. C a l c u l a t i n g f o r each q, t h e upper bound p r o v i d e d by (3.27) may be p r o h i b i t i v e . We c o u l d a s s i g n each q ~

E

t o some s u b r e g i o n o f 5 spanned by t h e p o s i t i v e combinations o f some o f t h e {q R

,

R = l ,

...,

v ) . Such a bound i s much e a s i e r t o o b t a i n b u t c l e a r l y n o t a s s h a r p a s t h a t g e n e r a t e d by ( 3 . 2 7 ) .

Another approach t o g e t t i n g upper and lower bounds f o r s t o c h a s t i c programs w i t h r e c o u r s e i s t o r e l y on t h e

p a i r s programs

a s i n t r o d u c e d i n [ l o , S e c t i o n 41.

One r e l i e s a g a i n on c o n v e x i t y p r o p e r t i e s and once a g a i n one needs t o d i s t i n g u i s h between (h,T) s t o c h a s t i c , and q s t o c h a s t i c . To b e g i n w i t h , l e t u s c o n s i d e r h , and

A A A

T s t o c h a s t i c . For e v e r y (h,T) =

5

E E , and (h,T) =

5

E c o Z ( t h e convex h u l l of )

,

l e t (3.29) p ( i , 5 ) = i n f [ c x + ;q? + (l-G)qy5]

such t h a t Ax = b

(24)

w i t h

6

E [ 0 , 1 ] . I f ( 1 . 6 ) i s s o l v a b l e , s o i s (3.29) a s f o l l o w s from [ l , Theorem 4 . 6 1 . Suppose x s o l v e s ( 1 . 6 ) and f o r a l l ( = ( h , T ) , l e t 0

Y 0

(6)

E argminyERn2 [qy

1

Wy = h-Tx]

.

+

I t i s well-known t h a t can be chosen s o t h a t < b y 0 ( < ) i s measurable [ l , S e c t i o n 31. Now suppose

- - -

5

= (h,T) = E{S}

,

and

-

Y = E{r0(5>

1 .

0 - 0

The t r i p l e (x , y , y ( 5 ) ) i s a f e a s i b l e , b u t n o t n e c e s s a r i l y o p t i m a l , s o l u t i o n o f

A A - -

t h e l i n e a r program (3.29) when (h ,T) = (h ,T)

.

Hence

and i n t e g r a t i n g on b o t h s i d e s , we o b t a i n

T h i s bound can be r e f i n e d i n many ways: f i r s t , i n s t e a d o f j u s t u s i n g one p o i n t

5,

one could u s e a c o l l e c t i o n of p o i n t s o b t a i n e d a s c o n d i t i o n a l e x p e c t a t i o n s o f a p a r t i t i o n of E , and c r e a t e a p a i r s program f o r each s u b r e g i o n o f 5. Second, i n -

A

s t e a d of j u s t one a d d i t i o n a l p o i n t

5,

we c o u l d u s e a whole c o l l e c t i o n

{ j l ,

. . . , jv}

t o b u i l d a program of t h e t y p e (3.29)

.

A l l o f t h i s i s d e s c r i b e d i n d e t a i l i n [ l o ] f o r t h e c a s e when o n l y h i s s t o c h a s t i c b u t can e a s i l y be gener- a l i z e d t o t h e c a s e h and T s t o c h a s t i c .

When o n l y q i s s t o c h a s t i c , we c o n s i d e r a d u a l v e r s i o n o f ( 3 . 2 9 ) , v i z . f o r

A A

e v e r y q = < E E and q = < E co E , l e t

such t h a t crA +

GT

I c

(25)

A

w i t h

6

r [ 0 , 1 ] . The same a r g u m e n t s a s above w i t h

5

=<, b u t r e l y i n g t h i s t i m e on t h e d u a l [ l l ] o f p r o b l e m ( 1 . 6 ) , l e a d t o

d -

(3.32) E{p ( c , c ) } z c x O + ~ ( x O ) : = i n f ( c * + i l )

.

(26)

4. DISCRETIZATION OF T H E PROBABILITY MEASURE P THROUGH CONDITIONAL EXPECTATIONS

J e n s e n ' s i n e q u a l i t y f o r convex f u n c t i o n s i s t h e b a s i c t o o l t o o b t a i n lower bounds f o r E when f ( x , 0) i s convex o r u p p e r bounds when E i s concave. Here, i t

f f

l e a d s t o t h e u s e o f ( m o l e c u l a r ) p r o b a b i l i t y measures c o n c e n t r a t e d a t c o n d i t i o n a l e x p e c t a t i o n p o i n t s . I n t h e c o n t e x t o f s t o c h a s t i c programming t h i s was f i r s t done by Madansky [12] and f u r t h e r r e f i n e d by K a l l [13] and Huang, V e r t i n s k y and Ziemba [14]

.

4.1 PROPOSITION. Let

S = {S R

,

R = l ,

...,

v )

be a p a r t i t i o n o f

Z,

w i t h

<'

= ~ { < ( w )

I

s')

and

pR = P [<(w) t s']

.

Suppose f i r s t t h a t

< w f ( x , < )

i s convex. Then

I f <I+ f (x, <)

i s concave, then

PROOF.

Follows from t h e i t e r a t e d a p p l i c a t i o n o f J e n s e n ' s i n e q u a l i t y : f (x, E{<(w) )) 5 E{f ( x , < ( w ) ) ) when f (x, 0) i s convex; c o n s u l t [15]

. 0

4.4 APPLICATION.

C o n s i d e r t h e s t o c h a s t i c program w i t h r e c o u r s e w i t h o n l y h and T s t o c h a s t i c . With S = {S R

,

R = l ,

...,

v ) a p a r t i t i o n o f Z and f o r R = l ,

...,

V , l e t

R R R

5'

= (h yT ) = E{(h(w),T(w))

1

S )

and p = P[<(w) E St]

.

A s f o l l o w s from (1.11) and ( 4 . 2 ) , we o b t a i n R

and t h u s i f

- -

V R

zV = i n f n l cx +

1

pRQ(x,< ) I A x = b , x t O x t R

I

R = 1

(27)

where

R R R

Q ( x , S ) = i n f y r R n 2 [ q y

1

Wy=h

-

T x , y s ~ ]

,

we have t h a t

z V I z* = i n f [ c x + Q ( x )

I

A x = b , x s o ]

.

Each zV i s t h u s a lower bound f o r t h e o p t i m a l v a l u e o f t h e s t o c h a s t i c program.

(An a l t e r n a t i v e d e r i v a t i o n o f ( 4 . 5 ) r e l y i n g on t h e d u a l o f t h e r e c o u r s e problem t h a t d e f i n e s Q(x,c) a p p e a r s i n [16] .)

v R

4.6 CONVERGENCE. Suppose S = {S

,

R = l ,

. . . ,

v ) f o r v = l

, . . . ,

a r e p a r t i t i o n s o f E w i t h

sV

c

sV+'

and c h o s e n s o t h a t t h e Pv, v = l ,

. . .

converge i n d i s t r i b u t i o n

t o P . The P a r e t h e ( m o l e c u l a r ) p r o b a b i l i t y d i s t r i b u t i o n s t h a t a s s i g n p r o b a b i l i t y v

R R

p, = P[c(w) E S ] t o t h e e v e n t [((w) =

5

] where

ce

i s t h e c o n d i t i o n a l e x p e c t a t i o n ( w i t h r e s p e c t t o P) o f c ( * ) g i v e n t h a t ((w) E S R

.

The e p i - c o n v e r g e n c e of t h e {Qv, v = l ,

. . .

) t o

Q,

w i t h t h e accompanying convergence o f t h e s o l u t i o n s , f o l l o w s from Theorem 2 . 8 , where

To make u s e o f t h e s e r e s u l t s we need t o d e v e l o p a s e q u e n t i a l p a r t i t i o n i n g s c h e m e f o r , i . e . given a p a r t i t i o n S o f v E how s h o u l d i t be r e f i n e d s o a s t o i m - prove t h e a p p r o x i m a t i o n t o Q a s much a s p o s s i b l e . P . K a l l h a s a l s o worked o u t v a r i o u s r e f i n e m e n t schemes [17]

.

4.7 I M P L E M E N T A T I O N . S t o c h a s t i c programs w i t h simple recourse, w i t h h s t o c h a s t i c , q and T a r e f i x e d . R e c a l l t h a t f o r a s t o c h a s t i c program w i t h s i m p l e r e c o u r s e

Y

t a k e s on t h e form:

f

m 2

(28)

where

Ei

= hi and, a s f o l l o w s from ( 3 . 2 1 ) ,

i i ( x i Y E i ) = q i ( h i - x i ) + i f h . 2 ~ i i ' q Y ( x i - h i ) i f h . 5 ~

i i '

4.8. Figure: The f u n c t i o n

ii (xi

, a )

Let [ n . , B i ] b e t h e s u p p o r t o f t h e r e a l i z a t i o n s o f h i ( - ) , p o s s i b l y an unbounded

1

i n t e r v a l . I f we a r e o n l y i n t e r e s t e d i n a lower bound f o r

Y

t h a t approximates i t

A

a s c l o s e l y a s p o s s i b l e a t t h e p o i n t X , t h e n t h e o p t i m a l p a r t i t i o n i n g o f [ a . , P . ]

1 1

i s g i v e n by

1 A 2 - A

S . = [cxi,xi) and

1 Si

-

[xi,Bi1

.

In t h i s way t h e a p p r o x i m a t i n g f u n c t i o n

Y

a t a k e s on t h e form:

i

where f o r R=1,2,

R R

h i = E { h i ( w ) l S } and Pig = P[hi(w) E S R

1 ,

and

h.

= E{hi (w)

1 .

Note t h a t

1

(29)

J A

h . (w) 1

>xi

a A

Thus Y. I Y . w i t h e q u a l i t y h o l d i n g f o r X . 1 1 1 < a i ,

x i > Bi

and a t

x i = x i .

4.9. F i g u r e : The f u n c t i o n ya

I f t h e i n t e r v a l [ a .

,

Bi] h a s a l r e a d y been p a r t i t i o n e d i n v i n t e r v a l s

1

0 1 V - 1 V A R R + 1

{ [ a i = a i , a i ) ,

. . . ,

[ a i , a . 1 =Bi] } and

xi

E [ a i , a i )

.

Then a g a i n t h e o p t i m a l

R A

s u b d i v i s i o n of t h e i n t e r v a l [a!,aP+') i n t o [ a ) and [ x . ,a!+1) y i e l d s an e x a c t

1 1 1

bound f o r Yi a t

;(i.

An a l t e r n a t i v e i s t o s p l i t t h e i n t e r v a l under c o n s i d e r a t i o n around such t h a t ;i t u r n s o u t t o be t h e c o n d i t i o n a l e x p e c t a t i o n o f t h e new

i

r e g i o n . This would p r o v i d e a q u i t e good bound f o r Y . i n t h e neighborhood of 1

Xi

and t h i s would be v e r y u s e f u l i f t h e v a l u e o f

xi

i s n o t e x p e c t e d t o change much i n t h e n e x t i t e r a t i o n s .

4.10 IMPLEMENTATION.

General recourse matrix

W , w i t h h s t o c h a s t i c ; q and T a r e f i x e d . The f u n c t i o n

i s n o t s e p a r a b l e , i t i s convex and p o l y h e d r a l ( 1 . 1 1 ) . Note a l s o t h a t

(30)

h i+ ijl(x,h-x)

i s a s u b l i n e a r f u n c t i o n . Because o f t h i s we s h a l l s a y t h a t $ ( x , * ) i s sublinear w i t h r o o t a t X . We assume t h a t E c R~~ i s a r e c t a n g l e and t h a t we a r e g i v e n a p a r t i t i o n {S R

,

R = l ,

...,

v ) i l l u s t r a t e d below.

4.11. F i g u r e : P a r t i t i o n S =

{sl ,...,

S v

1

o f E

We s h a l l t a k e i t f o r g r a n t e d t h a t t h e n e x t p a r t i t i o n of ! w i l l b e o b t a i n e d by s p l i t t i n g one o f t h e c e l l s S R

.

O t h e r p a r t i t i o n i n g s t r a t e g i e s may b e u s e d b u t t h i s s i n g l e c e l l a p p r o a c h h a s t h e a d v a n t a g e o f i n c r e a s i n g o n l y m a r g i n a l l y t h e l i n e a r program t h a t n e e d s t o b e s o l v e d i n o r d e r t o o b t a i n t h e l o w e r bound.

( i ) Let u s f i r s t c o n s i d e r t h e c a s e when

x

r S R c

!.

We p l a n t o s p l i t S' w i t h a h y p e r p l a n e c o n t a i n i n g

x

and p a r a l l e l t o a f a c e o f

s',

o r e q u i v a l e n t l y p a r a l l e l t o a h y p e r p l a n e bounding t h e o r t h a n t s . To do t h i s , we s t u d y t h e b e h a v i o r of h t + $ ( x , h ) on e a c h e d g e Ek o f t h e c e l l S R

.

L e t

T h i s i s a p i e c e w i s e l i n e a r convex f u n c t i o n . The p o s s i b l e s h a p e o f t h i s f u n c t i o n i s i l l u s t r a t e d i n F i g u r e 4.12 below; by

x

P we d e n o t e t h e o r t h o g o n a l p r o j e c t i o n o f

x

on E k .

(31)

4.12. Figure: The f u n c t i o n Bk on Ek

I f 0 i s l i n e a r on E k , i t means t h a t we cannot improve t h e approximation t o 0

k k

by s p l i t t i n g SR s o a s t o s u b d i v i d e E ~ . On t h e c o n t r a r y i f t h e s l o p e s o f O k a t t h e end p o i n t s a r e d i f f e r e n t , t h e n s p l i t t i n g SR s o a s t o s u b d i v i d e E would i m -

k

p r o v e t h e approximation t o

Y .

On t h e s u b d i v i d e d c e l l s , t h e r e s u l t i n g f u n c t i o n s Bk would be c l o s e t o , i f n o t a c t u a l l y , l i n e a r . Among a l l edges E k , we would t h e n choose t o p a r t i t i o n t h e c e l l SR s o a s t o s u b d i v i d e t h e edge E t h a t e x h i b i t s f o r

k

8 t h e l a r g e s t d i f f e r e n c e o f s l o p e s a t t h e end p o i n t s . What we need t o know a r e k

t h e s u b g r a d i e n t s o f t h e f u n c t i o n

s R

a t each v e r t e x {h

,

s = l ,

...,

r ) o f t h e c e l l S

.

This i s o b t a i n e d by s o l v i n g t h e l i n e a r programs

(32)

(4.13) f i n d .rr E R~~ such t h a t .rrW I q and w =.rr(h - x ) S i s maximized

S

f o r s = l ,

. .

. , r . The o p t i m a l .rr S i s a s u b g r a d i e n t o f $ ( x , * ) a t hS [ l , P r o p o s i t i o n 7 - 1 2 ] . From t h i s we o b t a i n t h e d i r e c t i o n a l s u b d e r i v a t i v e of $ ( x , - ) i n each c o o r d i n a t e

d i r e c t i o n (which a r e t h e s l o p e s o f t h e f u n c t i o n s 8 ) ; t h e y a r e s i m p l y t h e compo- k

n e n t s o f t h e v e c t o r {.rri, S i = l ,

. . . ,

m2

1 .

We now c o n s t r u c t a s u b d i v i s i o n o f S' w i t h a h y p e r p l a n e p a s s i n g through

x

and o r t h o g o n a l t o t h e edge o f S' t h a t e x h i b i t s maximum s l o p e d i f f e r e n c e . I f t h e u n d e r l y i n g p r o b a b i l i t y s t r u c t u r e i s such t h a t t h e random v e c t o r h ( * ) i s t h e sum o f a few random v a r i a b l e s , such a s d e s c r i b e d by ( 1 . 1 9 ) , t h e c a l c u l a t i o n o f t h e d i r e c t i o n a l s u b d e r i v a t i v e s o f S ~ $ b ( x , < ) a g a i n b e g i n s w i t h t h e c a l c u l a t i o n o f t h e o p t i m a l s o l u t i o n o f t h e programs (4.13) each h being o b t a i n e d a s t h e map o f a v e r t e x o f S S' through t h e map (1.19)

.

To o b t a i n t h e s u b d e r i v a t i v e s , we a g a i n need t o u s e t h i s t r a n s f o r m a t i o n .

( i i ) We now c o n s i d e r t h e c a s e when

~4 E.

T h i s t i m e we cannot always choose a h y p e r p l a n e p a s s i n g through

x

t h a t g e n e r a t e s a f u r t h e r s u b d i v i s i o n of some c e l l S R

.

Even when t h i s i s p o s s i b l e , i t might n o t n e c e s s a r i l y improve t h e approximation, t h e f u n c t i o n < k $ ( x , < ) b e i n g l i n e a r on t h a t c e l l f o r example.

I d e a l l y , one s h o u l d t h e n s e a r c h a l l c e l l s S R and each edge i n any g i v e n c e l l t o f i n d where t h e maximum g a i n c o u l d be r e a l i z e d . G e n e r a l l y , t h i s i s i m p r a c t i c a l . What a p p e a r s r e a s o n a b l e i s t o s p l i t t h e c e l l w i t h maximum p r o b a b i l i t y , on which

$ ( x , * ) i s n o t l i n e a r .

Concerning t h e implementation o f t h i s p a r t i t i o n i n g t e c h n i q u e , we a r e s e e k i n g t h e approximation t o

Y

which i s a s good a s p o s s i b l e i n t h e neighborhood o f X . We a r e t h u s working w i t h t h e i m p l i c i t assumption t h a t we a r e i n a neighborhood o f t h e o p t i m a l s o l u t i o n and t h a t

x

w i l l n o t change s i g n i f i c a n t l y from one i n t e r - a c t i o n t o t h e n e x t . I f t h i s i s t h e c a s e , and t h e problem i s w e l l - p o s e d , t h e n we

(33)

s h o u l d n ' t r e a l l y h a v e t o d e a l w i t h c a s e ( i i ) , s i n c e i t would mean t h a t t h e o p t i - ,ma1 t e n d e r

x

0 would b e s u c h t h a t we would c o n s i s t e n t l y u n d e r e s t i m a t e o r o v e r e s t i -

mate t h e demand!

4.14 APPLICATION. C o n s i d e r ' t h e s t o c h a s t i c program w i t h r e c o u r s e w i t h o n l y q s t o c h a s t i c . With S = {S R

,

R = l ,

...,

v ) a p a r t i t i o n o f Z , and f o r R = l ,

...,

v , l e t

and p R = P[<(w) E S R

1 .

AS f o l l o w s from ( 1 . 1 2 ) and ( 4 . 3 ) we h a v e

Thus, w i t h

v v R

Z = i n f x C R n l c x

[

+ R = l

1

pRQ(x.S )

I

Ax = b y x 2 where

R R

Q(x.

S 1

= i n f Y E R n 2 [ q Y

I

WY = h-Tx, Y 2 01

,

we have t h a t

z v 2 z* = i n f [ c x + Q ( x )

I

Ax = b y x 2 01

.

Each z v i s t h u s a n u p p e r bound f o r t h e o p t i m a l v a l u e o f t h e s t o c h a s t i c program.

4.15 :IMPLEMENTATION. The f u n c t i o n

i s p o l y h e d r a l and s u p l i n e a r . What changes from one

x

t o t h e n e x t a r e t h e s l o p e s o f t h i s f u n c t i o n , s o we c a n n o t u s e t h e p r e s e n t

x

a s a g u i d e f o r t h e d e s i g n o f t h e a p p r o x i m a t i o n . One p o s s i b i l i t y i n t h i s c a s e i s t o s i m p l y s u b d i v i d e a c e l l o f t h e p a r t i t i o n w i t h maximum p r o b a b i l i t y .

(34)

5. DISCRETE P R O B A B I L I T Y MEASURES W I T H EXTREMAL SUPPORT

The maximum o f a convex f u n c t i o n on a compact convex s e t i s a t t a i n e d a t an extreme p o i n t ; moreover, t h e f u n c t i o n v a l u e a t any p o i n t (of i t s domain) o b t a i n e d a s a convex computation o f extreme p o i n t s i s dominated by t h e same convex combin- a t i o n of t h e f u n c t i o n v a l u e s a t t h o s e extreme p o i n t s . These e l e m e n t a r y f a c t s a r e used i n t h e c o n s t r u c t i o n o f measures t h a t y i e l d upper bounds f o r t h e e x p e c t a t i o n f u n c t i o n a l E f .

5 . 1 PROPOSITION. Suppose c c t f ( x , c ) i s convex,

E

t h e support o f t h e random v a r i - able 5 ( * ) i s compact, and l e t e x t E denote t h e extreme points o f co

E,

t h e convex h u l l o f

.

Suppose moreover t h a t f o r a l l

5,

v ( c , * ) i s a p r o b a b i l i t y measure de- fined on ( e x t E, E) w i t h E t h e Borel f i e l d , such t h a t

j e v(5,de) =

5

e x t ::

and

w

"

v(5(w) ¶A)

i s measurable for a l l A E

E .

Then ( 5 . 2 )

e x t =.

where A i s t h e p r o b a b i l i t y measure on

E

defined by

PROOF. The c o n v e x i t y o f f ( x , - ) i m p l i e s t h a t f o r t h e measure v a s d e f i n e d above f ( x , ~ ) 5

J'

f ( x , e ) v ( ~ , d e )

.

e x t

-

z

S u b s t i t u t i n g E ( * ) f o r

5

and i n t e g r a t i n g both s i d e s w i t h r e s p e c t t o P y i e l d s t h e d e s i r e d i n e q u a l i t y ( 5 . 2 ) .

O

Referenzen

ÄHNLICHE DOKUMENTE

The convergence theory for iterated random averaged operators turns out to be simple in R n : If an invariant measure for the Markov operator exists, the chain converges to an

Gcnerally speaking, it is easier to bound the objective function and its optimal value than to gct bounds on optimal solutions and it is not, easy to cxtend

In this context, two types of procedures can be distinguished: deterministic algorithms that are based on a large and in principle fixed set of scenarios, such as

Subsection 2.1 shows that nonsmooth sample performance functions do not necessarily lead t o nonsmooth expectation functions. Unfortunately, even the case when the

In the design of solution procedures for stochastic optimization problems of type (1.10), one must come to grips with two major difficulties that are usually brushed aside in the

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria... 1 Inequality constrained least squares estimation of regres- sion

Nedeva, Stochastic programming prob- lems with incomplete information on objective functions, SIM J. McGraw-Hill

Despite the wide variety of concrete formulations of stochastic optimization problems, generated by problems of the type (1.2) all of them may finally be reduced to the following