• Keine Ergebnisse gefunden

Non-proteolytic ubiquitylation regulates the APC/C-inhibitory function of XErp1

N/A
N/A
Protected

Academic year: 2022

Aktie "Non-proteolytic ubiquitylation regulates the APC/C-inhibitory function of XErp1"

Copied!
79
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

 

Non-­‐proteolytic  ubiquitylation   regulates  the  APC/C-­‐inhibitory  

function  of  XErp1

Dissertation  zur  Erlangung  des  akademischen  Grades  eines   Doktors  der  Naturwissenschaften  (Dr.  rer.  nat.)  

vorgelegt  von   Eva  Beate  Hörmanseder  

an  der  

 

Mathematisch-­‐Naturwissenschaftliche  Sektion   Fachbereich  Biologie  

Tag  der  mündlichen  Prüfung:  16.  Dezember  2011

 

1.  Referent:  Prof.  Dr.  Thomas  U.  Mayer   2.  Referent:  Prof.  Dr.  Martin  Scheffner  

3.  Referent:  Prof.  Dr.  Olaf  Stemmann  

(2)

  1

TABLE  OF  CONTENTS  

TABLE  OF  CONTENTS   1  

1.   INTRODUCTION   4  

1.1.   Meiosis  and  meiotic  maturation   4  

1.2.   The  APC/C  counteracts  the  activity  of  Cdk1   7   1.3.   The  “wait  anaphase  signal”:  The  SAC  inhibits  the  APC/C  in  mitosis   9   1.4.   Regulation  of  APC/CCdc20  activity  in  meiosis   11  

1.5.   The  postulation  of  MPF  and  CSF   12  

1.6.   The  discovery  of  Mos  as  a  CSF  component   13   1.7.   Identification  of  the  CSF  component  XErp1   14  

1.8.   XErp1  inactivation  upon  CSF  release   15  

1.9.   The  molecular  mechanism  of  XErp1  mediated  APC/C  inhibition   16   1.10.   Feedback  loops  controlling  XErp1  activity  during  CSF  arrest   18  

1.11.   Aim  of  this  project   20  

2.   RESULTS   21  

2.1.   UbcX  can  suppress  SAC  activity  in  Xenopus  egg  extract   21   2.2.   UbcX  can  suppress  CSF  activity  in  Xenopus  egg  extract   22   2.3.   Elevated  UbcX  activity  prevents  meiosis  I  -­‐  meiosis  II  transition  in  

Xenopus  oocytes   24  

2.4.   UbcH10  -­‐  induced  CSF  release  requires  proteasome  and  APC/CCdc20  

activity   25  

2.5.   Does  USP44  counteract  UbcX  to  maintain  CSF  arrest?   26   2.6.   An  eight-­‐fold  increase  in  UbcX  activity  is  required  for  CSF  release.   27   2.7.   UbcX  levels  increase  during  oocyte  maturation  and  remain  constant  

during  CSF  release  and  embryonic  cell  cycles   28   2.8.   UbcX  dependent  CSF  release  can  be  suppressed  by  XErp1   29   2.9.   UbcX  mediated  ubiquitylation  disrupts  the  APC/C  -­‐  XErp1  complex  30  

(3)

2.10.   XErp1  is  the  main  target  of  UbcX  mediated  ubiquitylation  in  CSF  

extract   32  

2.11.   Ubiquitylation  of  XErp1  is  dependent  on  the  APC/C  and  independent  

of  SCFβTRCP   33  

2.12.   Dissociation  of  XErp1  upon  Cdk1  phosphorylation  does  not  require  

ubiquitylation   35  

2.13.   Cdc20  degradation  is  not  required  for  CSF  arrest  maintenance   36  

3.   DISCUSSION   38  

3.1.   Regulation  of  spindle  checkpoint  signaling  by  UbcH10/UbcX   39   3.1.1.   The  spindle  assembly  checkpoint  can  be  inactivated  by  UbcX  in  

Xenopus  egg  extract   39  

3.1.2.   Is  an  APC/C  inhibitor  targeted  for  ubiquitylation  during  SAC    

  signaling?   41  

3.2.   UbcX  mediated  ubiquitylation  of  XErp1  regulates  its  APC/C  inhibitory  

activity   43  

3.2.1.   Cdc20  is  not  destabilized  in  CSF  arrested  egg  extract   43   3.2.2.   UbcX  mediated  ubiquitylation  of  XErp1  regulates  its  APC/C  inhibitory  

activity   44  

3.2.3.   Are  ubiquitin  hydrolases  counteracting  the  activity  of  UbcX  during  CSF  

arrest?   46  

3.3.   Is  the  regulation  of  UbcX  activity  important  during  the  meiotic  cell  

cycle?   48  

3.3.1.   UbcX  and  the  regulation  of  meiotic  maturation   48   3.3.2.   Could  UbcX  participate  in  the  inactivation  of  XErp1  upon    

  fertilization?   48  

3.3.3.   Phosphorylation  and  ubiquitylation  of  XErp1  are  two  parallel  

pathways  regulating  the  activity  of  XErp1   49  

3.4.   Could  ubiquitylation  of  XErp1  be  required  for  its  APC/C  inhibitory  

activity?   50  

4.   CONCLUSION   54  

(4)

  3

5.   MATERIAL  AND  METHODS   55  

5.1.   Chemicals  and  Buffers   55  

5.2.   Plasmids   55  

5.2.1.   Plasmids  generated  in  this  study   55  

5.2.2.   Primers  used  in  this  study   56  

5.2.3.   Cloning  and  Mutagenesis   57  

5.3.   Proteins   57  

5.3.1.   His-­‐  tagged  protein  expression  in  bacteria   57   5.3.2.   His-­‐tagged  protein  expression  in  SF9  cells   58   5.3.3.   His-­‐tagged  protein  purification  from  bacteria  and  SF9  cells   58   5.3.4.   Coupled  in  vitro  transcription/translation  (IVT)   59  

5.4.   Antibodies   59  

5.4.1.   Antibodies  used  in  this  study:   59  

5.4.2.   Affinity  purification  of  antibodies   59  

5.5.   Gel  electrophoresis  and  immunoblot  analysis   60  

5.6.   Xenopus  egg  extracts   61  

5.6.1.   Xenopus  CSF  egg  extract  preparation   61  

5.6.2.   Extract  manipulations   62  

5.6.3.   Immunodepletion   62  

5.6.4.   Immunoprecipitation   63  

5.6.5.   In  vitro  ubiquitylation  assays   64  

5.7.   Xenopus  oocyte  injections   64  

6.   LITERATURE   65  

7.   APPENDIX   75  

7.1.   Summary   75  

7.2.   Zusammenfassung   75  

7.3.   Acknowledgements   76  

7.4.   Curriculum  Vitae   78  

(5)

 

     

UbcX  dissociates  XErp1  from  the  APC/C       Introduction  

 

1. INTRODUCTION  

Most   eukaryotes   reproduce   sexually,   where   cells   from   two   parents   fuse   to   generate  a  single  cell,  the  zygote,  which  develops  into  a  new  organism  (Figure   1.1.).  Since  the  combination  of  two  diploid  cells  would  lead  to  the  duplication   of  the  chromosomal  content  at  every  generation,  sexual  reproduction  depends   on  a  process  called  meiosis.  

 

Figure   1.1.   The   life   cycle   of   vertebrates.  Cells   in   vertebrates   proliferate   mitotically   in   the   diploid   phase   to   form   a   multicellular   organism.   Sexual   reproduction   begins   with   meiosis   to   generate  haploid  cells,  which  fuse  upon  fertilization  to  form  a  new  organism.  

1.1. Meiosis  and  meiotic  maturation  

Meiosis  is  a  specialized  form  of  nuclear  division  that  leads  to  the  generation  of   cells   containing   half   the   normal   complement   of   chromosomes   from   diploid   oocytes  (Figure  1.2.  a,  Alberts  et  al.,  2002).  (Alberts  et  al.,  2002).    

Before  entering  the  meiotic  program,  oocytes  are  diploid  like  somatic  cells  and   contain   two   copies   of   each   chromosome,   one   of   them   inherited   from   each  

(6)

  5 chromosomes  are  replicated  to  produce  sister  chromatid  pairs  tightly  linked  by   cohesion   (Klein   et   al.,   1999).   Next,   the   duplicated   homologues   pair   to   form   tetrads   and   undergo   homologues   recombination,   a   process   important   for   generating   genetic   variation   and   to   guarantee   accurate   segregation   of   the   homologues   at   the   following   nuclear   division.   Homologous   recombination   starts   with   the   introduction   of   DNA   double-­‐strand   breaks   (DSB)   at   almost   variable   positions   along   the   chromosome   (Sun   et   al.,   1989).   In   most   of   the   cases,   DSBs   are   repaired   without   rendering   the   DNA   sequence   of   the   two   homologs.   Sometimes   however,   the   repair   leads   to   the   formation   of   a   continuous  DNA  strand  between  two  homologous  chromatids,  which  can  lead   to   a   reciprocal   DNA   exchange   or   crossover   (Allers   and   Lichten,   2001).   The   result  is  a  strong  physical  linkage  between  the  two  homologous  chromosomes   as  long  as  the  sister  chromatid  arms  are  held  together  by  cohesion.  As  a  result,   the  homologous  chromosomes  become  bioriented  on  the  first  meiotic  spindle   and  after  cohesin  cleavage  at  the  chromosome  arms  at  anaphase  I,  exactly  one   of   the   two   homologous   chromosomes   is   segregated   into   each   daughter   cell   (Buonomo  et  al.,  2000).  After  the  completion  of  meiosis  I,  cells  enter  directly   the   next   division   cycle   without   replicating   the   chromosomes.   In   meiosis   II,   similar  to  mitosis,  sister  chromatids  are  divided  into  the  two  daughter  cells  by   the   cleavage   of   centromeric   cohesion   upon   anaphase   II   onset.   Together,   meiotic   divisions   result   in   the   production   of   four   haploid   cells,   which   can   be   differentiated  into  special  reproductive  cells,  i.e.  the  egg  and  the  sperm.    

In  animals,  oocytes  arrest  before  the  first  meiotic  division  at  prophase  I,  and   these  immature  oocytes  or  stage  VI  oocytes  can  stop  at  this  point  for  decades   (Hunt,   1989).   The   production   of   a   fertilizable   egg   from   such   an   immature   oocyte   involves   a   process   called   oocyte   maturation   (Figure   1.2.   b).   Upon   hormonal  induction,  immature  oocytes  resume  meiosis  I  and  undergo  germinal   vesicle  breakdown  (GVBD)  which  is  visible  on  the  surface  of  the  oocytes  by  the   appearance   of   a   white   dot.   Meiosis   I   is   completed   with   the   extrusion   of   the   first   polar   body   after   which   the   oocytes   proceed   directly   through   meiosis   II  

(7)

where  the  second  polar  body  is  extruded  and  haploid  gametes  are  produced.  

In  vertebrates  like  Xenopus  laevis,  oocytes  complete  meiotic  maturation  with   an  arrest  at  metaphase  of  meiosis  II,  in  which  they  await  fertilization.  From  the   viewpoint   of   cell-­‐cycle   control,   the   major   questions   are   concerning   the   mechanisms  underlying  the  induction  and  regulation  of  oocyte  maturation  as   well  as  the  arrest  of  mature  oocytes  at  metaphase  of  meiosis  II  and  its  release   upon  fertilization  (Tunquist  and  Maller,  2003).  

  Figure  1.2.  The  meiotic  program.  (a)  In  meiosis,  after  DNA  replication,  two  divisions  generate   haploid  gametes.  For  clarity,  only  one  chromosome  is  depicted.  (b)  Meiosis  in  vertebrates  is   arrested  at  two  stages.  After  DNA  synthesis,  the  oocytes  grow  to  their  final  size  and  arrest  at   meiotic   prophase   I.   Progesterone   induces   meiotic   maturation   and   the   production   of   an   egg   arrested   at   meiotic   metaphase   II.   Fertilization   triggers   the   completion   of   Meiosis   II   and   a   diploid  zygote  is  formed  (Adapted  from  Morgan,  2007).(Morgan,  2007)  

1.1. Cdk1/cyclin  B  drives  the  meiotic  cell  cycle  

The  ordered  progression  of  the  meiotic  cell  cycle,  like  the  mitotic  cell  cycle,  is   mediated   mainly   by   the   activity   of   cyclin   dependent   kinases   (Cdks)   and   ubiquitin   ligases   (Murray,   2004).   Cdks   are   serine-­‐threonine   kinases   that   are   activated   by   their   regulatory   subunit,   the   cyclins.   In   mitotic   G1,   low   Cdk1   activity  is  important  for  the  resetting  of  the  origins  of  DNA  replication.  Rising   Cdk   activity   triggers   the   firing   of   DNA   replication   origins   and   as   S-­‐phase   progresses   and   DNA   replication   continues,   the   activity   of   Cdk1/CylinB1  

(8)

  7 breakdown,   the   assembly   of   the   mitotic   spindle   and   chromosome   condensation.  After  the  successful  division  of  the  replicated  chromosomes  into   two  daughter  cells,  the  cell  needs  again  low  Cdk1  activity  to  exit  mitosis  and  to   enter   G1.   Therefore,   low   Cdk   activity   followed   by   high   activity   links   DNA   replication   to   progression   through   mitosis   (Porter,   2008)   –   the   basis   for   the   mitotic  cell  cycle.  

In  Xenopus  meiosis,  the  hormone  progesterone  induces  entry  into  metaphase  I   by   the   activation   and   amplification   of   Cdk1/cyclin   B   by   inducing   both   the   dephosphorylation   of   inhibitory   residues   on   Cdk1   and   the   accumulation   of   cyclin   B   (Tunquist   and   Maller,   2003).   Progression   from   metaphase   I   to   anaphase   I   is   accompanied   by   a   drop   in   cyclin   B   levels   and   decreasing   Cdk1   activity.   But   unlike   in   mitotic   cells,   cyclin   B   is   not   completely   degraded   upon   anaphase   onset   but   appears   to   be   reduced   to   half   (Furuno   et   al.,   1994;  

Iwabuchi   et   al.,   2000).   While   it   remains   controversial   whether   this   drop   in   cyclin  B  levels  is  required  for  meiotic  progression  (Peter  et  al.,  2001;  Taieb  et   al.,  2001),  the  inhibition  of  complete  cyclin  B  degradation  is  essential  for  the   persistence  of  M-­‐phase  and  the  inhibition  of  DNA  replication  (Ohe  et  al.,  2007).  

Thus,  the  oocytes  directly  enter  a  second  M-­‐phase,  where  the  stabilization  of   cyclin   B   levels   is   important   for   establishing   the   second   meiotic   arrest.   Upon   fertilization,   cyclin   B   is   degraded,   Cdk1   is   inactivated   and   the   zygotes   enter   mitotic  cell  cycles.  

1.2. The  APC/C  counteracts  the  activity  of  Cdk1  

Anaphase   onset   requires   the   inactivation   of   both   Cdk1   kinase   and   the   inactivation   of   the   anaphase   inhibitory   protein   securin.   Securin   prevents   cohesin  cleavage  and  thus  the  irreversible  step  of  sister  chromatid  separation   by   keeping   the   cohesin   directed   protease   separase   inactive   (Uhlmann   et   al.,   1999;   Uhlmann   et   al.,   2000).   Both,   Cdk1/cyclin   B   and   securin   activity   is   regulated  by  the  E3  ubiquitin  ligase  anaphase  promoting  complex/cyclosome   (APC/C).  It  mediates  the  specific  ubiquitylation  of  cyclin  B  and  securin  (Sudakin  

(9)

et  al.,  1995;  Zou  et  al.,  1999)  thereby  targeting  them  for  destruction  by  the  26   S  proteasome  at  anaphase  onset.    

The   APC/C   is   an   unusual   large   E3   ubiquitin   ligase   that   consists   of   at   least   13   subunits  including  proteins  with  cullin  and  RING-­‐finger  domains  (Zachariae  and   Nasmyth,   1999).   In   addition,   the   APC/C   associates   with   coactivator   proteins   called  Cdc20  and  Cdh1  (Pesin  and  Orr-­‐Weaver,  2008),  which  bind  transiently  to   the   APC/C   core   complex   and   are   thought   to   regulate   both   the   activity   and   substrate   specificity   of   the   APC/C.   While   in   somatic   mitotic   cell   cycles,   the   coactivator   of   the   APC/C   alternates   between   Cdc20   and   Cdh1,   the   main   coactivator   required   for   meiosis   and   early   embryonic   cell   cycles   has   been   reported   to   be   Cdc20   (Lorca   et   al.,   1998).   The   APC/C   together   with   its   coactivator  is  responsible  for  substrate  recognition  and  thus  confers  specificity   to  the  ubiquitylation  reaction  (Peters,  2006).  It  functions  at  the  last  step  of  a   cascade   of   enzymes   that   sequentially   act   to   transfer   ubiquitin   to   the   target   protein   (Hershko   and   Ciechanover,   1998).   Free   ubiquitin   is   first   covalently   attached  to  an  ubiquitin-­‐activating  enzyme  E1  via  a  thioester  bond.  It  is  then   transferred  to  an  ubiquitin-­‐conjugating  enzyme  E2  where  it  forms  a  thioester   bond   with   the   active   site   cystein.   The   main   E2   enzyme   cooperating   with   the   APC/C  has  been  identified  in  clam  as  E2-­‐C  (Hershko  et  al.,  1994)  and  orthologs   were  found  in  Xenopus  named  UbcX  (Yu  et  al.,  1996),  and  in  humans  named   UbcH10   (Townsley   et   al.,   1997).   In  Xenopus,   UbcX   is   essential   for   APC/C   activity,  since  a  dominant  negative  mutation  in  the  active  site  cystein  (C114S)   inhibits  APC/C  dependent  substrate  ubiquitylation  (Townsley  et  al.,  1997),  and   the  depletion  of  UbcX  inhibits  APC/C  substrate  degradation  (data  not  shown).  

In  the  final  step  of  APC/C  dependent  ubiquitylation,  the  E2-­‐bound  ubiquitin  is   covalently  attached  to  a  lysine  residue  in  the  target  protein.  In  this  reaction,   the  APC/C  is  thought  to  approximate  the  substrate  and  the  E2-­‐ubiquitin  and  to   position   them   for   efficient   ubiquitin   transfer   (Peters,   2006).   Recently,   it   has   been   shown   that   in   human   cells,   UbcH10   forms   an   E2-­‐enzyme   module   with   Ube2S,   and   both   enzymes   were   shown   to   be   important   for   the   formation   of  

(10)

  9 ubiquitin   chains   on   APC/C   substrates,   where   UbcH10   conjugates   the   first   ubiquitin  to  the  lysine  residue  of  the  substrate  and  Ube2S  then  elongates  the   ubiquitin  chain  (Garnett  et  al.,  2009;  Williamson  et  al.,  2009;  Wu  et  al.,  2010).  

As  a  consequence,  ubiquitylation  can  target  proteins  to  the  26  S  proteasome,  a   high   molecular   weight   protease   complex   that   hydrolyses   its   substrates   into   short   peptides   and   thus   inactivates   them   irreversibly.   Alternatively,   ubiquitylation   can   act   as   a   reversible   posttranslational   modification   of   a   protein  to  regulate  its  activity  (Hershko  and  Ciechanover,  1998).  

1.3. The  “wait  anaphase  signal”:  The  SAC  inhibits  the  APC/C  in  mitosis   Mitotically   and   meiotically   dividing   cells   depend   on   ubiquitin-­‐mediated   proteolysis   of   key   cell-­‐cycle   regulators   at   the   correct   time   (Pesin   and   Orr-­‐

Weaver,  2008).  In  mitosis,  a  conserved  mechanism  called  the  spindle  assembly   checkpoint  (SAC)  guarantees  an  equal  segregation  of  the  chromosomes  to  the   two  nascent  daughter  cells  (Musacchio  and  Salmon,  2007).  The  SAC  is  activated   by  missattached  or  unattached  kinetochores  (Nicklas  et  al.,  1995;  Rieder  et  al.,   1995;  Rieder  et  al.,  1994)  and  prevents  the  APC/C  from  ubiquitylating  cyclin  B   and   securin.   Although   it   is   not   yet   completely   understood   how   the   SAC   inactivates  the  APC/C,  it  is  well  accepted  that  the  primary  target  of  the  SAC  is   the   APC/C   coactivator   Cdc20   (Hwang   et   al.,   1998;   Kim   et   al.,   1998)   and   that   SAC  activity  is  propagated  by  a  number  of  conserved  proteins  including  Mad1,   Mad2   and   Bub3/BubR1   (Hoyt   et   al.,   1991;   Li   and   Murray,   1991).   Current   models  of  SAC  mediated  APC/C  inactivation  suggest  that  Mad2  binds  to  Cdc20   in  conjunction  with  BubR1  and  Bub3  to  form  the  “Mitotic  Checkpoint  Complex”  

(MCC),  which  binds  to  the  APC/C  and  renders  it  inactive  (Sudakin  et  al.,  2001).  

Once   all   kinetochores   are   properly   attached,   it   has   been   suggested   that   the   inhibitory  MCC  complexes  have  to  be  actively  dissociated  by  APC/C  dependent,   non-­‐proteolytic  ubiquitylation  of  Cdc20  to  turn  off  the  SAC.  Specifically,  it  has   been  shown  that  addition  of  the  E2  ubiquitin  conjugating  enzyme  UbcH10  to   SAC-­‐arrested  cell  extract  triggers  the  APC/C-­‐dependent  multi-­‐ubiquitylation  of  

(11)

Cdc20,   and   possibly   other   components   of   the   APC/C–Cdc20-­‐MCC   complex,   resulting  in  the  release  of  Mad2  and  BubR1  from  Cdc20  (Reddy  et  al.,  2007).  In   checkpoint  arrest  conditions,  this  ubiquitylation  reaction  is  antagonized  by  the   activity  of  the  ubiquitin  hydrolase  USP44  (Figure  1.3.),  which  removes  ubiquitin   from   Cdc20   (Stegmeier   et   al.,   2007).   As   soon   as   the   last   kinetochore   is   attached,   ubiquitylation   of   Cdc20   is   thought   to   exceed   its   deubiquitylation,   Cdc20   is   freed   from   the   MCC   and   the   APC/C   can   be   rapidly   activated   in   a   switch-­‐like  manner.  

 

Figure  1.3.  Dynamic  ubiquitylation  and  deubiquitylation  regulate  SAC  activity.  During  mitotic   checkpoint   arrest,   ubiquitylation   of   Cdc20   by   UbcX,   which   leads   to   the   dissociation   of   the   APC/C   inhibitors   Mad2   and   BubR1,   needs   to   be   counteracted   by   USP44   dependent   deubiquitylation  of  Cdc20  to  maintain  SAC  mediated  APC/C  inhibition.  

A  different  model  contradicts  this  view  of  SAC  arrest  and  instead  suggests  that   in   cells   with   an   active   SAC,   Cdc20   in   complex   with   the   MCC   proteins   is   ubiquitylated  and  targeted  for  destruction,  and  this  degradation  is  important   for  inactivating  the  APC/C  (Ge  et  al.,  2009;  Nilsson  et  al.,  2008).  Supporting  this   model,  experiments  in  budding  yeast  and  human  cells  have  shown  that  Cdc20   is  ubiquitylated  and  degraded  during  SAC  arrest  and  overexpression  of  Cdc20   could  overcome  the  SAC  mediated  inhibition  of  the  APC/C  (King  et  al.,  2007;  

Pan  and  Chen,  2004).  Importantly,  a  non-­‐ubiquitylatable  form  of  Cdc20  where   every   lysine   was   mutated   to   an   arginine   was   insensitive   to   the   checkpoint   arrest  and  activated  the  APC/C  (Nilsson  et  al.,  2008).  These  results  contradict  a   model  where  Cdc20  ubiquitylation  causes  its  activation  and  rather  support  the   latter  model  where  ubiquitylation  inactivates  Cdc20.    

(12)

 11 1.4. Regulation  of  APC/CCdc20  activity  in  meiosis  

The   regulation   of   APC/C   activity   is   especially   important   during   oocyte   maturation  in  vertebrates  where  meiosis  is  arrested  twice  to  coordinate  oocyte   development  with  the  events  of  meiosis  (Figure  1.4.).    

In  prophase  I,  the  APC/C  has  to  be  inactive  to  maintain  chromosome  cohesion   (Pesin   and   Orr-­‐Weaver,   2008).   When   oocytes   mature,   the   APC/C   needs   to   become   active   at   the   metaphase   I   -­‐   anaphase   I   transition   to   allow   the   degradation   of   securin   and   the   separation   of   the   homologous   chromosomes   (Buonomo  et  al.,  2000;  Siomos  et  al.,  2001).  In  contrast  to  all  organisms  tested,   the   requirement   of   the   APC/C   for   meiosis   I   -­‐   meiosis   II   transition   is   controversial   in  Xenopus.   Although   microinjections   of  Xenopus   oocytes   with   inhibitory  antibodies  or  antisense  oligonucleotides  directed  against  the  APC/C   coactivator  Cdc20  did  not  disrupt  progression  through  meiosis  I  (Peter  et  al.,   2001;  Taieb  et  al.,  2001),  it  is  possible  that  these  approaches  did  not  eliminate   APC/C  activity  completely.  Nevertheless,  the  complete  degradation  of  cyclin  B   must  be  prevented  also  in  Xenopus  to  maintain  M-­‐phase  and  to  inhibit  S-­‐phase   (Ohe   et   al.,   2007),   suggesting   that   the   APC/C   needs   to   be   regulated   to   contribute  to  this  modulation  of  cyclin  B  levels.    

 

Figure  1.4.  Oocyte  maturation  on  a  molecular  level:  Cdk1  and  APC/C.  The  cell  cycle  in  meiosis   is   driven   by   the   activity   of   Cdk1/cyclin   B   which   is   counteracted   by   the   APC/C,   the   relative   activities   of   which   through   the   maturation   process   are   illustrated   (adapted   from   Wu   and   Kornbluth,  2008).  

At  the  second  meiotic  arrest  at  metaphase  II,  the  APC/C  needs  to  be  inhibited   to   stabilize   cyclin   B   and   securin   to   prevent   premature   anaphase   onset   and  

(13)

parthenogenetic   activation   of   the   egg.   Upon   fertilization,   APC/C   activation   is   required   to   induce   the   exit   from   the   metaphase   II   arrest   (Lorca   et   al.,   1998;  

Peter  et  al.,  2001)  and  thereby  allowing  entry  into  early  embryonic  cell  cycles.    

While  the  spindle  checkpoint  is  important  for  the  metaphase  arrest  and  APC/C   inhibition   in   mitotic   cells   in   the   presence   of   unattached   kinetochores,   it   is   unlikely   that   the   SAC   mediates   the   metaphase   arrest   observed   in   mature   vertebrate  eggs.  Evidence  against  such  a  hypothesis  includes  the  fact  that  CSF   arrest  is  terminated  by  fertilization  and  the  following  elevation  in  cytoplasmic   calcium  levels,  but  calcium  addition  does  not  overcome  SAC  arrest  (Minshull  et   al.,   1994).   Additionally,   the   SAC   requires   kinetochores   and   microtubule   depolymerization,  whereas  neither  is  required  for  meiotic  metaphase  II  arrest   (Tunquist  and  Maller,  2003).  What  inhibits  oocytes  at  metaphase  of  Meiosis  II?  

1.5. The  postulation  of  MPF  and  CSF  

In  1971,  Yoshio  Masui  and  Clement  L.  Markert  performed  experiments  in  Rana   pipiens  oocytes  and  embryos  that  became  fundamental  for  the  identification  of   the  mechanisms  mediating  the  metaphase  II  arrest  in  mature  oocytes  (Masui   and  Markert,  1971).    

Specifically,  they  observed  that  injection  of  immature  oocytes  with  endoplasm   of  mature  oocytes  induced  meiotic  maturation.  Therefore  they  postulated  that   maturation   is   induced   by   a   maturation   promoting   factor   (MPF)   which   is   released  by  hormonal  induction  and  remains  active  in  the  mature  egg  (Figure   1.5.).   To   analyze   whether   the   same   activity   could   accelerate   cell   divisions   in   embryonic  cells,  they  injected  endoplasm  of  the  mature  egg  into  one  cell  of  a   two-­‐cell   stage   embryo.   Surprisingly,   they   found   that   the   injected   blastomere   arrested   at   the   next   mitosis,   prompting   them   to   propose   the   existence   of   a   cytostatic   factor   (CSF)   present   in   the   mature   egg   that   is   responsible   for   inducing   the   metaphase   II   arrest   (Figure   1.5.).   Additionally,   this   activity   is  

(14)

 13 inactivated  upon  fertilization,  since  injection  of  blastomeres  with  endoplasm  of   fertilized  embryos  did  not  cause  cell-­‐cycle  arrest.  

 

 

Figure  1.5.  The  discovery  of  MPF  and  CSF.  Illustration  of  the  oocyte-­‐  and  blastomere-­‐injection   assays  originally  performed  by  Masui  and  Markert  in  1971  that  led  to  the  identification  of  the   maturation  promoting  factor  MPF  and  the  cytostatic  factor  CSF.  

While   MPF   was   soon   identified   to   be   the   activity   of   cyclin   dependent   kinase   Cdk1  together  with  its  regulatory  subunit  cyclin  B  (Gautier  et  al.,  1990;  Gautier   et   al.,   1988;   Lohka   et   al.,   1988;   Murray   et   al.,   1989),   the   discovery   of   the   molecular  identity  of  the  CSF  took  more  than  three  decades.  

1.6. The  discovery  of  Mos  as  a  CSF  component  

To  identify  the  CSF  activity  that  mediates  the  metaphase  II  arrest,  three  criteria   were  proposed  for  a  protein  or  an  activity  to  be  a  CSF:  (1)  The  activity  emerges   during   oocyte   maturation   and   peaks   in   the   metaphase   II   arrested   egg.   (2)   Injection   of   blastomeres   with   the   activity   induces   mitotic   arrest   and   (3)   fertilization  triggers  the  inactivation  of  the  factor  (Masui  and  Markert,  1971).  

The  first  protein  identified  meeting  these  criteria  was  the  kinase  Mos.  Mos  is   expressed  during  oocyte  maturation  (Sagata  et  al.,  1988);  Figure  1.6.),  it  could   induce   mitotic   arrest   when   injected   into   blastomeres   of   a   dividing   embryo  

(15)

(Sagata  et  al.,  1989)  and  it  was  degraded  upon  fertilization  (Lorca  et  al.,  1991).  

To   understand   the   detailed   molecular   mechanism   linking   Mos   to   the   metaphase   II   arrest,   the   signaling   pathway   of   the   kinase   was   investigated.  

Biochemical   analysis   revealed   that   Mos   can   activate   the   mitogen   activated   protein  kinase  (MAPK)  pathway  (Posada  et  al.,  1993)  resulting  in  the  activation   of  the  ribosomal  S6  kinase  (Rsk),  and  functional  analysis  of  the  members  of  this   pathway   showed   that   they   are   required   for   CSF   arrest   (Abrieu   et   al.,   1996;  

Bhatt   and   Ferrell,   1999;   Cross   and   Smythe,   1998;   Gotoh   and   Nishida,   1995;  

Gross  et  al.,  1999;  Haccard  et  al.,  1993;  Kosako  et  al.,  1994a,  b). Therefore,  the   Mos  activated  MAPK-­‐pathway was  proposed  to  be  a  molecular  component  of   the   CSF.   Since   both,   the   Mos-­‐MAP   kinase   pathway   and   APC/C   inhibition   are   responsible   for   CSF   arrest,   it   seemed   possible   that   these   two   pathways   are   interconnected.  However,  it  remained  unclear  how  Rsk  as  the  terminal  kinase   in  this  cascade  was  communicating  with  the  cell-­‐cycle  machinery  to  establish   the  CSF  arrest.    

1.7. Identification  of  the  CSF  component  XErp1  

Reportedly,   polo-­‐like   kinase   Plx1   is   required   CSF   inactivation   and   APC/C   activation   (Descombes   and   Nigg,   1998).   Specifically,   it   has   been   shown   that   Xenopus   egg   extracts   depleted   of   Plx1   fail   to   release   the   CSF   arrest   upon   increasing   cytoplasmic   calcium   levels.   Therefore,   a   yeast   two-­‐hybrid   screen   was   performed   to   identify   proteins   that   interacted   with   Plx1   (Schmidt   et   al.,   2005),   and   this   approach   led   finally   to   the   identification   of   the   sought   after   component   of   CSF,   the   XErp1   protein.   XErp1   nicely   satisfied   the   Masui   and   Markert  criteria  proposed  for  CSF.  First,  XErp1  is  synthesized  during  Xenopus   oocyte   maturation;   it   starts   to   be   detectable   at   the   MI-­‐MII   transition   and   it   accumulates   as   oocytes   proceed   through   meiosis   II   where   it   reaches   highest   levels  at  metaphase  II  (Figure  1.6.);  second,  exogenous  introduction  of  XErp1   into   one   blastomere   of   a   two-­‐cell   stage   embryo   promoted   a   cell-­‐cycle   arrest  

(16)

 15 Importantly,  XErp1  is  essential  for  CSF  arrest  as  Xenopus  egg  extracts  arrested   at   metaphase   II   depleted   of   XErp1   were   unable   to   maintain   CSF   arrest   and   entered  interphase.    

Further  characterization  XErp1  revealed  the  C-­‐terminus  of  the  protein,  which  is   sufficient  for  CSF  arrest  maintenance,  shares  high  sequence  similarity  with  the   mitotic   APC/C   inhibitor   Emi1   and   like   Emi1,   XErp1   was   shown   to   inhibit   the   APC/C  directly  (Schmidt  et  al.,  2005).  Therefore,  XErp1  is  a  CSF  specific  APC/C   inhibitor.  

 

Figure  1.6.  Oocyte  maturation  and  CSF  on  a  molecular  level.  Oocyte  maturation  is  driven  by   the   activities   of   Cdk1/cyclin   B,   the   APC/C   and   CSF   factors   Mos   and   XErp1,   ad   the   relative   activities  during  oocyte  maturation  are  depicted  on  the  left  (adapted  from  Kornbluth,  2008).    

Since  XErp1  was  shown  to  be  a  substrate  of  Rsk,  the  Mos-­‐MAPK  pathway  could   finally   be   linked   to   the   regulation   of   the   APC/C.   Rsk   phosphorylation   was   shown  to  increase  the  inhibitory  activity  of  XErp1  in  CSF  arrested  eggs,  which   will  be  described  later.  

1.8. XErp1  inactivation  upon  CSF  release    

As  proposed  by  Masui  and  Markert,  fertilization  causes  the  inactivation  of  CSF.  

The   first   response   of   an   egg   to   fertilization   is   an   elevation   in   cytoplasmic   calcium  levels,  which  results  in  the  activation  of  calcium/calmodulin  dependent   kinase   II   (CaMKII;(Lorca   et   al.,   1993).   The   identification   of   XErp1   as   a   CaMKII  

(17)

substrate   provided   insights   into   how   fertilization   is   connected   with   CSF   inactivation  (Figure  1.7.;(Hansen  et  al.,  2006;  Liu  and  Maller,  2005;  Rauh  et  al.,   2005).  

 

Figure  1.7.  Fertilization  mediated  CSF  inactivation.  Fertilization  (1)  triggers  the  activation  of   CaMKII   (2)   which   phosphorylates   XErp1   (3)   creating   a   docking   site   for   Plx1   (4).   Plx1   in   turn   phosphorylates   XErp1   creating   a   phosphodegron   (5),   which   is   recognized   by   the   ubiquitin   ligase  SCFβTRCP.  XErp1  ubiquitylation  targets  it  for  degradation  (6)  and  thus  CSF  inactivation,  the   APC/C  becomes  active  (7)  and  cells  complete  meiosis  II  (adapted  from  Rauh  et  al.,  2005).  

CaMKII  mediated  phosphorylation  of  XErp1  provides  a  docking  site  for  Plx1  on   XErp1.   Through   Plx1   mediated   phosphorylation   of   XErp1   a   phosphodegron   is   created  and  XErp1  is  recognized  by  the  SCFβTRCP  complex,  an  ubiquitin  E3  ligase   that   ubiquitylates   and   targets   XErp1   for   degradation.   Consequently,   calcium   triggers  CSF  inactivation  resulting  in  APC/C  activation  and  the  fertilized  egg  can   proceed  with  embryonic  cell  divisions.  

1.9. The  molecular  mechanism  of  XErp1  mediated  APC/C  inhibition  

In   CSF   arrested   eggs,   XErp1   maintains   the   metaphase   II   arrest   by   directly   inhibiting   the   APC/C.   The   binding   of   XErp1   to   the   APC/C   is   essential   for   its   inhibitory   activity   as   mutants   defective   in   APC/C   binding   are   inefficient   in  

(18)

 17 inhibiting  the  APC/C  (Wu  et  al.,  2007b).  The  well-­‐conserved  C-­‐terminal  peptide   sequence   of   XErp1,   termed   the   RL   tail,   was   reported   to   mediate   the   recruitment   of   XErp1   by   serving   as   a   docking   site   to   the   APC/C   (Ohe   et   al.,   2010).  Binding  to  the  APC/C  allows  and  enhances  the  inhibitory  interactions  of   two  other  sequence  elements  of  XErp1,  the  D-­‐box  and  the  ZBR-­‐domain.  While   it   is   well   established   that   all   three   elements   are   critical   for   APC/C   inhibition,   the  specific  contribution  of  the  D-­‐box  and  the  ZBR  domain  to  the  inhibition  of   the  APC/C  by  XErp1  remain  elusive  (Nishiyama  et  al.,  2007;  Ohe  et  al.,  2010;  

Tang  et  al.,  2010).    

Notably,  all  three  elements  are  conserved  between  XErp1  and  Emi1,  a  somatic   paralog  of  XErp1,  whose  APC/C  inhibitory  activity  is  required  to  prevent  DNA   re-­‐replication  (Di  Fiore  and  Pines,  2007;  Machida  and  Dutta,  2007)  suggesting   that   XErp1   and   Emi1   share   the   same   mode   of   APC/C   inhibition.   Emi1,   when   bound   to   the   APC/C   together   with   the   E2   enzyme   UbcH10,   was   shown   to   inhibit  the  correct  engagement  of  the  substrate  to  the  APC/C  thereby  reducing   substrate   ubiquitylation   (Summers   et   al.,   2008).   Further   studies   on   Emi1   suggested   that   it   acts   as   an   APC/C   pseudosubstrate   and   the   D-­‐box   mediates   APC/C   binding,   while   its   ZBR   mediates   APC/C   inhibition   (Miller   et   al.,   2006).  

Consistently,  it  has  been  shown  that  Emi1  mutated  in  its  ZBR  does  not  inhibit   the  APC/C  but  rather  is  quickly  targeted  for  destruction  by  the  APC/C.  Given   that  XErp1  –  like  Emi1  –  contains  a  D-­‐box  and  ZBR,  it  is  tempting  to  speculate   that   XErp1   acts   as   well   as   a   pseudosubstrate.   However,   previous   studies   suggest   that   XErp1   does   not   compete   with   substrates   for   APC/C   binding   but   rather  interferes  with  the  transfer  of  ubiquitin  to  substrate  proteins  bound  to   the   APC/C   (Tang   et   al.,   2010).   Furthermore,   our   preliminary   experiments   revealed   that   in   contrast   to   Emi1,   mutation   of   the   ZBR   of   XErp1   does   not   convert  it  into  an  APC/C  substrate  corroborating  the  idea  that  XErp1  inhibits   the  APC/C  by  a  mechanism  distinct  to  the  one  of  Emi1.  

(19)

Together,   although   it   is   established   that   XErp1   needs   to   be   recruited   to   the   APC/C  to  exert  its  inhibitory  function,  the  exact  molecular  mechanism  of  XErp1   mediated  APC/C  inhibition  remains  elusive.  

1.10. Feedback  loops  controlling  XErp1  activity  during  CSF  arrest    

During   metaphase   II   arrest,   the   Mos-­‐MAPK   pathway   was   shown   to   activate   XErp1   by   upregulating   both   the   stability   and   activity   of   XErp1   (Isoda   et   al.,   2011;  Wu  et  al.,  2007a;  Wu  et  al.,  2007b).  The  Mos-­‐MAPK  pathway  activates   the   kinase   Rsk   (Bhatt   and   Ferrell,   1999;   Gross   et   al.,   1999),   which   phosphorylates   XErp1   at   residues   in   the   central   region   (Inoue   et   al.,   2007;  

Nishiyama  et  al.,  2007)  leading  to  the  recruitment  of  the  protein  phosphatase   PP2A   containing   the   regulatory   subunit   B56β   or   B56ε   to   XErp1   (Wu   et   al.,   2007a).     PP2A-­‐   B56β,ε   antagonizes   N-­‐terminal   and   C-­‐terminal   inhibitory   phosphorylations  of  XErp1  by  Cdk1  (Isoda  et  al.,  2011).  Cdk1  phosphorylations   destabilize  XErp1  and  decrease  its  affinity  for  the  APC/C  (Wu  et  al.,  2007a;  Wu   et  al.,  2007b).    

 

Figure  1.8.  Oocyte  maturation  and  CSF  on  a  molecular  level.  Oocyte  maturation  is  driven  by   the   activities   of   Cdk1/cyclin   B,   the   APC/C   and   CSF   factors   Mos   and   XErp1,   ad   the   relative   activities  during  oocyte  maturation  are  depicted  on  the  left  (adapted  from  Kornbluth,  2008).  

On   the   right,   a   simplified   signaling   network   controlling   the   activity   of   XErp1   is   illustrated   (adapted  from  Isoda  et  al.,  2011).    

(20)

 19 Specifically,  it  has  been  shown  that  multiple  N-­‐terminal  Cdk1  phosphorylation   motifs  bind  cyclin  B1-­‐Cdk1  itself  as  well  as  Plk1  and  CK1 δ/ε  to  inhibit  XErp1   (Isoda   et   al.,   2011).   While   Plk1   phosphorylation   was   shown   to   partially   destabilize   XErp1,   Cdk1   and   CK1δ/ε   phosphorylations   are   thought   to   cooperatively  inhibit  XErp1  binding  to  the  APC/C  (Figure  1.8.).  Since  Cdk1  levels   are   high   during   the   Metaphase   II   arrest,   constant   phosphorylation   of   XErp1   would  lead  to  gradual  XErp1  inactivation  and  CSF  release.  By  recruiting  PP2A-­‐

B56β,ε  to  counteract  the  inhibitory  phosphorylations,  the  Mos  MAPK-­‐  pathway   keeps   XErp1   active   and   therefore   maintains   CSF   arrest   (Figure   1.8.).   At   the   same  time,  this  mechanism  allows  to  maintain  Cdk1  activity  at  the  correct  level   during   CSF   arrest   (Figure   1.9.(Wu   and   Kornbluth,   2008;   Wu   et   al.,   2007b).  

Continuous  cyclin  B  synthesis  during  CSF  arrest  leads  to  a  temporal  increase  in   Cdk1/cyclin  B  activity,  which  in  turn  leads  to  an  increase  in  the  phosphorylation   of   XErp1,   since   the   activity   of   PP2A   on   XErp1   remain   equal.   XErp1   phosphorylated   by   Cdk1   dissociates   from   the   APC/C   leading   to   a   transient   APC/C  activation  and  slow  degradation  of  cyclin  B.    

 

Figure   1.9.   Cdk1/cyclin   B2   and   PP2A   regulate   XErp1’s   association   with   the   APC/C.  

Phosphorylation  of  XErp1  by  Cdk1/cyclin  B2  leads  to  the  dissociation  of  XErp1  from  the  APC/C,   which   is   counteracted   by   PP2A,   which   dephosphorylates   XErp1   and   promotes   XErp1   association  with  the  APC/C.    

Therefore,  the  continuous  synthesis  of  cyclin  B  induces  a  slow  degradation  of   cyclin   B   during   CSF   arrest.   Otherwise,   continuous   synthesis   would   create   an   amount  of  cyclin  B  that  cannot  be  degraded  by  the  APC/C  anymore  in  a  short   time.  This  would  result  in  a  slow  and  gradual  rather  than  a  switch-­‐like  exit  from   CSF  arrest  as  observed  upon  fertilization.  

(21)

1.11. Aim  of  this  project  

XErp1   is   an   APC/C   inhibitor   operating   in   CSF   arrested   oocytes.   However,   the   exact  molecular  mechanism  of  APC/C  inhibition  and  its  regulation  is  unknown.  

The  D-­‐box  and  the  RL-­‐tail  of  XErp1  mediate  the  binding  of  XErp1  to  the  APC/C,   most   likely   to   position   the   ZBR   of   XErp1   correctly   to   inactivate   the   APC/C.  

However,  the  interaction  with  the  APC/C  needs  to  be  dynamic  to  allow  slow   cyclin  B  degradation  during  CSF  arrest.  Phosphorylation  and  dephosphorylation   of   XErp1   can   regulate   its   association   with   the   APC/C,   and   the   Mos-­‐MAPK   pathway  was  shown  to  promote  XErp1  association.  Intrigued  by  the  findings  on   APC/C  regulation  by  the  spindle  checkpoint,  we  would  like  to  understand  if  a   dynamic   balance   of   ubiquitylation/deubiquitylation   of   Cdc20,   XErp1   and/or   other  components  of  the  APC/C  is  also  required  for  CSF  arrest.  In  addition,  we   would   like   to   test   whether   Cdc20   turnover   is   required   for   CSF   arrest   and   if   XErp1   regulates   this   potential   turnover.   Thus,   these   studies   will   provide   a   deeper  understanding  of  how  the  XErp1-­‐APC/CCdc20  interaction  is  regulated  and   how   the   binding   of   XErp1   to   the   APC/C   leads   to   its   inactivation.

(22)

   

UbcX  dissociates  XErp1  from  the  APC/C     Results  

 

21

2. RESULTS  

In  this  study,  we  show  that  non-­‐proteolytic  ubiquitylation  of  XErp1  regulates  its   APC/C   inhibitory   function   during   CSF   arrest   in   Xenopus   egg   extracts.   This   section   describes   the   experiments   demonstrating   that   ectopic   UbcX,   the   E2   enzyme  of  the  APC/C,  induces  release  from  SAC-­‐  and  CSF  arrest.  The  release   from  CSF  arrest  is  APC/CCdc20  dependent  and  in  the  presence  of  elevated  UbcX   activity,  XErp1  is  ubiquitylated  resulting  in  the  dissociation  of  XErp1  from  the   APC/C.   Hence,   the   APC/C   inhibitory   activity   of   XErp1   in   CSF   arrest   can   be   modulated  in  an  UbcX-­‐dependent  manner.  Furthermore,  evidence  is  provided   that   in   contrast   to   SAC   arrested   somatic   cells,   Cdc20   is   not   degraded   during   meiotic   CSF   arrest   suggesting   that   CSF   arrest   is   not   mediated   by   the   destabilization  of  Cdc20.    

2.1. UbcX  can  suppress  SAC  activity  in  Xenopus  egg  extract  

The   finding   that   in   human   somatic   cells,   the   APC/C   can   liberate   itself   from   inhibition  by  the  SAC  (Reddy  et  al.,  2007)  prompted  us  to  analyze  whether  a   similar  mechanism  operates  in  Xenopus  eggs  or  egg  extracts  to  regulate  APC/C   activity   during   SAC   and   -­‐   more   interestingly   -­‐   during   CSF   arrest.   In  Xenopus   eggs,  SAC  activity  was  reported  to  be  absent  but  can  be  induced  by  increasing   the  ration  of  nucleus  to  cytoplasm  in  the  presence  of  spindle  poisons  (Minshull   et  al.,  1994).  To  analyze  the  effect  of  UbcX  on  SAC  arrest  in  Xenopus  eggs,  we   prepared  CSF  arrested  egg  extract  and  triggered  SAC  arrest  by  the  microtubule   poison   nocodazole   in   the   presence   of   high   concentrations   of   sperm   nuclei   (Figure  2.1.  a).  Under  these  conditions,  calcium  addition  did  not  result  in  APC/C   activation   as  in   vitro   translated  35S-­‐securin   remained   stable   (Figure   2.1.   b,   panel   1).   Westernblot   (WB)   analysis   revealed   that   XErp1   was   efficiently   degraded  upon  calcium  addition  (Figure  2.1.  b,  panel  1),  suggesting  that  APC/C  

(23)

   

UbcX  dissociates  XErp1  from  the  APC/C     Results  

  inhibition  was  due  to  SAC-­‐  but  not  CSF-­‐activity.  Addition  of  recombinant  wild   type  UbcX  (UbcXwt)  to  SAC  arrested  extracts  caused  APC/C  activation  and  35S-­‐

securin  degradation  (Figure  2.1.  b,  panel  2).  This  effect  was  dependent  on  the   catalytic  activity  of  UbcX,  as  the  addition  of  a  catalytic  inactive  form  of  UbcX   (UbcXci)  had  no  effect  on  35S-­‐securin  stability  (Figure  2.1.  b,  panel  3).  Therefore,   the   mechanism   of   UbcX   mediated   SAC   inactivation   is   conserved   between   humans  and  Xenopus.    

 

Figure   2.1.   Ectopic   UbcXwt   overrides   SAC-­‐arrest   in  Xenopus   egg   extract.  (a)   CSF-­‐extracts   containing  35S-­‐securin  was  supplemented  with  nocodazole  and  high  concentrations  of  sperm  to   activate  the  SAC.  CSF  arrest  was  released  by  calcium  addition.  (b)  At  the  indicated  time  points   after  the  addition  of  the  specified  reagents  samples  were  taken  and  35S-­‐securin  was  detected   by   autoradiography   and   XErp1   and  α-­‐tubulin   by   WB.   CSF,   cytostatic   factor;   SAC,   spindle   assembly   checkpoint;  35S-­‐securin,  in   vitro   translated,  35S-­‐labeled   securin;   wt,   wild   type;   ci,   catalytical  inactive.  

2.2. UbcX  can  suppress  CSF  activity  in  Xenopus  egg  extract  

To   analyze   if   an   increase   in   the   activity   of   UbcX   similarly   influences   CSF   mediated   APC/C   inhibition,   ectopic   UbcXwt   was   added   to   CSF   arrested   egg   extract  supplemented  with  a  low  concentration  of  sperm  nuclei  and  35S-­‐securin   (Figure  2.2.  a).  Interestingly,  also  in  these  extracts  ectopic  UbcX  caused  APC/C   activation  and  CSF  release  in  the  absence  of  the  calcium  signal,  as  indicated  by   the  decondensation  of  the  sperm  nuclei  chromatin  (Figure  2.2.  b)  and  by  the   degradation   of   the   APC/C   substrates  35S-­‐securin   and   cyclin   B2   (Figure   2.2.   c,  

(24)

   

UbcX  dissociates  XErp1  from  the  APC/C     Results  

 

23 panel  2).  However  -­‐  unlike  in  extracts  treated  with  calcium  -­‐  XErp1  remained   stable   and   showed   an   increase   in   its   electrophoretic   mobility   following   exit   from  meiosis  (Figure  2.2.  c,  panel  1  and  2),  suggesting  that  UbcXwt  causes  CSF   inactivation  by  different  means  than  XErp1  degradation.  The  addition  of  UbcXci   or  dialysis  buffer  had  no  effect  on  CSF  arrest  (Figure  2.2.  b,  c,  panel  3  and  4),   suggesting  that  the  observed  CSF  override  is  dependent  on  an  increase  in  the   catalytic  activity  of  UbcX.    

Additionally,   the   human   homologue   of   UbcX   was   equivalent   in   the   ability   to   overcome  CSF  arrest  in  Xenopus  egg  extract,  as  the  addition  of  catalytic  active   UbcH10   triggered   premature   CSF   release   (Figure   2.2.   d,   panel   3),   demonstrating   that   both   UbcX   and   UbcH10   are   interchangeable   in   inducing   CSF  release.  

  Figure  2.2.  Ectopic  UbcXwt  overrides  CSF  arrest  in  Xenopus  egg  extract.  (a)  To  CSF-­‐extract  the   indicated  reagents  were  added  and  (b)  at  the  90  minute  time  point  chromatin  structures  were   analyzed  or  (c)  at  the  indicated  time  points  samples  were  taken  and  35S-­‐securin  was  detected   by   autoradiography   and   XErp1   and  α-­‐tubulin   by   WB.   (d)   Experiment   described   in   (a)   was   repeated  using  UbcH10  instead  of  UbcX.  CSF,  cytostatic  factor;  35S-­‐securin,  in  vitro  translated,  

35S-­‐labeled  securin;  wt,  wild  type;  ci,  catalytical  inactive.  

(25)

   

UbcX  dissociates  XErp1  from  the  APC/C     Results  

  2.3. Elevated   UbcX   activity   prevents   meiosis   I   -­‐   meiosis   II   transition   in  

Xenopus  oocytes  

To   collect   evidence   for   UbcX   mediated   regulation   of   CSF   arrest  in   vivo,   we   injected  recombinant  UbcX  into  Xenopus  stage  VI  oocytes  arrested  at  prophase   of  meiosis  I.  We  induced  oocyte  maturation  by  the  addition  of  progesterone   and   followed   the   resumption   of   meiosis   by   microscopic   analysis   and   by   westernblotting  for  cyclin  B2  and  XErp1  (Figure  2.3.  a).  Oocytes  injected  with   buffer   performed   germinal   vesicle   breakdown   (GVBD),   which   is   indicative   of   the  resumption  of  meiosis  I  and  exited  meiosis  I  60  min  after  GVBD,  visible  by  a   decline   in   cyclin   B2   levels.   Oocytes   progressed   through   meiosis   II   and   finally   entered   CSF   arrest   about   120   min   after   GVBD   where   XErp1   levels   and   are   highest  and  cyclin  B2  levels  peak  (Figure  2.3.  b).  In  contrast,  oocytes  injected   with  UbcXwt  failed  to  re-­‐accumulate  cyclin  B2  after  progressing  through  meiosis   I   despite   the   presence   of   XErp1   (Figure   2.3.   b).   In   addition,   similar   to   XErp1   depleted  oocytes,  the  pigmentation  of  the  animal  pole  was  disrupted  and  no   small,  defined  spot  indicative  of  a  CSF  arrested  egg  could  be  observed  (Figure   2.3.  c).  Thus,  consistent  with  results  in  Xenopus  egg  extract,  we  conclude  that   also  in  vivo  CSF  arrest  is  sensitive  to  changes  in  the  activity  of  the  E2  enzyme   UbcX.  

  Figure   2.3.   Ectopic   UbcXwt   prevents   Meiosis   I   -­‐Meiosis   II   transition   in   oocytes.  (a)   Stage   VI   oocytes  were  injected  with  buffer  or  80  ng  UbcXwt,  resulting  in  8,9 µM  exogenous  UbcX,  which   is   about   11   fold   of   the   endogenous   protein.   Maturation   was   induced   by   progesterone   treatment  and  (b)  at  the  indicated  time  points  after  GVBD  samples  were  taken  for  WB  analysis   or  (c)  a  picture  was  taken  at  the  90  min  time  point.  wt,  wild  type;  PG,  Progesterone;  GVBD,   Germinal  vesicle  breakdown.  

(26)

   

UbcX  dissociates  XErp1  from  the  APC/C     Results  

 

25 2.4. UbcH10   –   Induced   CSF   release   requires   proteasome   and   APC/CCdc20  

activity    

Addition  of  UbcX  or  UbcH10  to  CSF  arrested  egg  extracts  inactivated  the  CSF  as   indicated   by   the   degradation   of   the   APC/C   substrates   securin   and   cyclin   B   (Figure  2.2.  c).  This  degradation  was  proteasome  dependent,  as  the  addition  of   the  potent  proteasome  inhibitor  MG262  to  CSF  arrested  extract  inhibited  the   degradation  of  APC/C  substrates  in  the  presence  of  UbcH10wt  when  compared   to  the  DMSO  control  (Figure  2.4.  a).  

  Figure   2.4.   UbcH10wt-­‐induced   CSF-­‐release   requires   APC/C   activity.   (a)   CSF   arrested   extract   was   supplemented   with   MG262   or   DMSO   and   treated   with   calcium,   buffer,   UbcH10wt   or  

(27)

   

UbcX  dissociates  XErp1  from  the  APC/C     Results  

 

UbcH10ci   and   the   stability   of  35S-­‐securin   was   analyzed   by   autoradiography.   (b)   Cdc20   was   depleted  from  CSF-­‐extracts  in  three  rounds  of  immunodepletion.  Cdc20  was  detected  by  WB  in   the  input  fraction,  in  the  extract  after  the  third  round  of  Cdc20-­‐depletion  (ΔCdc20)  or  control-­‐

depletion   as   well   as   on   the α-­‐Cdc20   and   control-­‐beads   (IP)   after   the   indicated   rounds   of   depletion.   (c)   Cdc20-­‐   or   control-­‐depleted   extract   was   supplemented   with   calcium,   buffer,   UbcH10wt,   or   UbcH10ci   and   the   stability   of  35S-­‐securin   was   analyzed   by   autoradiography.   (d)   Cdc20  was  depleted  from  CSF-­‐extracts  as  in  (b)  and  recombinant  Cdc20  was  added  to  a  final   concentration   of   170nM   as   indicated.   Cdc20   was   detected   by   WB   after   the   third   round   of   Cdc20-­‐depletion  (ΔCdc20).  Note  that  recombinant  Cdc20  is  8  kDa  bigger  than  endogenous  due   to   a   10xhis-­‐2xTEV-­‐tag.   (e)   Cdc20-­‐depleted   or   Cdc20   depletion/add-­‐back   extract   was   supplemented  with  calcium,  buffer  or  UbcXwt  and  the  stability  of  35S-­‐securin  was  analyzed  by   autoradiography.   (f)   CSF-­‐extract   depleted   of   Cdc27   or   control-­‐depleted   extract   was   supplemented   with   the   indicated   reagents   and  35S-­‐securin   was   detected   at   the   time   points   indicated.   Ctrl,   control;   IP,   immunoprecipitation;   IgG,   immunoglobulin   G;   Cdc,   cell   division   cycle;  35S-­‐securin,  in  vitro  translated,  35S-­‐labeled  securin;  wt,  wild  type;  ci,  catalytical  inactive.  

To   understand   whether   this   degradation   was   APC/CCdc20   dependent,   we   depleted  the  APC/C  co-­‐activating  subunit  Cdc20  from  CSF  arrested  egg  extracts   by  three  rounds  of  immunodepletion  (Figure  2.4.  b,  d).  As  expected,  35S-­‐securin   was   not   degraded   in   Cdc20   depleted   extracts   supplemented   with   calcium   when   compared   to   the   control   depleted   extracts.   Cdc20   depletion   also   inhibited   the   degradation   of   35S-­‐securin   in   extracts   incubated   with   recombinant   UbcH10wt   (Figure   2.4.   c,   e).   The   addition   of   recombinant   Cdc20   was  able  to  restore  the  degradation  of  35S-­‐securin  in  both  calcium  and  UbcH10   supplemented   extracts,   confirming   the   specificity   of   the   Cdc20   depletion   (Figure  2.4.  e).    

To   corroborate   this   finding,   we   depleted   the   APC/C   from   CSF   arrested   egg   extract   by   immunoprecipitating   the   APC/C   core-­‐subunit   Cdc27.   Also   in   these   extracts,   neither   calcium   addition   nor   UbcH10wt   addition   induced  35S-­‐securin   degradation   (Figure   2.4.   f).   Together,   these   results   suggest   that   APC/CCdc20   dependent   ubiquitylation   and   proteasome   dependent   degradation   of   the   APC/CCdc20   substrates   is   essential   for   the   UbcX/UbcH10-­‐dependent   and   calcium-­‐  independent  induction  of  CSF  release.  

2.5. Does  USP44  counteract  UbcX  to  maintain  CSF  arrest?  

Reportedly,  during  SAC  arrest  the  activity  of  UbcH10  needs  to  be  antagonized  

Cdc20

Referenzen

ÄHNLICHE DOKUMENTE

These results disproved the modulation of the endogenous AR in the prostate cancer cell line LNCaP under DHRS7 depletion but supported the hypothesis of DHRS7

in the presence of different reducing agents (see Scheme 6-1). Either small molecular weight thiols or dithiols efficiently perform reducing reactions. Middle: Rate of product

This work aims to characterise the regulation of ubiquitin- dependent protein degradation mediated by the APC/C during the mitotic and the meiotic cell cycle in budding yeast..

At the permissive temperature, starved cells showed normal unselective autophagy, but after the shift to the nonpermissive temperature of 38 °C, the GFP-Atg8 degradation

In contrast, insufficient stimulation of Brca1 caused by overexpression of CEP72 or repression of CHK2 as well as Brca1 hyperstimulation by CHK2 overexpression or CEP72

Approaches for studying mycobacterial pathogenesis include (a) analysis of mycobacterial gene expression under specific growth and environmental conditions, (b) the use

Differential Expression of SSH Candidates in Developing Swords and Gonopodia and Regenerating Caudal Fins Our gene expression analyses of seven clones from

formation in vivo , we tested whether targeted knockdown of USE1 with siRNA leads to a signifi cant reduction of FAT10 conjugates in HEK293 cells transfected with a