• Keine Ergebnisse gefunden

Cdc20  degradation  is  not  required  for  CSF  arrest  maintenance

 

UbcX  dissociates  XErp1  from  the  APC/C     Results  

 

 

Figure  2.11.  Dissociation  of  XErp1  from  the  APC/C  upon  phosphorylation  is  independent  of   ubiquitylation.   CSF-­‐extracts   were   treated   as   indicated   and   Cdc27   was   immunoprecipitated.  

The  untreated  and  CIP  treated  input  samples  and  immunoprecipitates  were  analyzed  by  WB   for   Cdc27   and   XErp1.  OA,   ocadaic   acid;   CIP,   calf   intestinal   alkaline   phosphatase;   ci,   catalytic   inactive;    

2.13. Cdc20  degradation  is  not  required  for  CSF  arrest  maintenance    

In   somatic   cells   arrested   by   the   SAC,   Cdc20   is   ubiquitylated   by   the   APC/C.  

However  the  model  in  which  this  ubiquitylation  of  Cdc20  liberates  it  from  the   mitotic   checkpoint   complex   has   been   challenged.   Instead   it   has   been   proposed,   that   the   consequence   of   Cdc20   ubiquitylation   is   proteasomal   degradation.   Thus,   while   the   “activation-­‐model”   proposes   that   UbcH10   dependent   ubiquitylation   of   Cdc20   results   in   its   release   from   the   inhibitory   SAC-­‐complex,   i.e.   APC/CCdc20   activation   (Reddy   et   al,   2007),   the   “inactivation-­‐

model“  proposes  that  it  induces  Cdc20  degradation,  i.e.  APC/CCdc20  inactivation   (Nilsson   et   al,   2008).   If   a   similar   inactivation   model   were   valid   during   CSF   arrest,   we   would   expect   that   in   the   presence   of   XErp1,   Cdc20   bound   to   the   APC/C   is   turned   into   a   substrate   inducing   its   ubiquitylation   and   degradation.  

Therefore   we   analyzed   if   Cdc20   is   short-­‐lived   in   CSF-­‐extract.   WB-­‐analyses   of   CSF-­‐extract   treated   with   cycloheximide   (CHX)   to   block   protein   synthesis   demonstrated   that   the   levels   of   endogenous   Cdc20   did   not   significantly   decrease   during   a   time   period   of   120   minutes   (Figure   2.12.   a,   panel   1).   To   corroborate   this   finding,   we   analyzed   the   levels   of   Cdc20   when   protein   destruction  was  blocked.  As  shown  in  figure  2.12.  b,  panel  1,  Cdc20  levels  did   not   detectably   increase   over   a   time   frame   of   120   minutes   in   extract   treated   with   the   potent   proteasome   inhibitor   MG262   compared   to   DMSO.   Calcium  

   

UbcX  dissociates  XErp1  from  the  APC/C     Results  

 

37 failed  to  induce  degradation  of  cyclin  B  in  MG262-­‐treated  extract  (Figure  2.12.  

b,  panel  3)  confirming  efficient  inhibition  of  the  proteasome.  

 

Figure  2.12.  Cdc20  is  stable  in  CSF  arrest.  (a)  CSF  extract  treated  with  CHX  was  supplemented   with   buffer   control,   UbcXwt   or   calcium.   At   the   indicated   time   points   samples   were   taken,   treated  with  phosphatase  and  analyzed  by  WB  for  Cdc20,  cyclin  B2,  XErp1  and  α-­‐tubulin.  (b)   CSF  extract  treated  with  MG262  was  supplemented  with  buffer  control,  UbcXwt,  or  calcium  and   samples  were  taken.  After  phosphatase  treatment  Cdc20,  cyclin  B2,  XErp1  and  α-­‐tubulin  were   analyzed  by  WB.  CHX,  cycloheximide;  CIP,  calf  intestinal  alkaline  phosphatase;  wt,  wild  type;  

Thus,  Xenopus  Cdc20  is  a  stable  protein  and  has  a  low  turnover  in  egg  extract.  

Moreover,  when  re-­‐synthesis  is  inhibited,  the  amount  of  Cdc20  still  present  in   the   extract   is   sufficient   to   effectively   target   APC/C   substrates   for   destruction   when  UbcX  or  calcium  is  added  to  the  extract  (Figure  2.12.  a,  panel  2  and  3).  

These   results   together   with   our   observation   that   exogenous   UbcX   induces   premature  CSF-­‐release  rather  than  an  enhancement  of  the  arrest  suggests  that   a  stable  CSF-­‐state  is  not  aided  by  the  destabilization  of  Cdc20.  

    UbcX  dissociates  XErp1  from  the  APC/C                                                                                                                                                            Discussion  

 

3. DISCUSSION    

How   the   APC/C   is   regulated   in   oocytes,   as   well   as   in   somatic   cells,   is   an   important   and   still   elusive   question   in   cell-­‐cycle   research.   The   studies   presented  here  identify  a  novel  layer  of  APC/C  activity  regulation  via  XErp1  in   Xenopus  egg  extracts.  The  CSF  component  XErp1  arrests  oocytes  at  metaphase   of  meiosis  II  by  directly  inhibiting  the  APC/C  (Ohe  et  al.,  2010;  Schmidt  et  al.,   2005).   Fertilization   of   oocytes   triggers   the   SCFβTRCP   dependent   destruction   of   XErp1,  thereby  causing  APC/C  activation  and  the  irreversible  exit  from  meiosis   (Hansen   et   al.,   2006;   Liu   and   Maller,   2005;   Rauh   et   al.,   2005).   During   CSF   arrest,   transient   Cdk1-­‐mediated   inactivation   of   XErp1   is   important   for   the   compensation  of  continuous  cyclin  B  synthesis  (Wu  and  Kornbluth,  2008;  Wu   et   al.,   2007b).   Here,   we   provide   evidence   that   an   autocatalytic   mechanism   regulating   APC/C   activity   is   involved   in   CSF   arrest   in  Xenopus.   First,   elevated   UbcX   activity   causes   APC/C   activation   in   CSF   arrested   egg   extract.   Second,   UbcX  induces  the  non-­‐proteolytic  ubiquitylation  of  XErp1  and  the  dissociation   of  the  APC/C–XErp1  complex,  suggesting  that  increased  ubiquitylation  of  XErp1   decreases  its  affinity  for  the  APC/C.  Third,  the  UbcX  induced  ubiquitylation  of   XErp1  is  mediated  by  the  APC/C,  therefore  the  APC/C  is  able  to  activate  itself  in   an   autocatalytic   manner   in   the   presence   of   elevated   UbcX   activity.   Similarly,   UbcX   can   trigger   activation   of   the   APC/C   in  Xenopus   egg   extracts   with   an   activated   spindle   checkpoint.   This   suggests   that   in   vertebrate   cells,   APC/C   dependent  ubiquitylation  is  important  to  overcome  SAC  arrest,  thus  favoring   the   self-­‐activation   model,   where   the   APC/C   can   liberate   itself   from   SAC   inhibition  by  ubiquitylating  Cdc20,  over  the  inactivation  model  of  the  APC/C,  in   which  SAC  arrest  is  mediated  by  the  APC/C  dependent  destruction  of  Cdc20.    

In  addition,  our  findings  that  Cdc20  is  stable  during  CSF  arrest  suggest  that  CSF   arrest  is  not  mediated  via  the  destabilization  of  Cdc20.    

 

    UbcX  dissociates  XErp1  from  the  APC/C                                                                                                                                                            Discussion  

 

39   In  the  following  section,  the  implications  of  these  novel  findings  on  our  view  of   the  spindle  checkpoint  arrest  as  well  as  on  CSF  arrest  will  be  discussed,  models   for  the  physiological  function  of  APC/C  dependent  XErp1  ubiquitylation  will  be   suggested   and   open   questions   as   well   as   possible   future   directions   will   be   proposed.