• Keine Ergebnisse gefunden

The immunoproteasome in antigen processing and other immunological functions

N/A
N/A
Protected

Academic year: 2022

Aktie "The immunoproteasome in antigen processing and other immunological functions"

Copied!
7
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

The immunoproteasome in antigen processing and other immunological functions

Michael Basler

1,2

, Christopher J Kirk

3

and Marcus Groettrup

1,2

Treatmentofcellswithinterferon-gleadstothereplacementof theconstitutivecatalyticproteasomesubunitsb1,b2,andb5 bytheinduciblesubunitsLMP2(b1i),MECL-1(b2i),andLMP7 (b5i),respectively,buildingtheso-calledimmunoproteasome.

Theincorporationofthesesubunitsisrequiredforthe productionofnumerousMHCclass-IrestrictedTcellepitopes.

Recently,newevidenceforaninvolvementofthe

immunoproteasomeinotherfacetsoftheimmuneresponse emerged.Investigationsofautoimmunediseasesinanimal modelsandageneticpredispositionofb5iinhuman autoimmunedisorderssuggestacrucialfunctionofthe immunoproteasomeinproinflammatorydiseases.Therecent elucidationofthehigh-resolutionstructureofthe

immunoproteasomewillfacilitatethedesignof

immunoproteasomeselectiveinhibitorsforpharmacological intervention.

Addresses

1DivisionofImmunology,DepartmentofBiology,UniversityofKonstanz, Universita¨tsstrasse10,D-78457Konstanz,Germany

2BiotechnologyInstituteThurgau(BITg)attheUniversityofKonstanz, CH-8280Kreuzlingen,Switzerland

3OnyxPharmaceuticals,SouthSanFrancisco,CA94080,USA

Introduction

The20Sproteasomeisalargeintracellularmulticatalytic proteaseconsistingofaandbsubunitsthatbuildabarrel- shapedcomplex of four ringswith seven subunits each [1,2]. In cells of hematopoietic origin, or during an immuneresponse inthecontextofinterferon-g(IFN-g) ortumornecrosisfactor-a(TNF-a)stimulation,thethree catalyticallyactivebsubunits(b1,b2,andb5)arereplaced bytheinduciblecatalyticsubunitsLMP2(b1i),MECL-1 (b2i),andLMP7 (b5i) duringproteasome neosynthesis.

Theimmunologicalbenefitoftheresulting‘immunopro- teasome’ isattributedto structural changes in substrate bindingpockets[2]andanalteredcleavagepatternofthe multicatalytic complex, thus optimizing quality and

quantity of the generated peptides for presentation on MHC class Imolecules[3–6]. Becauseof a pivotalrole inclass-Iligandgeneration,theimmunoproteasomeshapes thenaı¨veCD8-T-cellrepertoireinthethymusandcyto- toxic T-cell responses in the periphery [7,8,9,10–12].

Recently,novelfunctionsofimmunoproteasomesinauto- immunediseases,virusinducedneuroinflammation,Tcell expansion, T helper cell differentiation, and cytokine productionhavebeenproposed[13,14–16].Inthisreview wediscussthelatestfindingsontheimmunoproteasomein antigenprocessingaswellasthesenovelfunctions.

Theimmunoproteasomeinantigenprocessing

The major histocompatibility complex (MHC) class-I restrictedpathwayofantigenprocessingallowsthepres- entation ofintracellularantigenstocytotoxicTlympho- cytes.The main proteaseinvolvedinthisprocessisthe proteasome [17–19]. It is generally assumed that the immunoproteasome improves quality and quantity of generatedclass-Iligands.Indeed,aproteomicanalysisof MHC-Iassociatedpeptidesderivedfromwildtype(WT) andb2i//b5i/-doubledeficientmousedendriticcells (DC)demonstratedthatimmunoproteasomesdramatically increasetheabundanceanddiversityofclass-Iligands[20].

The recentlysolvedcrystalstructuresoftheconstitutive proteasomeandimmunoproteasomeofthemouseat2.9A˚ providesanexplanationforenhancedantigenprocessing byimmunoproteasomes[2](Table1).Theb1isubstrate- binding channel islinedwith hydrophobicamino acids, whichenhancestheproductionofMHC-Iepitopesending withsmall,nonpolarresidues.Theb5i-mediatedpeptide bond hydrolysis might be kinetically favored by an increasedhydrophilicityoftheactivesiteandadditional hydrogenbondsshapingtheoxyanionhole.Fromastruc- turalpointofview,theexchangeofb2/b2iisnotobvious, anditisquiteanenigmawhy,nevertheless,b2ideficient miceareprotectedfromexperimentalcolitis[14]andwhy b2iinfluenceshomeostaticproliferation[21].

AnalysisoftheTcellresponseinmurinecytomegalovirus (MCMV)infectedb5i-deficient micerevealed a critical role for immunoproteasomes [22]. Interestingly, all MCMV-derived CD8+ T cell epitopes tested were affected by the loss of b5i, suggesting that the virus has evolved a primary sequence poorly processed by constitutiveproteasomes.Theauthorshypothesizedthat DCscontainingbothimmunoproteasomesandconstitu- tive proteasomeselicittheacuteMCMV-specificT cell response,whereasthechronicMCMVinfectionismain- tained in cells expressing constitutive proteasomes.

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-219861

(2)

Hence, with the help of expression of immunoprotea- some-dependentepitopes, MCMV mayevade immune recognitionleadingtoviralpersistence.

The structural properties rather than the proteolytic activity of immunoproteasome subunits are needed for thegenerationofsome epitopes[23,24],buttheunder- lying mechanisms have remained elusive. In a recent study,thepresentationofthemaleHYAg-derivedepi- topeUTY246–254andtheinfluenzavirusmatrixM158–66 epitopewereanalyzed, whichboth weredependent on thestructureofb1iorb5i,respectively,butnotontheir catalyticactivity[25].Withdifferentproteasomeinhibi- torsitwasshownthatb5iprotectsmatrixM158–66from cleavagebyb5andb1iprotectsUTY246–254fromcleavage byb1,proposinganovelmechanisticbasisforthefunc- tionofimmunoproteasomesubunits (Figure 1).

Using newly developed immunoproteasome subunit- specificantibodies,Guillaume etal.isolatedandcharac- terized human 20S proteasomes that are intermediate between the standard and the immunoproteasome [26]. Rather than jointly incorporating b1i, b2i, and b5iinto immunoproteasomes,intermediateproteasomes incorporateonlyone(b5i)ortwo(b2iandb5i)immuno- proteasomesubunits.Theexistenceofintermediatepro- teasomes is consistent with the rules of cooperative assembly of immunoproteasome subunits [27–29].

Dependingon the investigated organ, the intermediate

proteasomesrepresentbetween30%and50%ofthetotal proteasomecontent.Notunexpectedly,theintermediate proteasomes have different cleavage properties in the generationofclassIpeptides[26,30].Theexistenceof 4differenttypesofproteasomeswithincellsbroadensthe MHC-I-presented peptidome. It is conceivable that an asymmetrichybridproteasome,consistingofimmunopro- teasome and constitutive proteasome, exists. Neverthe- less,Guilllaume et al. didnot find asymmetrical b5/b5i proteasomesinmelanomacellsandkidneysamples[26].

Micedeficientforoneortwoimmunoproteasomecatalytic subunitshaverelativelymodestchangesinantigenpres- entation(summarizedin[10]).Toinvestigatetheantiviral immuneresponseinmicedevoid ofimmunoproteasome activity, we analyzed the lymphocytic choriomeningitis virus specific T cell response in b1i//b2i/ double- deficient mice treated with the b5i-selective inhibitor ONX0914togeneratemicedevoidofimmunoproteasome activity[11].Micedevoidofimmunoproteasomeactivity couldmountastrongCTL-response,althoughtheTcell responsetosomeepitopeswasslightlyalteredcomparedto WTmice. Interestingly,b1i andb2i areneededforthe generation of the lymphocytic choriomeningitis virus (LCMV)-derivedepitopeNP205212,whereasb5idestroys NP205212 inb1i/b2i deficientcells.Amorepronounced phenotype with respect to antigen presentation was observed in genetically engineered mice completely lacking immunoproteasome subunits [31]. Similar to

Table1

Immunoproteasomesubunit-inducedalterationsinthe20Sproteasome(informationderivedfromRef.[2]) Immunoproteasome Alterationimmunovs.

constitutivesubunit

Alterationinsubstratebindingchannel Consequences

MECL-1(b2i) D53E Identicalsubstratebindingchannel. Therationalefortheincorporationof subunitb2iintothe

immunoproteasomeremainselusive.

LMP2(b1i) T20V,T31F,R45L,andT52A IncreaseinhydrophobicityofS1pocket.

DiminishesS1pocketinsize.

CD8+Tcellepitopeswithnon-polarC- terminisuchasIle,Leu,orValare produced.Theseepitopesarebetter suitedforpresentationonMHC-I molecules.Peptidebondhydrolysis preferentiallyoccursaftersmall, hydrophobic,andbranchedresidues.

T22A,andA27VinLMP2;

Y114Hinb2i

DecreasesizeandincreasepolarityofS3 pocket.

AlteredaminoacidpreferenceatP3.

LMP7(b5i) Ala20,Met45,Ala49,and Cys52inS1pocketare unchanged.

HydrophobiccharacterofS1pocketis maintained.

Bothb5andb5iareresponsibleforthe chymotrypsin-likeactivityofthe proteasome.

Gly48SerorCys ShallowS2pocket. LimitssizeofP2aminoacids.

Ala27Ser RestrictssizeofS3pocketandendowsit withamorehydrophiliccharacter.

LimitsP3aminoacidstosmall hydrophilicaminoacids.

Distinctconformation ofMet45

ResultsinspaciousS1pocketinb5i. b5icanaccommodatelargeramino acidsinS1comparedtob5.

A46S,V127T Increasethehydrophilicitysurrounding theactivesitenucleophilicThr1Ogofb5i.

Elevatedpolaritymightfavorpeptide bondhydrolysis.

SerOg,Thr127Og,and Gly47NH

Builduniquehydrogennetwork. Stabilizationofthetetrahedral transitionstateduringcatalysis.

(3)

b5i-deficientmice[32],MHC-Isurfaceexpressionintriply deficientmicewasreducedbyapprox.50%.Presentation ofnumerousCD8+Tcellepitopesderivedfromdifferent antigenswas markedlychanged intriple-deficientmice.

Interestingly,mostinvestigatedepitopeswerepoorlypre- sented in cells completely lacking immunoproteasome subunits,except forthe LCMV-derived epitope GP276

286,whichelicitedasignificantlyincreasedCTL-response in LCMV-infected triple-deficient mice. An increased presentationofthisTcellepitopewasalreadypreviously observed in b1i and b5i single-deficient mice [7,33], whereas b2i-deficient mice demonstrated an increased GP276286-CTL-responseowingtoalterationsintheTcell repertoire [8]. Mass spectrometric analysis of MHC-I boundpeptidesonsplenocytesderivedfromb1i/b2i/b5i triple-deficientorWTmicerevealedmarkedchangesin theMHC-Ipeptiderepertoire[31].Approx.1/3 ofthe detectedpeptideswereuniquelypresentedonWTcells,

1/3uniquelyontriple-deficientcells,and1/3waspresented on both cell types. Interestingly, triple-deficient mice rejectedadoptivelytransferredWTsplenocytes,whereas adoptivelytransferredimmunoproteasome-deficientcells weretoleratedinWTmice.Asimilarobservationwasmade withWTskingraftedontob5i/mice,butnotviceversa [4].Whytheimmunoproteasome-deficienttransplantsare notrejectedfromWTmice,althoughtheypresentapprox.

1/3 unique MHC-I peptides, has remained elusive and needsfurtherinvestigation.

Otherimmunologicalfunctionsofthe immunoproteasome

In recentyearsit became apparentthatimmunoprotea- somesdo notonly function tochange theprocessing of MHC-Iligands,butalsopossessadditionalimmunological functions. Aninvolvementoftheimmunoproteasome in NF-kB activation has remained controversial [34–37].

Figure1

constitutive proteasome

proteasome cleavage

no presentation due to epitope destruction

presentation on MHC-I

TCD8+

proteasome cleavage

protein containing CD8+ T cell epitope CD8+ T cell epitope

MHC-I T cell receptor

proteasome cleavage immunoproteasome

Current Opinion in Immunology

TheimmunoproteasomeprotectsaCD8+Tcellepitope.AproteincontainingaCD8+Tcellepitope(inred)isdestroyedbytheconstitutive proteasome.TheinductionoftheimmunoproteasomesubunitsandthereplacementoftheircorrespondingconstitutivesubunitsprotectsthisTcell epitopefromthedestructionbytheconstitutiveproteasomeandthepeptidecanbepresentedtocytotoxicTcells(TCD8+)[25].

(4)

Usingb1iandb5ispecificinhibitors,Jangetal.recently demonstratedthatimmunoproteasomesarenotessential forcanonicalNF-kBactivation[38].In2001,Chenetal.

reportedthatimmunoproteasomesaremajordeterminants ofthehierarchyofTcellepitopesduringantiviralCTL responses. Alreadyinthis study itwas notedthat adop- tively transferred b1i-deficient T cells werenot ableto expandininfluenzavirusinfectedWThosts[9],butthis phenomenonwassuspectedtorelyontherejectionofthe adoptivelytransferredcells[39]. Theinabilityofimmu- noproteasomesubunit-deficientTcellstoexpandinavirus infectedWThostwasalsoobservedbyMoebiusetal.,who providedstrongevidencethatthelossofb5i-deficientT cellsaftertransferwasnotaconsequenceofgraftrejection bythehost[15].Hence,theimmunoproteasomepossesses a so far uncharacterized function in controlling T cell expansioninaninfectedhostandthereforemightqualify asapotentialnewtargetforthesuppressionofundesired pro-inflammatoryTcellresponses.Indeed,withthehelp of a b5i-selective inhibitor (named PR-957 and later renamed to ONX 0914), the autoreactive immune responsesintwomousemodelsofarthritisanda model ofdiabetescouldbesuppressed[13].Additionally,anew function of immunoproteasomesin cytokine production and T helper cell differentiation was proposed [13].

Furthermore,b5iinhibitionpreventedexperimentalcoli- tis[14],murinelupuslikedisease[40],andHashimoto’s thyroiditis [41]. Not merely inhibition, but also genetic deficiency of immunoproteasome subunits attenuates inflammatoryboweldiseaseinmousemodels,suggesting a special contribution of the immunoproteasome in the etiologyofinflammatory boweldiseases[14,42,43]. Dis- parate results have been obtained in mouse models of murine autoimmune encephalomyelitis (EAE). Frausto et al. demonstrated that the immunoproteasome is not requiredfortheestablishmentofmyelinoligodendrocyte glycoprotein-induced EAE in b1i-deficient mice [44], whereas Seifert et al. reported anexacerbation of EAE symptoms in b5i/ mice [45]. Additionally, it was demonstratedthat immunoproteasomes arerequiredfor the efficient degradation of poly-ubiquitylated proteins and the preservation of cell viability under cytokine- inducedoxidativestress[45,46].However,howanimmu- noproteasomesubunit shouldcontrolsubstrateaccessto the 26S proteasomes has remained elusive especially becausethehigh-resolutioncrystal structuresof the20S constitutive–andimmunoproteasomeofthemousedid notrevealanydifferenceinthea-ringswhereproteasome regulatorsbind[2].

Severalrecenthumangeneticsstudiessupporttheinvol- vementofimmunoproteasomesininflammatorydisorders [47,48,49]. Geneticmapping ofpatients with anauto- somal-recessive auto-inflammatory syndrome character- ized by joint contractures, muscle atrophy, microcytic anemia,andpanniculitis-inducedlipodystrophysyndrome (JMP syndrome) revealed a point mutation (T75M) in

PSMB8,thegeneencodingforb5i,leadingtoadisruption of the tertiary structure of b5i [47]. Patients bearing a G176V mutation in the PSMB8 gene, suffered from a newlyrecognizedtypeofJapaneseautoinflammatorysyn- drome with lipodystrophy (JASL). Themutation mani- fested in low b5i expression causing increased p38 phosphorylation, which resulted in increased IL-6 pro- duction[48].Similarly,Arimaetal.foundthataG201V mutationinthePSMB8genecausestheautoinflammatory disorderNakajo-Nishimurasyndrome[49].Themutation disruptstheb-sheetstructureofb5i,resultinginaccumu- lationofpoly-ubiquitylatedandoxidizedproteinswithin cells expressing immunoproteasomes. Furthermore, a strong associationbetween human type 1 diabetes and twosinglenucleotidepolymorphismsinthePSMB8gene demonstrateda correlationofautoimmunediseaseswith geneticalterationofb5i[50]. Theauthorsalso showed thatb2i/b5idouble-deficientmicedevelopCD8+Tcell- mediatedearly-stagemultiorganautoimmunityfollowing irradiationandbonemarrowreconstitution,suggestingthat immunosubunitsalso playanimportant function in the prevention ofCD8+ Tcell-mediated autoimmune reac- tions[50]ashasbeenhypothesizedpreviously[51].

Figure2

Th1

β5i inhibition

IFN- γ, IL-12

IL-4

TGF-β, IL-6

TGF- β Th0

Th17 Th2

Treg

Current Opinion in Immunology

InfluenceofLMP7onThelpercelldifferentiation.Dependingonthe cytokineenvironmentnaı¨veThelpercells(Th0)differentiateintoTh1, Th2,Th17,orregulatoryTcells(Treg).":enhanceddifferentiation;!:no influence;#:reduceddifferentiation[52].

(5)

How does the immunoproteasome exert its effect in autoimmune diseases? A likely explanation could be through the regulation of inflammatory cytokines or T helpercelldifferentiation.Indeed,selectiveinhibitionor geneticablation ofb5i resultedindiminished Th1and Th17differentiation,enhanceddevelopmentofregulat- ory T cells, but no effect on Th2 differentiation [13,43,52](Figure 2). Muchamuel et al. first demon- stratedthatselective inhibition ofb5i blockedthe pro- duction of IL-23 by activated monocytes and the productionof IFN-g and IL-2 by T cells, whereas the inhibition of b5 did not substantially affect cytokine release [13]. Mixed proteasomes expressed in b1i/ micedecreasecytokineproduction byDCs,whichsup- portsthenotionofimmunoproteasomesplayingarolein cytokineproduction[53].PMA/ionomycinstimulationof b2i//b5i/ derived splenocytes demonstrated that immunoproteasomes regulate the expression of IFN-g, IL-4,IL-10, IL-2Rb,GATA3,andT-bet[54].Further- more, LPS-stimulated thioglycollate-elicited macro- phages from immunoproteasome-deficient mice were found to produce markedly reduced NO levels owing todefectsintheTRIF/TRAMandIRF-3pathway[55].

Conclusions

Thesevere phenotype in MHC-I ligand generation of triplyimmunoproteasome-deficientmice [31]and the existenceofintermediateimmunoproteasomesdiversify- ingtheMHC-Irepertoire[26]emphasizetheimportant role of the immunoproteasome in antigen processing.

The development of a specific inhibitor of b5i has revealed a new function of immunoproteasomes in inflammatoryautoimmunedisorders. However,howthe immunoproteasome is mechanistically involved in the newlydescribedprocesses has remained unclearso far.

We propose that the immunoproteasome might selec- tively processes a factor that is required for regulating cytokineproductionandThelpercelldifferentiation,but suchafactorremainstobeidentified.Thoughselective inhibitors have been described, the recently solved immunoproteasome crystal structures will promote the structure-guideddesignofnewinhibitoryleadstructures [2]. Finally, clinical investigations, with either ONX 0914 or other immunoproteasome inhibitors will show whetherthepromisingpre-clinicalfindingscanbetrans- latedtohumanmedicine.

Conflictofinterest

C.J.K.isanemployeeofandshareholderinOnyxPhar- maceuticals.M.B.andM.G.havenofinancialconflictsof interest.

Acknowledgements

ThisworkwasfundedbytheGermanResearchFoundationgrantGR1517/

12-1,theKonstanzResearchSchoolChemicalBiology,theFritzThyssen FoundationgrantAZ10.10.2.122,andtheSwissNationalScience Foundationgrant31003A_138451.

References andrecommendedreading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

ofspecialinterest ofoutstandinginterest

1. KloetzelPM:Generationofmajorhistocompatibilitycomplex classIantigens:functionalinterplaybetweenproteasomes andTPPII.NatImmunol2004,5:661-669.

2. HuberEM,BaslerM,SchwabR,HeinemeyerW,KirkCJ, GroettrupM,GrollM:Immuno-andconstitutiveproteasome crystalstructuresrevealdifferencesinsubstrateandinhibitor specificity.Cell2012,148:727-738.

Describesthehigh-resolutioncrystalstructureofthemouseimmuno- proteasomeandconstitutiveproteasome.

3. GroettrupM,RuppertT,KuehnL,SeegerM,StanderaS, KoszinowskiU,KloetzelPM:Theinterferon-g-inducible11S regulator(PA28)andtheLMP2/LMP7subunitsgovernthe peptideproductionbythe20Sproteasomeinvitro.JBiolChem 1995,270:23808-23815.

4. ToesREM,NussbaumAK,DegermannS,SchirleM, EmmerichNPN,KraftM,LaplaceC,ZwindermanA,DickTP, MullerJetal.:Discretecleavagemotifsofconstitutiveand immunoproteasomesrevealedbyquantitativeanalysisof cleavageproducts.JExpMed2001,194:1-12.

5. SchwarzK,vandenBroekM,KostkaS,KraftR,SozaA, SchmidtkeG,KloetzelPM,GroettrupM:Overexpressionofthe proteasomesubunitsLMP2LMP7,andMECL-1butnot PA28a/benhancesthepresentationofanimmunodominant lymphocyticchoriomeningitisvirusTcellepitope.JImmunol 2000,165:768-778.

6. SijtsAJAM,StanderaS,ToesREM,RuppertT,BeekmanNJCM, vanVeelenPA,OssendorpFA,MeliefCJM,KloetzelPM:MHC classIantigenprocessingofanAdenovirusCTLepitopeis linkedtothelevelsofimmunoproteasomesininfectedcells.J Immunol2000,164:4500-4506.

7. BaslerM,YouhnovskiN,VanDenBroekM,PrzybylskiM, GroettrupM:Immunoproteasomesdown-regulate presentationofasubdominantTcellepitopefrom lymphocyticchoriomeningitisvirus.JImmunol2004, 173:3925-3934.

8. BaslerM,MoebiusJ,ElenichL,GroettrupM,MonacoJJ:An alteredTcellrepertoireinMECL-1-deficientmice.JImmunol 2006,176:6665-6672.

9. ChenWS,NorburyCC,ChoYJ,YewdellJW,BenninkJR:

Immunoproteasomesshapeimmunodominancehierarchies ofantiviralCD8(+)TcellsatthelevelsofTcellrepertoireand presentationofviralantigens.JExpMed2001,193:1319-1326.

DescribesthatimmunoproteasomesaltertheTcellrepertoireandshape theepitopehierarchyoftheanitviralcytotoxicTlymphocyteresponse.

10. GroettrupM,KirkCJ,BaslerM:Proteasomesinimmunecells:

morethanpeptideproducers? NatRevImmunol2010, 10:73-78.

11. BaslerM,BeckU,KirkCJ,GroettrupM:Theantiviralimmune responseinmicedevoidofimmunoproteasomeactivity.J Immunol2011,187:5548-5557.

12. OsterlohP,LinkemannK,TenzerS,RammenseeHG,RadsakMP, BuschDH,SchildH:ProteasomesshapetherepertoireofT cellsparticipatinginantigen-specificimmuneresponses.Proc NatlAcadSciUSA2006,103:5042-5047.

13. MuchamuelT,BaslerM,AujayMA,SuzukiE,KalimKW,LauerC, SylvainC,RingER,ShieldsJ,JiangJetal.:Aselectiveinhibitor oftheimmunoproteasomesubunitLMP7blockscytokine productionandattenuatesprogressionofexperimental arthritis.NatMed2009,15:781-787.

Thepaperdescribesthatimmunoproteasomesareinvolvedincytokine production,Th17celldifferentiation,andautoimmunediseases.

14. BaslerM,DajeeM,MollC,GroettrupM,KirkCJ:Preventionof experimentalcolitisbyaselectiveinhibitorofthe

immunoproteasome.JImmunol2010,185:634-641.

(6)

15. MoebiusJ,vandenBroekM,GroettrupM,BaslerM:

Immunoproteasomesareessentialforsurvivaland

expansionofTcellsinvirus-infectedmice.EurJImmunol2010, 40:3439-3449.

16. KremerM,HennA,KolbC,BaslerM,MoebiusJ,GuillaumeB, LeistM,VandenEyndeBJ,GroettrupM:Reduced

immunoproteasomeformationandaccumulationof immunoproteasomalprecursorsinthebrainsoflymphocytic choriomeningitisvirus-infectedmice.JImmunol2010, 185:5549-5560.

17. RockKL,GrammC,RothsteinL,ClarkK,SteinR,DickL,HwangD, GoldbergAL:Inhibitorsoftheproteasomeblockthe degradationofmostcellproteinsandthegenerationof peptidespresentedonMHCclassImolecules.Cell1994, 78:761-771.

18. BaslerM,GroettrupM:Noessentialrolefortripeptidyl peptidaseIIfortheprocessingofLCMV-derivedTcell epitopes.EurJImmunol2007,37:896-904.

19. BaslerM,LauerC,BeckU,GroettrupM:Theproteasome inhibitorbortezomibenhancesthesusceptibilitytoviral infection.JImmunol2009,183:6145-6150.

20. deVerteuilD,Muratore-SchroederTL,GranadosDP,FortierMH, HardyMP,BramoulleA,CaronE,VincentK,MaderS,LemieuxS etal.:Deletionofimmunoproteasomesubunitsimprintsonthe transcriptomeandhasabroadimpactonpeptidespresented bymajorhistocompatibilitycomplexImolecules.MolCell Proteomics2010,9:2034-2047.

21. ZaissDM,deGraafN,SijtsAJ:Theproteasomeimmunosubunit multicatalyticendopeptidasecomplex-like1isaT-cell- intrinsicfactorinfluencinghomeostaticexpansion.Infect Immun2008,76:1207-1213.

22. HutchinsonS,SimsS,O’HaraG,SilkJ,GileadiU,CerundoloV, KlenermanP:Adominantrolefortheimmunoproteasomein CD8+Tcellresponsestomurinecytomegalovirus.PLoSONE 2011,6:e14646.

23. GileadiU,MoinsTeisserencHT,CorreaI,BoothBL,DunbarPR, SewellAK,TrowsdaleJ,PhillipsRE,CerundoloV:Generationof animmunodominantCTLepitopeisaffectedbyproteasome subunitcompositionandstabilityoftheantigenicprotein.J Immunol1999,163:6045-6052.

24. SijtsAJAM,RuppertT,RehermannB,SchmidtM,KoszinowskiU, KloetzelPM:EfficientgenerationofahepatitisBvirus cytotoxicTlymphocyteepitoperequiresthestructural featuresofimmunoproteasomes.JExpMed2000, 191:503-513.

25. BaslerM,LauerC,MoebiusJ,WeberR,PrzybylskiM,KisselevAF, TsuC,GroettrupM:Whythestructurebutnottheactivityofthe immunoproteasomesubunitlowmolecularmasspolypeptide 2rescuesantigenpresentation.JImmunol2012,

189:1868-1877.

Thispublicationdescribesapreviouslyunrecognizedfunctionofimmu- noproteasome subunits in protecting CD8+ T cell epitope from the destructionbysubunitsoftheconstitutiveproteasome.

26.

GuillaumeB,ChapiroJ,StroobantV,ColauD,VanHolleB, ParviziG,Bousquet-DubouchMP,TheateI,ParmentierN,Vanden EyndeBJ:Twoabundantproteasomesubtypesthatuniquely processsomeantigenspresentedbyHLAclassImolecules.

ProcNatlAcadSciUSA2010,107:18599-18604.

Thisstudydescribestheexistenceofintermediateproteasomes,which havedifferentcleavagepropertiescomparedtotheconstitutiveprotea- someortheimmunoproteasome.

27. GriffinTA,NandiD,CruzM,FehlingHJ,VanKaerL,MonacoJJ, ColbertRA:Immunoproteasomeassembly:cooperative incorporationofinterferongamma(IFN-gamma)-inducible subunits.JExpMed1998,187:97-104.

28. GroettrupM,StanderaS,StohwasserR,KloetzelPM:The subunitsMECL-1andLMP2aremutuallyrequiredfor incorporationintothe20Sproteasome.ProcNatlAcadSciUSA 1997,94:8970-8975.

29. DeM,JayarapuK,ElenichL,MonacoJJ,ColbertRA,GriffinTA:

Beta2subunitpropeptidesinfluencecooperativeproteasome assembly.JBiolChem2003,278:6153-6159.

30. GuillaumeB,StroobantV,Bousquet-DubouchMP,ColauD, ChapiroJ,ParmentierN,DaletA,VandenEyndeBJ:Analysisof theprocessingofsevenhumantumorantigensby

intermediateproteasomes.JImmunol2012,189:3538-3547.

31. KincaidEZ,CheJW,YorkI,EscobarH,Reyes-VargasE, DelgadoJC,WelshRM,KarowML,MurphyAJ,ValenzuelaDM etal.:Micecompletelylackingimmunoproteasomesshow majorchangesinantigenpresentation.NatImmunol2012, 13:129-135.

Inthis paper theauthorsdemonstrate, thatmice completelylacking immunoproteasomes have major alterations in antigen presentation andstimulationofcytotoxicTcells.

32. FehlingHJ,SwatW,LaplaceC,KuehnR,RajewskyK,MuellerU, vonBoehmerH:MHCclassIexpressioninmicelacking proteasomesubunitLMP-7.Science1994,265:1234-1237.

33. NussbaumAK,Rodriguez-CarrenoMP,BenningN,BottenJ, WhittonJL:Immunoproteasome-deficientmicemountlargely normalCD8+Tcellresponsestolymphocytic

choriomeningitisvirusinfectionandDNAvaccination.J Immunol2005,175:1153-1160.

34. HayashiT,FaustmanD:NODmicearedefectiveinproteasome productionandactivationofNF-kappaB.MolCellBiol1999, 19:8646-8659.

35. HayashiT,FaustmanD:Essentialroleofhumanleukocyte antigen-encodedproteasomesubunitsinNF-kappaB activationandpreventionoftumornecrosisfactor-alpha- inducedapoptosis.JBiolChem2000,275:5238-5247.

36. RunnelsHA,WatkinsWA,MonacoJJ:LMP2expression andproteasomeactivityinNODmice.NatMed2000, 6:1064-1065.

37. KesslerBM,LennonDumenilAM,ShinoharaML,LipesMA, PloeghHL:LMP2expressionandproteasomeactivityinNOD mice.NatMed2000,6:1064.

38. JangER,LeeNR,HanS,WuY,SharmaLK,CarmonyKC,MarksJ, LeeDM,BanJO,WehenkelMetal.:Revisitingtheroleofthe immunoproteasomeintheactivationofthecanonicalNF- kappaBpathway.MolBiosyst2012,8:2295-2302.

39. PangKC,SandersMT,MonacoJJ,DohertyPC,TurnerSJ, ChenW:Immunoproteasomesubunitdeficienciesimpact differentiallyontwoimmunodominantinfluenzavirus-specific CD8+Tcellresponses.JImmunol2006,177:7680-7688.

40. IchikawaHT,ConleyT,MuchamuelT,JiangJ,LeeS,OwenT, BarnardJ,NevarezS,GoldmanBI,KirkCJetal.:Novel proteasomeinhibitorshaveabeneficialeffectinmurine lupusviathedualinhibitionoftypeIinterferonand autoantibodysecretingcells.ArthritisRheum2012, 64:493-503.

41. NagayamaY,NakaharaM,ShimamuraM,HorieI,ArimaK, AbiruN:Prophylacticandtherapeuticefficaciesofaselective inhibitoroftheimmunoproteasomeforHashimoto’s thyroiditis,butnotforGraves’hyperthyroidism,inmice.Clin ExpImmunol2012,168:268-273.

42. FitzpatrickLR,KhareV,SmallJS,KoltunWA:Dextransulfate sodium-inducedcolitisisassociatedwithenhancedlow molecularmasspolypeptide2(LMP2)expressionandis attenuatedinLMP2knockoutmice.DigDisSci2006, 51:1269-1276.

43. SchmidtN,GonzalezE,VisekrunaA,KuhlAA,LoddenkemperC, MollenkopfH,KaufmannSH,SteinhoffU,JoerisT:Targetingthe proteasome:partialinhibitionoftheproteasomeby bortezomibordeletionoftheimmunosubunitLMP7 attenuatesexperimentalcolitis.Gut2010,59:896-906.

44. FraustoRF,CrockerSJ,EamB,WhitmireJK,WhittonJL:Myelin oligodendrocyteglycoproteinpeptide-inducedexperimental allergicencephalomyelitisandTcellresponsesareunaffected byimmunoproteasomedeficiency.JNeuroimmunol2007, 192:124-133.

45. SeifertU,BialyLP,EbsteinF,Bech-OtschirD,VoigtA,SchroterF, ProzorovskiT,LangeN,SteffenJ,RiegerMetal.:

Immunoproteasomespreserveproteinhomeostasisupon interferon-inducedoxidativestress.Cell2010,142:613-624.

(7)

Thisstudy proposes thatimmunoproteasomes are more capable to degradepoly-ubiquitylatedoroxidizedproteinsthanconstitutiveprotea- somes.

46. OpitzE,KochA,KlingelK,SchmidtF,ProkopS,RahnefeldA, SauterM,HeppnerFL,VolkerU,KandolfRetal.:Impairmentof immunoproteasomefunctionbybeta5i/LMP7subunit deficiencyresultsinsevereenterovirusmyocarditis.PLoS Pathog2011,7:e1002233.

47. AgarwalAK,XingC,DeMartinoGN,MizrachiD,HernandezMD, SousaAB,MartinezdeVillarrealAB,dosSantosHG,GargA:

PSMB8encodingthebeta5iproteasomesubunitismutatedin jointcontractures,muscleatrophy,microcyticanemia,and panniculitis-inducedlipodystrophysyndrome.AmJHum Genet2010,87:866-872.

48. KitamuraA,MaekawaY,UeharaH,IzumiK,KawachiI, NishizawaM,ToyoshimaY,TakahashiH,StandleyDM,TanakaK etal.:AmutationintheimmunoproteasomesubunitPSMB8 causesautoinflammationandlipodystrophyinhumans.JClin Invest2011,121:4150-4160.

This publicationshows thata mutation in the LMP7 gene leads to autoinflammationinhumans.

49. ArimaK,KinoshitaA,MishimaH,KanazawaN,KanekoT, MizushimaT,IchinoseK,NakamuraH,TsujinoA,KawakamiA etal.:Proteasomeassemblydefectduetoaproteasome subunitbetatype8(PSMB8)mutationcausesthe autoinflammatorydisorder,Nakajo-Nishimurasyndrome.

ProcNatlAcadSciUSA2011,108:14914-14919.

The authorsdemonstrate that patients withNakajo-Nishimura syn- dromehaveadefect inproteasomeassembly owingtoamutation intheLMP7gene.

50. ZaissDM,BekkerCP,GroneA,LieBA,SijtsAJ:Proteasome immunosubunitsprotectagainstthedevelopmentofCD8T cell-mediatedautoimmunediseases.JImmunol2011, 187:2302-2309.

Thispapersshowsthattheimmunoproteasomeplaysanimportantrolein CD8+Tcellmediatedautoimmunediseases.

51. GroettrupM,KhanS,SchwarzK,SchmidtkeG:Interferon-g inducibleexchangesof20Sproteasomeactivesitesubunits:

Why? Biochimie2001,83:367-372.

52. KalimKW,BaslerM,KirkCJ,GroettrupM:Immunoproteasome subunitLMP7deficiencyandinhibitionsuppressesTh1and Th17butenhancesregulatoryTcelldifferentiation.JImmunol 2012,189:4182-4193.

ThisstudydemonstratesthatimmunoproteasomesplayacrucialroleinT helpercelldifferentiation.

53. HensleySE,ZankerD,DolanBP,DavidA,HickmanHD,EmbryAC, SkonCN,GrebeKM,GriffinTA,ChenWetal.:Unexpectedrole fortheimmunoproteasomesubunitLMP2inantiviralhumoral andinnateimmuneresponses.JImmunol2010,184:4115-4122.

54. RockwellCE,MonacoJJ,QureshiN:Acriticalroleforthe inducibleproteasomalsubunitsLMP7andMECL1incytokine productionbyactivatedmurinesplenocytes.Pharmacology 2012,89:117-126.

55. ReisJ,HassanF,GuanXQ,ShenJ,MonacoJJ,PapasianCJ, QureshiAA,VanWay CW3rd,VogelSN,MorrisonDCetal.:The immunoproteasomesregulateLPS-inducedTRIF/TRAM signalingpathwayinmurinemacrophages.CellBiochem Biophys2011,60:119-126.

Referenzen

ÄHNLICHE DOKUMENTE

Report of the Scientific Advisory Board on Developments in Science and Technology for the Third Special Session of the Conference of the States Parties to Review the Operation of

The authors go on elaborating the consequences of these myths (for instance, centralisation goes with Nature Benign, anarchy with Nature Ephem- eral and control with

In exactly this way the working individual in his or her everyday life-world is able to experience the “total- ity” of the life-world with its different reality spheres; the

Consistent with this is the finding that the b5c-specific inhibitor PR-825 suppresses production of IFN- c or IL-17 in stimulated T cells from LMP7 / but not wild type mice, whereas

Initial screens using monomeric holo NqrC 33–257 also yielded no crystals when the protein was still in the same buffer as eluted from size-exclusion chromatography..

We also looked into the molecular details of this novel finding focussing on transcription factors and regulatory proteins especially with respect to different T-helper cell

Keywords: T cell receptor, membrane organization, receptor oligomerization, signaling assembly, T cell activation..

Although the blood-brain barrier limits the entry of large molecules and cells like erythrocytes, platelets and most lymphoid cells into the central nervous system there is