• Keine Ergebnisse gefunden

the Uniqueness of

N/A
N/A
Protected

Academic year: 2022

Aktie "the Uniqueness of"

Copied!
9
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

On the Uniqueness of Real Closures and the Existence of Real Places

M A N F R E D K N E B U S C H ( S a a r b r ü c k e n )

(2)

a is the restriction o f r to K, i f a = xocp^. I f K a n d L are fields, this means that cp is c o m p a t i b l e w i t h the orderings c o r r e s p o n d i n g to a a n d T. I f p is a p r i m e i d e a l o f ^ ( A T ) l y i n g m i n i m a l l y over A{cp) then there exists a ( m i n i m a l ) p r i m e i d e a l q o f W(L) w i t h

^>^1(q) = p (cf. [5] C h a p . I I . § 2 n o 7 P r o p . 16). T h i s r e m a r k i m m e d i a t e l y i m p l i e s

P R O P O S I T I O N 2A. A signature a of K can be extended to a signature of L with respect to cp if and only if <j(A((p)) = 0.

§3. The Transfer Map

N o w assume i n a d d i t i o n that cp:K-+L is finite a n d separable. I n o u r case, this means that i n the d e c o m p o s i t i o n L = Ll x ••• x Lr o f L as a A^-module c o r r e s p o n d i n g to the d e c o m p o s i t i o n K=Kl x ••• x K„ any Lt is either zero o r a p r o d u c t o f finite separable field extensions o f Kt. F o r later convenience I r e c a l l the d e f i n i t i o n o f the regular trace Tr = Tr(p f r o m L to K ([3], p . 397, [7]). W e identify the r i n g E n dx( L ) o f AT-linear e n d o m o r p h i s m s o f L w i t h UomK(L, K)®KL. T h i s is possible since L is a finitely generated projective AT-module. F o r a n y x i n L we denote b y L(x) the ^ - l i n e a r e n d o m o r p h i s m j>h->jty o f L. W e further denote b y e: E n d * ( L ) -> K the e v a l u a t i o n m a p f®x\->f(x) {fin H o m ( L , K), x i n L } . T h e regular trace is defined b y

Tr(x) = e(L(x)).

A s is w e l l k n o w n ( l o c . cit.) the A^-bilinear f o r m Tr{xy) o n L is n o n singular. F r o m this one sees i m m e d i a t e l y ( c f [6]) that for a n y space (E9 B) over L the Af-module E e q u i p p e d w i t h the b i l i n e a r f o r m TroB: Ex E-> AT is a space over K. W e thus get a n a d d i t i v e m a p ([18])

Tr*:W(L)-+W(K).

s e n d i n g { ( £ , B)} to { ( £ , TroB)}. T h i s " t r a n s f e r - m a p " is related to (p+\W(K)^> W(L) b y the f o l l o w i n g " F r o b e n i u s l a w "

P R O P O S I T I O N 3.1. ([18]).

x-Tr* (y) = Tr*((p* (x) y)for x in W(K) and y in W{L).

I n fact, f o r spaces (Eu Bx) over K a n d (E2, B2) over L the c a n o n i c a l m a p f r o m El®KE1 to (L®KEi)®LE2 is a n i s o m o r p h i s m o f spaces w i t h respect to the f o r m s Bl®K{TroB1) a n d Tro(B[®LB2) where B[ is o b t a i n e d f r o m Bt b y base e x t e n s i o n .

W e denote the image Tr*(W(L)) b y M{cp). T h e F r o b e n i u s l a w i m p l i e s

(3)

C O R O L L A R Y 3.2. M(q>) is an ideal of W{K) and A {cp) M((p) = 0.

T h e transfer m a p is c o m p a t i b l e w i t h base extensions. T h i s is the content o f the f o l l o w i n g " M a c k e y l a w " , whose i m p o r t a n c e has been revealed b y D r e s s i n [6].

P R O P O S I T I O N 3.3. Assume cp\K-*L and ^:K-+ M are homomorphisms between (semisimple) rings and that cp is finite and separable. Then the diagram

is commutative.

Indeed, b y erasing the letters " W" a n d the asterics, one o b t a i n s a c o m m u t a t i v e d i a g r a m , as f o l l o w s easily f r o m the d e s c r i p t i o n o f the regular trace a b o v e . S t a r t i n g f r o m this fact the p r o o f o f P r o p o s i t i o n 3.3 is s t r a i g h t f o r w a r d .

W e shall often write TrL/K instead o f Tr99 w h e n there is n o d o u b t as t o w h i c h m a p p i n g cp-.K-*L is b e i n g c o n s i d e r e d .

Remark. C l e a r l y the statements o f this section r e m a i n true f o r the W i t t rings o f a r b i t r a r y c o m m u t a t i v e rings i n the sense o f [12], i f cp\K-+L is finite etale, i n o t h e r w o r d s , i f L is a finitely generated projective ^ - m o d u l e a n d a projective L ®KL - m o d u l e ([8] P r o p . 18.3.1, p . 114).

§4. Proof of the Uniqueness Theorem 1.3

T h r o u g h o u t this section L/K w i l l be a finite e x t e n s i o n o f fields o f characteristic zero. D e n o t e b y 7>*(1) the value o f the u n i t element (1) o f W(L) u n d e r the transfer m a p Tr*: W{L)-+ W(K) w i t h respect to the i n c l u s i o n i:K-*L.

L E M M A 4 . 1 . For any signature a of K we have a(Tr* ( 1 ) ) ^ 0 . The signature a can be extended to L if and only if o(Tr*(\))>0.

Proof W e p r o c e e d b y i n d u c t i o n o n n = \_L:K']. F o r n=l the assertion is t r i v i a l . A s s u m e n > 1. I f a c a n n o t be extended to L t h e n b y P r o p . 2.1 we have a (A (i)) # 0 a n d hence b y C o r . 3.2 a ( A / ( / ) ) = 0, i n p a r t i c u l a r <j(Tr* (1)) = 0. N o w we assume that c has at least one e x t e n s i o n T i n S i g n L. T h e n

W(L) T>*4

W(M®KL)

W(M) W(K)

°(Tr*(l)) = r(UTr*(l)).

B y the M a c k e y l a w 3.3 the d i a g r a m

W(L)

W(K)

W(L(g)KL)

J T I - ' L ® ! . / ! .

W{L) I*

(4)

is c o m m u t a t i v e . H e r e L®KL is c o n s i d e r e d as a n extension o f L by \®i\L = L®KK-+

-+L®KL. T h i s extension is L - i s o m o r p h i c w i t h a p r o d u c t £L x E2 x ••• x Et where Et =L a n d E 2 , E t are algebraic field extensions o f L w i t h degrees s m a l l e r than n.

T h u s

* ( 7 > 2/ x( l ) ) = I t ( T r */ L( l ) ) . i = 1

T h e first s u m m a n d equals 1 a n d the others are ^ 0 by the i n d u c t i o n hypothesis, w h i c h shows 0 " ( 7 > */ K( l ) ) > O . q.e.d.

F o r later convenience we r e c a l l the f o l l o w i n g

E X A M P L E 4.2. A s s u m e L = K(yja) w i t h some a # 0 i n K. T h e n a signature <x o f AT is extendable to L i f a n d o n l y i f a(a)=\. Indeed, w i t h o u t loss o f generality assume L^K. 7>*(1) is represented b y the space L over K w i t h b i l i n e a r f o r m Tr(xy). T h i s space is i s o m o r p h i c to (2)1 (2a) ( C o n s i d e r the basis 1, yja).

F o r the r e m a i n d e r o f this section R denotes a real closed field a n d g denotes the signature o f R.

L E M M A 4.3 Assume cp is a homomorphism from K into R such that

e( < P * 7 > * ( l ) ) > 0 .

Then cp can be extended to homomorphism from L into R.

Proof L e t a denote the signature g°cp* o f K. T h e tensor p r o d u c t R®KL construc- ted f r o m cp\K-+R a n d the i n c l u s i o n i:K-*L has a d e c o m p o s i t i o n

R ®KL = Ei x ••• x Et

i n t o fields. W e regard R®KL as a n extension o f R by the m a p l ® / f r o m R = R®KKto KL. F r o m the M a c k e y l a w 3.3 we o b t a i n as i n the p r o o f o f l e m m a 4 . 1 :

°(TrlK(l)) = QoTr*9L/R(l)= £ QoTrtj/R(l).

i = i

N o w a c c o r d i n g to (1.1) a n y E} is / ^ - i s o m o r p h i c either to R o r to the algebraic closure R o f R. Since W(R)^Z/2Z is a t o r s i o n g r o u p , Tr*m(\) = 0. T h u s we see that cr(Tr*/K(\)) equals the n u m b e r o f c o m p o n e n t s Ei w h i c h are i s o m o r p h i c to R. R e c a l l that Ex,..., Et f o r m a full system o f inequivalent field composites o f L a n d R over K ([11] C h a p . I, § 1 6 ) . T h u s it f o l l o w s that a ( 7 r */ J C( l ) ) is the n u m b e r o f different h o m o - m o r p h i s m s f r o m L to R w h i c h extend cp. Since b y a s s u m p t i o n cr(Tr*/K(\))>0, the p r o o f is c o m p l e t e .

(5)

P R O P O S I T I O N 4.4. Assume L is ordered and cp:K->R is an order preserving homomorphism. Then there exists an order preserving homomorphism i/r. L - » R which extends cp.

Proof, i) L e t a denote the signature o f K c o r r e s p o n d i n g to the r e s t r i c t i o n o f the o r d e r i n g o f L to K. T h e a s s u m p t i o n that cp is order preserving means (J = Q°(p^. Since o c a n be extended to L we k n o w f r o m L e m m a 4.1 that c r ( 7 > * ( l ) ) > o a n d thus by L e m - m a 3.4 that there exists at least one h o m o m o r p h i s m f r o m L to R w h i c h extends cp.

ii) L e t \jjr denote the different h o m o m o r p h i s m s f r o m L to R w h i c h extend cp. W e must s h o w that at least one o f the ^ is o r d e r preserving. A s s u m e the c o n t r a r y is true. T h e n for any 1 ^ / ^ r , we have a n element at>0 i n L such that i / ^ ( at) < 0 . B y example 4.2 the o r d e r i n g o f L can be extended to the field M—L{Jax,yjar).

B y p a r t i) o f o u r p r o o f there exists a h o m o m o r p h i s m / : M - » 7 ? w h i c h extends cp.

C e r t a i n l y x(a) = x(\/ai)2 > 0 f °r T h u s x | L can not c o i n c i d e w i t h any o f the

ij/i9 w h i c h yields the desired c o n t r a d i c t i o n . q.d.e.

A f t e r these preparations the p r o o f o f T h e o r e m 1.3 is easy. F r o m P r o p o s i t i o n 4.4 a n d an a p p l i c a t i o n o f Z o r n ' s l e m m a it f o l l o w s that the given order preserving h o m o - m o r p h i s m cp\K-> R can be extended to a h o m o m o r p h i s m \j/ f r o m the real closure Fto R. W e still must s h o w that \j/ is the o n l y extension o f cp f r o m F to R. F o r any x' F-* R extending cp the images / ( F ) a n d ij/(F) b o t h c o i n c i d e w i t h the algebraic closure o f A ^ i n R. T h u s there exists a n a u t o m o r p h i s m X o f FjKW\\hx = ^°^- O f course A is order pre- serving. A s s u m e k is not the identity. T h e n we can find some x i n F w i t h x<X(x).

A p p l y i n g X repeatedly to this i n e q u a l i t y we o b t a i n

x < X(x) < X2(x) <••• < Xn(x)

for a l l n, w h i c h is i m p o s s i b l e since Xm(x) = x for some m (depending o n x). T h i s c o m - pletes the p r o o f o f T h e o r e m 1.3.

§ 5. A Trace Formula for Signatures

I w a n t to t h r o w some m o r e light o n L e m m a 4.1. W e first return to P r o p o s i t i o n 4.4.

W e denote b y F a fixed real closure o f L w i t h respect to the given o r d e r i n g . B y T h e o - r e m 1.3 any order preserving extension ij/:L->R o f cp c a n be further extended to F.

T h u s the uniqueness statement i n T h e o r e m 1.3, a p p l i e d to F/K, shows that there is a unique order preserving \jj\L-+ R w h i c h extends cp. W e o b t a i n the w e l l k n o w n

C O R O L L A R Y 5.1. L e t L/K be a finite algebraic field extension a n d cp:K-* R a h o m o m o r p h i s m f r o m K i n t o a real closed field R. D e n o t e b y Q the signature o f R a n d by a the i n d u c e d signature Q^cp^ o f K. T h e n the signatures T o f L extending a corres- p o n d bijectively w i t h the h o m o m o r p h i s m s if/.L^R extending cp v i a T = QO[j/^.

(6)

W e stay i n the s i t u a t i o n o f this c o r o l l a r y . D e n o t e b y S the set o f a l l ij/.L^R ex- t e n d i n g cp. R e p e a t i n g the p r o o f o f L e m m a 4.3 w i t h a n a r b i t r a r y element £ o f W(L) instead o f the unit element we o b t a i n

w i t h the c o n v e n t i o n that i f S is e m p t y this s u m is zero. C o r o l l a r y 5.1 n o w i m p l i e s

P R O P O S I T I O N 5.2 Let L/K be a finite algebraic field extension and a a signature ofK. For any c in W{L)

^ ( T r

L

V ( 0 ) = Z r ( 0 ,

where x runs through all signatures of L extending a.

T h i s p r o p o s i t i o n generalizes L e m m a 4.1.

§6. Existence of Real Places on Function Fields

In this section R denotes a real c l o s e d field, K a real finitely generated field exten- s i o n o f R o f transcendency degree 1, a n d S a fixed real c l o s e d field extension o f R (e. g. S=R). W e are interested i n places cp:K-+ Suco over R, i . e. w i t h cp the i d e n t i t y o n R. T h e a i m o f this section is to p r o v e the f o l l o w i n g t h e o r e m b y the m e t h o d s o f § 4 .

T H E O R E M 6.1. Assume that tr) is a transcendency basis of K over R. Then there exist elements au. . . an b x , b r i n R with at<bh such that for every r-tuple ( q , . . . , cr) of elements in S with a^c^bi there exists a place cp: K-+Svco o v e r R with (p(ti) = Cifor 1 ^ / ^ r .

Remark 6.2. A s s u m e that S has transcendency degree o v e r R. T h e n f o r given elements a u a r , bu ...,br i n R w i t h ai<bi there exists a n r-tuple ( q , . . . , cr) o f ele-

ments i n S w h i c h are a l g e b r a i c a l l y independent over R a n d s u c h that ^ for l . < / < r . Indeed, take a n y system ( w ^ . . . , ur) o f a l g e b r a i c a l l y independent elements i n

S. R e p l a c i n g ut by ± ut o r ± uf1 we m a y assume that a l l ut are p o s i t i v e a n d not i n - finitely large o v e r R, i.e. that there exist elements dt i n R such that O^u^d^ T h e n the elements

c. = at + d -1ni( 6£- f l . )

have the r e q u i r e d p r o p e r t y . A n y place cp:K-+ Su oo over R w i t h cp{tt) = c( must be a n i n - j e c t i o n o f AT i n t o S. T h u s T h e o r e m 6.1 c o n t a i n s L a n g ' s t h e o r e m a b o u t e m b e d d i n g s o f

(7)

real f u n c t i o n fields ( [ 1 5 ] , T h . 10). O u r p r o o f w i l l be very close t o the p r o o f i n [15], the m a i n difference b e i n g t h a t we replace the use o f S t u r m ' s t h e o r e m b y results o f section 4.

Remark 6.3. It is evident f r o m the arguments i n [1] that one m a y use t h e o r e m 6.1 to o b t a i n generalizations o f A r t i n ' s results o n definite functions i n [1] § 2 a n d § 4 , see e.g. L a n g ' s t h e o r e m 8 i n [15].

I n the p r o o f o f T h e o r e m 6.1 we m a y a l w a y s assume i n a d d i t i o n that the r-tuple ( cuc r) is a l g e b r a i c a l l y free over R. I n fact, f o r a given S one easily constructs a real closed field extension T o f S such that S is m a x i m a l l y a r c h i m e d i a n i n T a n d T c o n t a i n s a system ul9...9ur o f elements w h i c h are a l g e b r a i c a l l y independent a n d infinitely s m a l l over S (e. g. [ 1 5 ] , p . 389). I f ( cl9cr) is a n r-tuple i n S s u c h that there exists a h o m o m o r p h i s m \p:K^>T over R w i t h i/^(/i) = cf + ui9 then the c o m p o s i t i o n cp = Xoijj w i t h the c a n o n i c a l place l\T^>Suco o f T/S ( [ 1 5 ] , p . 380) has the values <p(r.) = cr

W e m a k e the f o l l o w i n g arrangements for the p r o o f o f T h e o r e m 6 . 1 : 7>*(1) denotes the image o f the u n i t element o f W(K) u n d e r the transfer m a p Tr* f r o m W(K) t o

W(R(tl9...9 tr)). W e chose elements gi(tl9...9 tr)9...9 gn(tl9...9 tr) i n R\tl9...9 tr~\ s u c h that 7>*(1) is represented by the space

(gi(tl9...9tr))±.»±(gH(tl9...9tr))

over R(tl9...9 tr). W e further chose a fixed o r d e r i n g o f A ^ a n d denote b y o the signature o f R(tl9...,tr) c o r r e s p o n d i n g w i t h the r e s t r i c t i o n o f this o r d e r i n g t o R ( tl9tr) . F i n a l l y we denote by Q the signature o f S.

W e first p r o v e T h e o r e m 6.1 i n the case r = 1. W r i t e / instead o f tv L e t

d1<d2< "< dN

be the elements o f R w h i c h o c c u r as roots o f (at least one o f ) the p o l y n o m i a l s gt(t) i f these have a n y roots i n R. W e chose a <b i n R i n the f o l l o w i n g w a y : I f there are n o roots let a a n d b be a r b i t r a r y w i t h a<b. I f t<dt let b = dl a n d a a r b i t r a r y <dv I f dt<t<di + l let a = di9 b = di + 1. I f dN<t let a = dN a n d b be a r b i t r a r y >a. A s s u m e c is a n element o f S w i t h a<c<b a n d c n o t i n R. B y (1.1) every gt(t) decomposes i n Ä [ r ] i n a p r o d u c t o f a constant, some factors t - dt a n d some factors o f type (t - ef + f2 w i t h / # 0 . Therefore c l e a r l ygt( c ) ^ 0a n dQ( gi( c ) ) = a(gi(t))for 1 ^ / < / i ( c f [15] p . 386.) W e denote b y / the h o m o m o r p h i s m f r o m R(t) to S over R w i t h / ( / ) = c. T h e n

e°X*(Tr*(l))= t

Q(gi(c))=

t

e(gt(t)) = a(Tr*(l)),

i = l i = l

N o w o c a n be extended t o K. T h u s b y L e m m a 4.1 we have ^ o ^ ( r r* ( l ) ) > 0 . B y L e m - m a 4.3 xc a n be extended to a h o m o m o r p h i s m cp f r o m AT to S .

F r o m the thus p r o v e d special case r= 1 o f T h e o r e m 6.1 one easily obtains (see [ 1 5 ] , p. 387) a p r o o f f o r a l l r ^ 1 o f the f o l l o w i n g

(8)

P R O P O S I T I O N 6.4. ( [ 1 5 ] , T h . 8.). Assume K is ordered and M is a finite set of non zero elements in K. Then there exists a place cp:K^> Ru oo over R such that for all x in M the value cp(x) is ^ oo, ^ 0 and of the same sign as x.

W e n o w p r o v e T h e o r e m 6.1 f o r a r b i t r a r y r ^ 1. B y P r o p o s i t i o n 6.4 there exists a place cp:K^> Rucc over R such that the values cp(ti) = hi are finite a n d s u c h that the values cp(gj(ti,..., tr))=gj(hl,..., hr) are n o n zero a n d have the same signs as the c o r - r e s p o n d i n g g j ( tl 9tr) . { R e c a l l that we have fixed a n o r d e r i n g o n K.} T h e n there ex- ists a n element e > 0 i n R such that f o r a l l r-tuples ( q ,c r ) i n S w i t h h{ — 6 < ci< A|. + + e the values gj(cl,..., cr) are n o n zero a n d o f the same signs as the c o r r e s p o n d i n g gj(cl9...9 cr) are n o n zero a n d o f the same signs as the c o r r e s p o n d i n g gJ(tl,..., tr).

A s s u m e that ( q ,c r) is such a n r-tuple w h i c h is i n a d d i t i o n a l g e b r a i c a l l y free over R.

D e n o t e b y x the h o m o m o r p h i s m f r o m R(tl9..., tr) to S over R w h i c h m a p s tt t o ci f o r 1 ^ / ^ r . A s i n the case r = 1 we o b t a i n

o{Tr*(\)) = QoU(Tr*{l))

a n d we see again b y L e m m a 4.1 a n d 4.3 that / c a n be extended to a h o m o m o r p h i s m cp f r o m Kio S. T h e o r e m 6.1 is p r o v e d .

C e r t a i n l y there are other relevant questions a b o u t real places o n f u n c t i o n fields w h i c h c a n be treated b y the m e t h o d s used here. I hope to c o m e b a c k t o this subject in the near future.

REFERENCES

[1] ARTIN, E., Über die Zerlegung definiter Funktionen in Quadrate, Hamb. Abh. 5 (1927), 100-115.

[2] ARTIN, E. and SCHREIER, O., Algebraische Konstruktion reeller Körper, Hamburger Abh. 5 (1926), 85-99.

[3] AUSLANDER, M . and GOLDMAN, O., The Brauer group of a commutative ring, Trans. Amer. Math.

Soc. 97 (1960), 367-409.

[4] BOURBAKI, N., Elements de mathematique, Algebre, (Hermann, Paris).

[5] , Elements se mathematique, Algibre commutative, (Hermann, Paris).

[6] DRESS, A., The Witt ring as Mackey-functor, Notes on the theory of representations of finite groups I, Chap. 2, Appendix A, Univ. Bielefeld 1971.

[7] DEMEYER, FR., The trace map and separable algebras, Osaka J . Math. 3 (1966), 7-11.

[8] GROTHENDIECK, A., Elements de geometrie algebrique, Chap. IV, 4, Publ. Math. IHES No 32, Bures Sur Yvette 1967.

[9] GROSS, H . and HAFNER, P., Über die Eindeutigkeit des reellen Abschlusses eines angeordneten Körpers, Comm. Math. Helv. 44 (1969), 491-^94.

[10] HARRISON, D. K., Witt rings, Lecture Notes, Department of Mathematics, University of Ken- tucky, Lexington, Kentucky 1970.

[11] JACOBSON, N., Lectures in abstract algebra, vol. Ill (van Nostrand 1964).

[12] KNEBUSCH, M., Grothendieck- und Witt ringe von nichtausgearteten symmetrischen Bilinear for men, Sitzber. Heidelberg. Akad. Wiss. (1969/70), 93-157.

[13] KNEBUSCH, M . , ROSENBERG, A. and WARE, R., Structure of Witt rings and Quotients of abelian group rings, to appear Amer. J . Math.

[14] , Signatures on semi-local rings, to appear Bull. Amer. Math. Soc.

(9)

[15] LANG, S., The theory of real places, Annals Math. 57 (1953), 378-391.

[16] LEICHT, J. and LORENZ, F., Die Primideale des Wittschen Ringes, Invent, math. 10 (1970), 82-88.

[17] MILNOR, J., Symmetric bilinear forms, Lecture Notes, Institute for Advanced Study Princeton N. J. 1971.

[18] SCHARLAU, W., Zur Pfisterschen Theorie der quadratischen Formen, Invent. Math. 6 (1969), 327-328.

[19] , Quadratic Forms, Queen's Papers in pure appl. math. No 22, Queen's University, Kingston, Ontario 1969.

[20] WITT, E . , Theorie der quadratischen Formen in beliebigen Körpern, J . reine angew. Math. 176, (1937), 31-44.

Mathematisches Institut der Universität des Saarlandes Deutschland

Received March 4, 1972

Referenzen

ÄHNLICHE DOKUMENTE

Up to now only special cases are known in which the static CAPM possesses a unique equilibrium: for example, if utility functions are quadratic or if investors have expected

At the formation of knowledge and the development of theory the current management accentuated and in the majority of cases still accentuates the professional

The fiscal theory of the price level and the backing theory of money.

But there were other precedents for decomposition results in algebra – for example, the decomposition of an ideal in the ring of integers of an algebraic number field into a

implications of catastrophe theory are discussed for the combustion phase when oxygen partial pressure and external cooling are used as control variables.. Nomenclature

Keywords Concept algebras · Negation · Weakly dicomplemented lattices · Representation problem · Boolean algebras · Field of sets · Formal concept analysis Mathematics

In the case of intensive assimilation, the well-being of the natives will not be lowered when ARD N N ( | )  ARD N M ( | ) , namely, when the aggregate relative deprivation of

Since the' differential permits the simultaneous addition of two quantities, it can be used in an adding machine to combine the regular feed and the tens