• Keine Ergebnisse gefunden

Update from the Mu3e Experiment

N/A
N/A
Protected

Academic year: 2022

Aktie "Update from the Mu3e Experiment"

Copied!
37
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Update from the Mu3e Experiment

Niklaus Berger

Physics Institute, University of Heidelberg Charged Lepton Working Group,

February 2013

(2)

• The Challenge:

Finding one in 10

16

muon decays

• The Technology:

High Voltage Monolithic Active Pixel Sensors

• The Mu3e Detector:

Minimum Material, Maximum Precision

Overview

(3)

• Neutrinos have mass

• Leptons do change flavour

• However: Standard Model

branching ratio for μ → eee < 10-50

The Physics: Charged Lepton Flavour Violation

µ + e +

W +

ν µ ν e

γ

e - e +

*

(4)

• Neutrinos have mass

• Leptons do change flavour

• However: Standard Model

branching ratio for μ → eee < 10-50

• Can be much bigger with new physics

The Physics: Charged Lepton Flavour Violation

µ ~

γ

e - e +

*/Z

(5)

• Neutrinos have mass

• Leptons do change flavour

• However: Standard Model

branching ratio for μ → eee < 10-50

• Can be much bigger with new physics

The Physics: Charged Lepton Flavour Violation

+ χ ~ 0 e +

µ e~

~

γ

e - e +

*/Z

µ

+

e

+

e

-

e

+

Z’

(6)

• Ratio κ between dipole and contact

• Common mass scale Λ

• Allows for sensitivity comparisons between μ → eee and μ → eγ

• In case of dominating dipole couplings (κ = 0):

B(μ → eee) = 0.006 (essentially α )

Comparison with μ → eγ

L

LFV

= A m

μ R

μ

R

σ

μν

e

L

F

μν

+ (μ

L

γ

μ

e

L

) (e

L

γ

μ

e

L

) (κ+1)Λ

2

κ (κ+1)Λ

2

+ χ~0 e+

µ e~

~

γ

e- e+

*/Z µ+

e+ e-

e+ Z’

(7)

• Z-penguins could be important

• Lots of theory activity

Comparison with μ → eγ

+ χ~0 e+

µ e~

~

γ

e- e+

*/Z

(8)

• We want to find or exclude μ → eee at the 10-16 level

• 4 orders of magnitude over previous experiment (SINDRUM 1988)

The Goal: 10

-16

90%–CL bound

10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN MEG

(9)

• Observe more than 1016 muon decays:

2 Billion muons per second

• Suppress backgrounds by more than 16 orders of magnitude

• Be sensitive for the signal

The Challenges

1940 1960 1980 2000 2020

90%–CL bound

10–14 10–12 10–10 10–8 10–6 10–4 10–2 100

μ

μ 3e

μN eN

τ μγ

τ

10–16

SINDRUM SINDRUM II

MEG

MEG plan Mu3e Phase I

Mu3e Phase II

(Updated from W.J. Marciano, T. Mori and J.M. Roney, Ann.Rev.Nucl.Part.Sci. 58, 315 (2008))

(10)

DC muon beams for particle physics at PSI:

• πE5 beamline: ~ 108 muons/s (MEG experiment)

• SINQ (spallation neutron source) target could even provide

~ 5 × 1010 muons/s

• The μ → eee experiment (final stage) requires 2 × 109 muons/s focused and collimated on a ~2 cm spot

Muons from PSI

(11)

e +

e + e -

• μ+ → e+e-e+

• Two positrons, one electron

• From same vertex

• Same time

• Sum of 4-momenta corresponds to muon at rest

• Maximum momentum: ½ mμ = 53 MeV/c

The signal

(12)

• Combination of positrons from ordinary muon decay with electrons from:

- photon conversion, - Bhabha scattering, - Mis-reconstruction

• Need very good timing, vertex and momentum resolution

Accidental Background e

+

e

+

e

-

(13)

• Allowed radiative decay with internal conversion:

μ

+

→ e

+

e

-

e

+

νν

• Only distinguishing feature:

Missing momentum carried by neutrinos

Internal conversion background

µ+ νμ

e+

e- e+ νe

γ*

W+

}

Emiss

}

Etot

Branching Ratio

mμ - Etot (MeV)

0 1 2 3 4 5 6

10-12

10-16 10-18 10-13

10-17 10-15 10-14

10-19

• Need excellent μ3e

momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

(14)

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and

Momentum measurement

MS

θ

MS

(15)

High voltage monolithic active pixel sensors

• Implement logic directly in N-well in the pixel - smart diode array

• Use a high voltage commercial process (automotive industry)

• Small active region, fast charge collection via drift

• Can be thinned down to < 50 μm

(I.Peric, P. Fischer et al., NIM A 582 (2007) 876 )

Fast and thin sensors: HV-MAPS

(16)

The MUPIX chips

• Module size 6 × 1 cm (inner layers) 6 × 2 cm (outer layers)

• Pixel size 80 × 80 μm

• Goal for thickness: 50 μm

• 1 bit per pixel, zero suppression on chip

• Power: 150 mW/cm2

• Data output up to 3.2 Gbit/s

• Time stamps every 50 ns

ToT [µs]

0 1 2 3 4 5

10-4

10-3

10-2

10-1

1

SNR

30 35 40

55Fe peak

(17)

Introduction

Y

• X

(18)

• 50 μm silicon

• 25 μm Kapton™ flexprint with aluminium traces

• 25 μm Kapton™ frame as support

• Less than 1‰ of a radiation length per layer

Mechanics

(19)
(20)

• Add no material:

Cool with gaseous Helium

• ~ 150 mW/cm2

• Simulations: Need ~ 1 m/s flow

• First measurements: Need several m/s

• Full scale prototype on the way

Cooling

(21)

• 1 T magnetic field

• Resolution dominated by multiple scattering

• Momentum resolution to first order:

Σ

P

/P ~ θ

MS

• Precision requires large lever arm (large bending angle Ω) and low multiple scattering θMS

Momentum measurement

Ω MS

θ

MS

B

(22)

Precision vs. Acceptance

50 MeV/c 25 MeV/c 12 MeV/c B

Ω ~ π MS

θMS

B

(23)

Detector Design

Target μ Beam

(24)

Detector Design

Target Inner pixel layers

μ Beam

(25)

Detector Design

Target Inner pixel layers

Outer pixel layers μ Beam

(26)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers μ Beam

(27)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

μ Beam

(28)

Detector Design

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles

μ Beam

(29)

• 250 μm fibres - O(0.5 ns)

• 0.5 cm3 tiles - O(60 ps)

• Photosensor: SiPM;

high gain, high frequency

• Readout via switched capacitor array (PSI developed DRS5 chip) or

STiC ASIC developed in Heidelberg

Timing measurements

(30)

Online software filter farm

• Continuous front-end readout (no trigger)

• ~ 1 Tbit/s

• FPGAs and Graphics Processing Units (GPUs)

• Online track and event reconstruction

• 109 3D track fits/s achieved

• Data reduction by factor ~1000

• Data to tape < 100 Mbyte/s

Online filter farm

(31)

• 3D multiple scattering track fit

• Simulation results:

280 keV single track momentum 520 keV total mass resolution

Simulated Performance

Hits fitted per track

0 1 2 3 4 5 6 7 8 9

103

104

Reconstructed Momentum [MeV/c]

0 10 20 30 40 50 60

1 10 102

103

Rec. Momentum - Gen. Momentum [MeV/c]

-3 -2 -1 0 1 2 3

1 10 102

103

104 RMS: 0.28 MeV/c

Reconstructed track polar angle

0 0.5 1 1.5 2 2.5 3

1 10 102

103

2] Reconstructed Mass [MeV/c

1020 103 104 105 106 107 108 109 110 200

400 600 800 1000 1200 1400 1600

RMS: 0.52 MeV/c2

: 0.31 MeV/c2

s1

: 0.71 MeV/c2

s2

: 0.37 MeV/c2

sav

(32)

Simulated Performance

V

10-18

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10 µ eeeνν generated

simulated ν

ν

eee µ

Signal BF 10-12

Signal BF 10-13

Signal BF 10-14

Signal BF 10-15

Signal BF 10-16

Signal BF 10-17

(33)

Sensitivity

Target Inner pixel layers

Outer pixel layers μ Beam

Target Inner pixel layers

Scintillating fibres Outer pixel layers Recurl pixel layers

Scintillator tiles μ Beam

Target Inner pixel layers

Scintillating fibres

Outer pixel layers Recurl pixel layers

Scintillator tiles μ Beam

Phase Ia: Starting 2015

Phase Ib: 2016+

Phase II: 2017+

New Beam Line

(34)

• The Mu3e Research Proposal was approved by the PSI research committee in January

Proposal available on arXiv:1301:6113

• Phase I experiment mostly funded

• Aim for first measurements in 2015

• High-intensity beam line under study (earliest availability 2017+)

Current Status

(35)

Collaboration

Participating Institutes:

• University of Geneva

• University of Heidelberg (3 Institutes)

• Paul Scherrer Institut (PSI)

• University of Zurich

• ETH Zurich

Also in contact with other interested groups

(36)

Backup Material

(37)

Radiation Hardness

• Requirements not as strict as at LHC

• Irradiation at PS

• After 380 MRad (8×1015 neq/cm2)

• Chip still working

(Courtesy Ivan Perić)

Referenzen

ÄHNLICHE DOKUMENTE

Time walk observed for pixel analogue behaviour.. The Mu3e Experiment The MuPix Testbeam Results Summary

Store time stamp and row address of 1 st hit in column in end-of-column cell Delete hit flag.. LdCol

Precise timing, good momentum and vertex resolution required Good momentum and total. energy

o Integrated cooling Beam pipe supports detectors..

In summary, the Mu3e detector must provide excellent vertex and timing resolution as well as an average momentum resolu- tion better than 0.5 MeV/c with a large geometrical

The Mu3e detector consists of two double layers of high voltage monolithic active pixel sensors (HV-MAPS) around a target double cone..

The measurement with helium showed that cooling of the layers with a heat dissipation of 400 mW / cm 2 caused a temperature increase of around 70 − 75 K compared to the

Particularly important for the cooling system is the scintillating fibre detector, because it divides the helium volume between the outer and inner double pixel layer into two