• Keine Ergebnisse gefunden

A Dual Solution Procedure for Quadratic Stochastic Programs with Simple Recourse

N/A
N/A
Protected

Academic year: 2022

Aktie "A Dual Solution Procedure for Quadratic Stochastic Programs with Simple Recourse"

Copied!
17
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

A DUAL SOLUTION PROCEDURE FOR QUADRATIC STOCHASTIC PROGRAMS WITH SIMPLE RECOURSE

R.T. Rockafellar Roger J.-B. Wets

March 1983 CP-83-17

C o l l a b o r a t i v e P a p e r s r e p o r t work which h a s n o t been p e r f o r m e d s o l e l y a t t h e I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s and which h a s r e c e i v e d o n l y l i m i t e d r e v i e w . V i e w s o r o p i n i o n s e x p r e s s e d h e r e i n do n o t n e c e s s a r i l y r e p r e s e n t t h o s e o f t h e I n s t i t u t e , i t s N a t i o n a l Member O r g a n i z a t i o n s , o r o t h e r o r g a n i - z a t i o n s s u p p o r t i n g t h e work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS A-2361 L a x e n b u r g , A u s t r i a

(2)
(3)

A DUAL SOLLITION PROCEDURE FOR QUADRATIC STOCHASTIC PROGRAMS WITH SIMPLE RECOURSE

R.T. Rockafellar* and Roger J-B. Wets**

Depart. Mat hemat ics I.I.A.S.A., Laxenburg Univ. Washington.

Abstract

We exhibit a dual of a stochastic program with simple recourse -- with random parameters in the technoloty matrix and the right-hand sides,and with quadratic recourse costs -- that is essentially a deterministic quadratic program except for some simple stochastic upper bounds. We then describe a solution procedure for problems of this type based on a finite element representation of the dual variables.

* Supported by the Air Force Office of Scientific Research under grant F4960-82-K-0012

** Supported in part by a Guggenheim Fellowship

(4)
(5)

We c o n s i d e r , t h e following c l a s s o f q u a d r a t i c s t o c h a s t i c programs with simple r e c o u r s e :

( 0 . 1 ) f i n d x E R~ such t h a t

and

i s maximized, where

The f u n c t i o n 8 i s d e f i n e d by

k-1/2 i f r z l ; s o t h a t t h e r e c o u r s e c o s t f u n c t i o n

-

1 ph (vhl = qheh

e

( e h vh) has t h e form

0 . 3 Figure: r e c o u r s e c o s t f u n c t i o n

(6)

I n t h e l i m i t a s e h goes t o 0 , t h e - l f u n ~ t ; i o n ? . .. p t e n d s t o t h e p i e c e w i s e

11

l i n e a r f u n c t i o n ph w i t h R

which b r i n g s u s t o t h e c a s e o f s t o c h a s t i c programs w i t h s i m p l e r e c o u r s e and .

-

l i n e a r r e c o u r s e c o s t s [11

.

Note t h a t t'h'ere i s no l o s s o f g e n e r a l i t y i n having P R and ph w i t h s l o p e 0 when v i a . I f t h e o r i g i n a l problem i s n o t

02

. t h i s f o r n ,

h . . .

. . . . - .. .

. - .

. -

a simple t r a n s f o r m a t i o n i n v o l v i n g an adjustment o f t h e ( c . , j = l , .

. .

, n ) and t h e

J . -

(qh, h = l

, . . .

,R) w i l l reduce t h e o r i g i n a l problem t o t h e c a n o n i c d fo& (0.1)

.

,.. . - .

,The, c p e f f i c i e n t s , . . :T.

-

:. :, :.; ... ,L

3 ' .

z

.,

s.. 4, -2 . . . .

are-random v a r i a b l e s w i t h known d i s t r i b u t i o n f u n c t i o n . - We assume t h a t t h e s e

>

random v a r i a b l e s . . . - have second moments s o t h a t t h e . ~ ~ ( * ) - d e f i n e d through (0.2) a l s o have ., .., f i n i t e , s e c o n d .

-

- . moments. Consequent1y:the e x p e c t a t i o n t h a t a p p e a r s i n t h e object.ive o f ( 0 . 1 ) i s w e l l - d e f i n e d . We s h a l l - assume t h a t (0.1.) i s s o l v a b l e , i . e. , t h a ~ . e x i s t s a v e c t o r x* t h a t s o l v e s (0.1) ; i n p a r t i c u l a r t h i s i m p l i e s t h a t

> . .

-

t h e . l . 4 n e a r system, . . - - . , . . . . ... . ., . . .

n

, ,

.

.

Or

. x . J 2 r j ' j = l , .

..

, n ; I j z l a i j x j

r

bi, i = l , .

.

.n,

i s f e a s i b l e . The c o e f f i c i e n t s r , d . f o r j = l ,

...,

n , and eh f o r h=1,

...,

R a s w e l l j J

a s t h e random v a r i a b l e s qh(m) a r e s t r i c t l y p o s i t i v e . I n p a r t i c u l a r t h i s p a r - - . - -

a n t e e s t h e c o n c a v i t y o f t h e o b j e c t . - .

. . , , . . ,We , .. -. ,regard , . . ..model .. .. ( - 0 , l ) a s t h e q u a d r a t i c v e r s i o n of t h e simple.,:,reeou~s'& prob- lem [21 i n v o l v i n g random c o e f f i c i e n t s i n t h e technology m a t r i x , t h e c o s t and Bhe r i g h t hand s i d e s .

In t h e n e x t s e c t i o n we show t h a t t h e f o l l o w i n g problem (0.4) i s d u a l t o t h e q u a d r a t i c s t o c h a s t i c programs w i t h simple r e c o u r s e :

(7)

and

i s minimized, where j = l ,

....

m , .,,- - . - ; ,.-<:.. - L . - p , * : . .,

. . . . T I . ... ...

-

. * .v. . . ' -

m R ...

a y

(Oss,) ; '., wj~*cC;jr-&s=l- i;j.Li-E(Ih=lzh (w) t h j (w)) ' . : . , . - . . . . . ,. . .

-

...

:,

.... .-.

Although t h i s problem i s r e l a t e d t o t h e dual problem t h a t would b e . d b t " a ~ n e d by a s t r a i g h t forward a p p l i c a t i o n o f t h e r e s u l t s o f [3] t h e s e a r e s i g n i f i c a r i t d i f f e r - ences. I t i s t h e s p e c i f i c s t r u c t u r e o f t h i s d u a l problem which i s e x p f o i t e d i n

I

t h e a l g o r i t h m i c procedure d e s c r i b e d i n S e c t i o n 2 .

,

.

, . -. :, -.. : Our work was o r i g i n a l l y motivated by a problem coming from th;gs di'Vlsibn,-'-'.

,.. ,.

- .

"

o f IIASA ( I n t e r n a t i o n a l - - I n s t i t u t e f o r Applied Systems Analysis) 'dea'.l?ng.'withL"'.'

-

hi gh'j.y!:

alf$et-=d: sy.

7. :. ; :.

Resources and Environment-; giveil' t h e hydrodynamic f l o w ,

atmospheric c o n d i t i o n s , between s u b b a s i n s o f a given shallow iakb, 6i;?:needs

26''

.?,_ . .

d e s i g n ( s i z e ) and l o c a t e t e r t i a r y t r e a t m e n t p l a n t s t h a t w i l l f i i f e r 1 * t h e . - 'inflow .'

s o a s t o minimize ( i n a l e a s t s q u a r e s e n s e ) t h e d e v i a t i o n b e t w e e n ' t h e obsbrveif".' c o n c e n t r a t i o n o f c e r t a i n p o l l u t a n t s . and given d e s i r a b l e l e v e l s . - H e r e :both p ( - )

- ... : . L > - > '

and

T(*)

were random but q was f i x e d ( n o n s t o c h a s t i c )

.

1. DUALITY AND ITS DERIVATION

. .., . :- :' The.->prifial problem (0.1) and d u a l problem ( 0 . 4 ) a r e l i & i d ' ; t o t r s t h e

, . - 1 t . r .

-

- ._ I - i?l.' r. i .

-

i , '. , -

two h a l v e s of a c e r t a i n minimax-problem. Let

. .

: ..

. .,

-

-. - ,,is,; 7 ' $ -:

(8)

(where t h e funetions:

zh(,*)'

a r e assumed

ta.

5 e measurable and a r e i n f a c t square i n t e g r a b l e , because t h e f u n c t i o n s q h (0) a r e )

.

Define thec^.;function L on XxYxZx by

. .

This f u n c t i o n i s obviously q u a d r a t i c concave i n x f o r f i x e d (y, ~ ( 0 ) ) and q u a d r a t i c convex . ., . i n (y,z ( o ) ) f o r f i x e d x. Two o p t i m i z a t i o n problems a r e n a t u r a l l y a s s o c i a t e d

..

..

1:. ' . -

with i t , namely

(1.3) maximize f ( x ) over a l l X E X , where f (x) = i n f

( Y , z ( * ) ) E Y X Z L ( x , Y , z ( * ~ ) , and

minimize g ( y , z ( * ) ) over a l l ( Y , z ( * ) ) E Y X Z , where g ( Y , z ( * ) ) = s u p X E X L ( X , Y , Z ( * ) ) .

A s i s well known,in o p t i m i z a t i o n t h e o r y , no m a t t e r what t h e choice of t h e s e t s X , Y and Z and t h e formula f o r L , t h e saddlepoint c o n d i t i o n

8 .. , - * I .

(1 . s ) L ( x , ? , ~ ( * ) ) c ~ ( G , y , i ( - ) ) 5 L ( ~ , ~ , Z ( * ) ) f o r a l l x E X , ( y , z ( - ) ) E Y X Z

is. s a t i s f i e d by elements x e X and

(?,i(*))

E YxZ i f and only i f ' % gi'ves t h e max- - imum i n problem ( 1 . 3 ) ,

(7,;

( 0 1 ) gives t h e minimum i n problem (1.4) and t h e o p t i - ' ma1 v a l u e s i n t h e s e two problems a r e e q u a l .

-2 ,-, , ,I,:' :

3 ;-In fact (1.3.) an& ( 1 . 4 )

-

can be , i d e n t i f i e d with our primal and dual problems

mi.g

is::

:

T

(0.1)- .afidi:(X) .4-)

,

-so-'fh"': ais~e?f'fions ' j u s t -made & t i t r u e : of -<he l a t t e r .

-

(9)

. -. . ... . - t h e d e f i n i t i o n s (1.1) and (1.2) t h a t

-

j ; . . . . , : ; ; ... -

. ; *

..

. . . ....

-

o t h e r w i s e . c k , . ... . , . - -. . .:. , ,: :: ' . '<:c'-::

-

'. -

. ! .: - .

.... .>

where v (w) i s given by (0.2)

,

and . . . - . . . - .

h ., . , .

;.

i , > .. i. . . . . -

. , : ' i J : *

I -where w.is given b y ' k The c a l c u l a t i o n makes u s e o f t h e f a c t t h a t t h e c o n j u a t e

I j '

,. ,. Id,- . A o f t h e f u n c t i o n 0 i s

t / 2 i f O l t L l , B*(t) = sup,& It,-B(r)

1

=

1'

-

1"

o t h e r w i s e

. . . . ; ..

. . .

- i. - . v

DUALITY THEOREM.

Suppose t h a t the primal problem

( 0 . 1 )

i s feasible, i . e . , t h a t

. . .

there e x i s t s

X E R ~

s a t i s f i n g

n ., ' , . - 2 , - .

- -

( 1 . 6 ) 0 L X . 5 r

for

j = l ,

...

,n;

and

l j Z l a i j x j I b

for

i = l , .

..

,m:

I j - j

-

.-, .- - , - L -

Then the primal problem

(0.1)

has

an

optimal solution x, the dual p ~ b l e m

( 0 . 4 )

I .

has an optimal solution (7,;

(0))

, and the optimal values i n the tvo problems are equal. Moreover, 2 .and (7,

( * )

) are optimal

i f

ard only

i f

the saddlepoht

rn; -

. ,

d i t i m -

(1.. 5). 71:

, i s f u l f i l l e d .

. , . - .; c- . !-. c: .?. ,. .. - .I-,:... ?", ,',? r

PROOF., -. ,?:, .. These a s s e r t i o n s w i l l follow from t h e g e n e r a l ob~servatioits. a b ~ e , -once

\. .

. . .

. .

it is. shown t h a t t h e s e - SD . . e x i s t . . . .

2

E. .)( and

,.?(y, 2

( * ) ) , E , YxGsabis,fying t h k . sadd4s- : point: ~ p n d i t ion.,,,, To- show t h i s . . . .ye- . .c o n s i d e r - - a n a,~i.liary:InJn jmax.: p r o b l m . 5 n -ri T,;.!;::

A s . - - . .

terms o f t h e f u n c t i o n

(10)

on-Xoxl, wherp , ,,.- X . o . . . c o n s i s t s - - of t h e , v e c t o r s jc w h i c h : s a t i s f y ( l , i 6 ) . (Note t h a t LO d i f f e r s from L only i n t h e absence o f a l l y t e r n s . ) Again L o ( x , z ( - ) ) i s con- cave i n x.andiconvex i n - z ( * ) and i t . i s , c o n t ; i n u o u s i n x and z ( * ) r e l a t i v e t o t h e

. .

u s u a l topo.logy on X c R n and t h e norm topology t h a t Z r e c e i v e s - a s a s u b s e t o f a H i l b e r t space o f square i n t e g r a b l e f u n c t i o n s . Any convex f u n c t i o n which i s con-

Y .,. ,. . . - - . . - _ I i t i n u o u s i n t h e norm topology on a H i l b e r t space i s a l s o lower semicontinuous i n t h e weak topology, and i n t h e l a t t e r topology t h e convex s e t Z i s compact. O f course t h e convex s e t Xo i s a l s o compact. Thus we a r e deal.ing with a f u n c t i o n on a product o f two nonempty compact convex s e t s , which is i n p a r t i c u l a r upper semicontinuous and concave i n t h e f i r s t argument and lower semicontinuous and convex i n t h e second. According t o t h e minimax theorem o f Ky Fan, s e e [ 4 ] , s u c h a f u n c t i o n i s s u r e t o have a s a d d l e p o i n t .

. . . ?... . . . ..,,

.

. . . . -

- . .. -

-.--

' ' 1 - ., ...,

Denote such a s a d d l e p o i n t by (;,;(*)): one h a s ;E X , ;(*) E Z and

, - -

. - .. . . . . .

S i n c e t h e q u a d r a t i c concave f u n c t i o n

XI+

L ( x , i ( - ) ) a t t a i n s i t s maximum a t

2

r e l a -

0

t i v e t o t h e s e t Xo, i . e . , r e l a t i v e t o t h e l i n e a r c o n s t r a i n t s ( 1 6 , t h e r e e x i s t s a Lagrange m u l t i p l i e r v e c t o r

Y E

Y such t h a t

f o r a l l x r X and

i

Y I-'-- -

-

- -

(11)

-. . - , , = . !

Inasmuch a s . . . . ... . . - . .. b

by d e f i n i t i o n , t h e combination o f (1.7) and (1'.8) ' i s e q u i v a l e n t t o t h e d e s i r e d

. . .

-

. -

-

. d - . - . - , - -

;i<:2iy.z,.

,-

s a d d l e p o i n t conditi6n.t (1.5) thus!; ( x < l , - t (.;>I i s . a " s ~ d d l i ? ~ b i n t ' . o f .. . L .

DL-'

""-S

COROLLARY..

~Szkppose ( i , i ( * ) )

is an

optimal solution t o the

&l

pr&teh

(6.41.

' " ' -' ...I ...'

Then the stolCque optimal -.solution x t o the primal probZh

( 0 :1) $;

gzv'en *by

- --'--.

> ,- ., :

-

Tt. .:,::f:5, :-,

where

w

i s given by

( 0 . 5 )

.-

j . - .

L ' . . '.A , f. F.

"

2 'l: ::;

- -

.

The c o r o l l a r y follows from t h e s a d d l e p o i n t c o n d i t i o n : L (x,?, ( * ) ) must achieve

" . - " - i t s maximum over X a t

x,

and t h i s e x p r e s s i o n i s s t r i c t l y ' czncave,

2 . A SOLUTION PROCEDURE FOR THE DUAL PROBLEM

.-, . ' r r c r ' ;k '.'C a;- ..

. . . C

We a r e concerned with problem ( 0 . 4 ) , r e p e a t e d h e r e f o r convenient r e f e r e n c e , (2.1) f i n d y R: and z (0) : .Q+ R' measurable such t h a t

O s z h ( u ) ~ q (w) a . s . h = l , . , . , k .

h i " .

-

z .

and @ ( y , z ) i s minimized,

. . 7 ' .-

.' .

where . . . . - . . - . . . .,.. -

.L -

(12)

. . .

w i t h , f o r j = l , .

..

, n , - . . .. L

Here

n

d e n o t e s t h e s u p p o r t , s m a l e s t c l o s e d s e t o f measure 1, o f t h e random v a r i - a b l e s . I f h a s been shown 151 t h a t t h e s o l u t i o n t o (2.1) remains u n a f f e c t e d i f t h e c o n d i t i o n

i s r e p l a c e d by t h e c o n d i t i o n . . . . . . .

-

. . , . . _ I '

(2.4) O i z h ( w ) i q h ( w ) f o r a l l w ~ n .

. . '

. ,. - - .

. .

I t i s t h i s last v e r s i o n o f t h e s e c o n s t r a i n t s t h a t we s h a l l use-;'

.. -

..

The main i d e a o f t h e a l g o r i t h m i s t o s u b s t i t u t e f o r ' " ( 2 . 1 ) a l i n i t e dimen- s i o n a l approximation based on a f i n i t e element r e p r e s e n t a t i o n o f (2.1) f o r z . We r e s t r i c t z ( * ) t o t h e l i n e a r span o f a f i n i t e c o l l e c t i o n o f f u n c t i o n s , i . e . ,

h

Zh(*) = l k . l \ k ~ h k ( * ) v

-

. . -5

where t h e c h k ( * ) a r e given and t h e Xhkc R. .- With - t h i s r e p r e s e n t a t i o n f o r z , prob-

. . . , . . .

l e m (2.1) becomes:

. . ..

(2.5) f i n d y c R: and Xhk c R f o r k = l , . ,v, h i l l " . , R , such t h a t

. . . - 7 r . , . . i . : , ; : , l j i , . . ' .

.' ., 1 .- . .: - . -: r-

..

o s

1

A E (wj qh(w) f o r a l l w

n,

h = l , . , R

. .

? -,

-

I . ,.k=l hk .hk -.

. . . . . . . ' i' :f :: -- . - .

. . . , . . . . - .

m v

.

.... . _ _ , . .--w . = c . - x a y . - 1

X

E 15 (w)t (w)k f o r j = l , . . , n , j J i = l i j 1 k = l h k hk h j

- .. . . . .

..-,-

. . . .

* c ,-.,, I T - . : ;

and 0 v (y,X) i s minimized

. . . . . ...

. . .

. - . . ' . 3 . ' T I

.- .+-.=

rg

: " " . . . ' r'

(13)

. .

- - - -

Let us denote t h e i n t e g r a l s t h a t a p p e a r i n (2.5) by , - , - L - . .-

,

-

2'. --.-. r . . - . , . r.-ii3,y:-, ?;I:$ 55.:t.ir-:, .: C..:F.L:

ihk

= E{chk (w) P ~ ( w ) ? & . : - . ... - - -

and - . - . . , . F .,.:;id r :. ,4 c - =, ,.. < .- > l , r' 3

... .. .. -2 5

.

. , . .- .. .. . :, 7 - . ..

. -

. .

-

e

hkk

'

-

- -

- * .

-

.

-

: ... ;

..

,"* ..

.,

. . ,. ..-

-

. ..

-

. .

we t h e n g e t t h e f o l l o w i n g form f o r ( 2 . 5 ) : z? J! .. ' "-,- - .

. -. .

-

.. . . - .,.. ; . . . : : - E : - ! . ? : : . ::

( 2 . 6 ) f i n d y e R+ and Xhkr R f o r k = l , . m

.

. , v , h = 1 , .

. .

, R such t h a t ,-

-

.. - ' , .. i - . . . ' I -.

m f o r j = l , .

. .

, n ,

.,:.

.-.

; r:

. .. . , r :i::: :I t l

@ v (y,X) i s minimized .. . , , . ...

.

. . .__ C ., , ..

.-.a,,- - : .

' ..I

4 _ . . .,.

L,

and - , . . .

r - . ,' ' F,c-:. -> -" :--, * 'L

.. . I , . ... . -.

(2.7) 0 s ~ t ~ J J h k 5 h k ( w ) v c q .h (w) f o r a l l w E Q, h-1,

. . .

, R . z , , i y ; e . . . . , - . t l -

- .

The f u n c t i o n @' t a k i n g on t h e form -. ,

-

-

I) ? r . - Ra :..y

-

. ;-?r;"

' '(2.8)

,

= : h = l k = l hk hk

F:-

+

l-1

2 k = l k ' =l 'V

1

. v ehkk( hk h k '

- )

. , . , .

Except f o r t h e s t o c h a s t i c c o n s t r a i n t s (2.7) t h i s i s a d e t e r m i n i s t i c - . q u a d r a t i c pro-

. . - .- . .. - .

gram f o r which e f f i c i e n t s u b r o u t i n e a r e a v a i l a b l e ; f o r example

MINOS

[ 6 ] ; r e c a l l t h a t 8 i s a p i e c e - w i s e q u a d r a t i c and l i n e a r f u n c t i o n , - . Thus the- o n l y s e r i o u s

. , .

o b s t a c l e i s t h e f a c t t h a t t h e simple upper-bounding c o n s t r a i n t s (2.7) a r e s t o c h a s -

- . 2 ' !.

t i c . We overcome t h i s d i f f i c u l t y by c o n s t r u c t i n g t h e r e p r e s e n t a t i o n s of t h e f m c - .. -

-

.

t i o n s z ( * ) s o t h a t t h e y a u t o m a t i c a l l y s a t i s f y t h e s e consrrain,t-s.' . j

h - , -

Suppose t h a t f u n c t i o n s Shk a r e themselves bounded below by 0 and above by

. - . . . -

. . -.

qh ' t h e n t h e c o n s t r a i n t s (2.7) w i l l -be s a t i s f i e d i f rather-..than_ t a k i n g l i n e a r com-

-.

- ' ; - I = . , , - . : -

b i n a t i o n s o f t h e f u n c t i o n s

c h i we

l i m i t o u r i e l v e ~ f o cbnvei c o m b i n a t i o n s . Assuming . . .

..

- f .

t h a t we proceed i n t h i s f a s h i o n , problem ( 2 . 6 ) ' beComes:

'- :

- ~ .= :.

(14)

(2.9) f i n d y r :R and lhk r R+ f o r k = l

,...

, v ; h.1,.

. .

R such t h a t

m II v

x f . .

Wj "j

-

l i = l a i j y i

-

l h = l j . k . = l . . ,hk . ,. h k j f o r j = l , . , n ,

and 4) v (y,X) i s minimized.

The c h o i c e o f t h e f u n c t i o n s Chk i s a d a p t i v e . We view7&oblem (2.9) a s t h e v - t h i t e r a t i o n of an approximation p r o c e s s , i n t h e s e n s e t h a t t h e convex combi-

--- -

-

-- --

n a t i o n of t h e f u n c t i o n s Chk o n l y y i e l d s a f i n i t e element r e p r e s e n t a t i o n of t h e

. . .

* ;: (. L 4 . .; .' .

. . . ..

f u n c t i o n s z h . The c h o i c e of 5 i s such t h a t it g u a r a n t e e S s a decrease--$n' t 6 e ' h , v

v a l u e of O(y,z) when t h e s o l u t i o n t o t h e v - t h q u a d r a t i c p r p . . g r ~ i s used t o r e p r e - . . . - --

s e n t z, i . e . ,

i n s t e a d t h e c o e f f i c i e n t s t h a t would be generated through e a l i e r v e r s i o n s of ( 2 . 9 ) ; h e r e hhk a r e t h e optimal s o l u t i o n s o f ( 2 . 9 ) . n Let

be t h e ( d u a l ) m u l t i p l i e r s a s s o c i a t e d w i t h t h e e q u a t i o n s

'r - : - . ,- '

a t t h e optimum. For h=1,

...,

R , we d e f i n e

. " . . -

.... . : . . ....

where 8 ' i s t h e d e r i v a t i v e of 8 , i . e . ,

I n view o f ( 2 . 1 0 ) , we always have t h a t

(15)

,

-

. ..

, .. . _ _ . . , =

- . . _ . i .

~ ' 1 .=<v;l) Gk.Isu-h Ch&t- ;.-- ,- - . .- . The f u n c t i o n s

cVt1

= (5,

, . . ,

To s e e t h i s .simply not:,;that

.

.- * . . . , . . . _ . . . . , _ - - , , .. .. - . - .. - , ; . . . .- _ ._ ., - . .- ;

-

a . .. . a - - . < ,.

. ... . .v.

from .-

-

- which

-

.. i t -follqws> .that . . -. + . - ,,-,,.+... r

-.

',' ;' , , ,- '. 2 : >-

-

- . . J

->,,; ; - '.-.i?.S?.. :..

-

- . . . - .

s i n c e

-

a z h

a

'j = 'hj and from (1.9) and t h e d e f i n i t i o n o f 8 ' we g e t -:.

... ,,a

..

T h i s then y i e l d s (2.10) s i n c e we o b t a i n from t h e equatioG

i f it t u r n s out t h a t t h e r e s u l t i n g v a l u e i s between 0 and q,.

,..

.

I

The choice o f gv+' p a r a n t e e s t h a t u n l e s s we a l i e a d y have found t h e oi-kimdl s o l u t i o n , t h e new p r e s e n t a t i o n

L T5:+ ?<: 5 - ' . +:?::>'

h

w i l l y i e l d an improved s o l u t i o n , h e r e t h e Xhk b e i n g t h e . c o e f f i c i e n t s

-

o b t a i n e d by

. - - -

s o l v i n g (2.9)

,

s e t t i n g v = v + l i n (2.9)

.

(16)

The a l g o r i t h m t h u s proceeds a s f o l l o w s : :,-

...

,:v

: . e ~ . : :

Step

0.

Choose any f u n c t i o n

c1

such t h a t

. - - , - , . ,.. . ?' "

.

. .

- 4? - . : . . . , .r... ' : ;.;, . - c . . "

"V" -

S$ep:,l.

- dive

(2.. ~ j . , _ r e c o r d i ~ ~ ' (x j = l ;n) t h e d u a l ..\iar&&bl&s ; % l & d c i a t e d t o

....

. . . j

'

- . - , . . . - . . . . -

t h e c o n s t r a i n t s d e f i n i n g w

.

Let denote t h e optimal v a l u e s o f t h e X -

., j . . . . I- - . . i

. . . * , ,.. . I . - ' . . . . : ' . . "

< ., 3

5..:i,;y .,-. A +

....

: . . . . .. . z

. .- .. _ L .

v a r i a b l e s . - -

-

. " . . -

' -

. . . C t. '7,;.

. . . - -. .

-

., .!,. L

-

: .- v+1 "

S t e p

2.-

Dkfine 5 through (2. i o )

.

. . . . . .

. ' ? ' -5, - -.y ' '

, A . u ..,

. . .

~f

cVi1

= 2; =

lkihk chk.

T e r m i n a t e :

:

the' (x v j

=i, ...

,n) s d l v e problem ( 0 . 1 )

.

j

'

. . . .. . .- 7 $7

-

. . . . . . .

.

.if: .

8 : .... < . . . A . . .

... ....

O t h e r w i s e r e t u r n t o S t e p 1 w i t h v = v+-1'. .. , +>

Observe t h a t having gV*' = z v i m p l i e s t h a t no f u n c t i o n o f t y p e 5 can be found

t h a t could g i v e a r e p r e s e n t a t i o n f o r z g e n e r a t i n g a d e c r e a s e i n

a .

The f a c t t h a t t h e (xv j = l , .

.

. , n ) a r e t h e n optimal s o l u t i o n s o f t h e o r i g i n a l problem (0.1) f o l -

j

'

lows from t h e D u a l i t y Theorem o f S e c t i o n 1.

We conclude by making a few comments about implementation. F i r s t n o t e t h a t t o s t o r e t h e f u n c t i o n 5 it r e a l l y s u f f i c e s t o s t o r e t h e f i n i t e dimensional v e c t o r v

v v

(xj

,

1 , .

.

n ) ; t h e d e f i n i t i o n o f 5

,

though (2.10) c o r r e s p o n d s t o a simple proba- b i l i s t i c s u b s e t ( e v e n t ) o f

Q

completely determined by x v

.

T h i s i s a l s o a l l t h a t i s n e c e s s a r y t o compute t h e q u a n i t i e s

f h k j ihk

and

ehkk,

which a r e o b t a i n e d by

9

numerical i n t e g r a t i o n . F i n a l l y , one should n o t r e a l l y r e l y on t h e s t o p p i n g c r i t e - r i o n given i n S t e p 2, b u t on bounds t h a t can be o b t a i n e d from t h e optimal v a l u e o f

(2.9) s i m i l a r t o t h o s e used i n t h e Frank-Wolf a l g o r i t h m [ 7 ] .

(17)

REFERENCES . .

,--.; +-,.-,.:

. . . . . ..- - - ,- , . - - - . , 8 ,-,i ... :,.. 7 2 : ~ : : .; , . cis.!,?

-

-

. *

:= ' - -

< . .

-

:L,

_.

I.

-

[ I ] D . Walkup and R. Wets, S t o c h a s t i c programs w i t h r e c o u r s e : s p e c i a l forms, i n

Proceeding o f t h e Princeton Symposium on MathematicaZ Propamring,

ed. H. Kuhn, P r i n c e t o n Univ. P r e s s , P r i n c e t o n , 1970.

[2] R. Wets, Solving s t o c h a s t i c programs w i t h s i m p l e r e c o u r s e ;

LSto&zstics,

(1983).

[31 R.T. R o c k a f e l l a r and R. Wets, The optimal r e c o u r s e problem i n d i s c r e t e q 9 : - . c-:;;sg&me : . ~ ! F m u % t i - ~ l i e r s f o r i n e q u a l i t y c o n s t f a i n t s

, S 1 N . J . C6ni?i-oZ .Optzm:,

.,"

-

16 (1978), 16-36.

.. r! :,...:.j

-

; ,: nr; .:.

,

r. -:

* J + -:,: . ;, ;, 2.3, : g.-, .

-

.:. 1. , . " , - 7 , 7 - .

[41

j-

:P. Aubin,

Mathematical Methods o f Gme and Economic Theory,

- .North Holland, .-.. .

Amsterdam, 1979. , , - - _ . _ _ i . .

[5] R. Wets, Induced c o n s t r a i n t s f o r s t o c h a s t i c o p t i m i z a t i o n problems, i n

Tech- niques o f Optimization,

ed. A. Balakrishnan, Academic. P r e s s , 1972, 433.-,443.

., C. $, 7 ::

[6] B . Murtagh and M. Saunders, Large-scale l i n e a r l y c o n s t r a i n e d o p t i m i z a t i o n ,

Mathema.ticaZ

- .

Programing,

14 (1978), 41-72. -. - . . . ,

-

[7] M. Frank and P. Wolf, An a l g o r i t h m f o r q u a d r a t i c programming,

NavaZ

Res.

. . .

Logist. @ e s t .

3 (1956), 95-,110. . .'.')', - . ,

-

:

Referenzen

ÄHNLICHE DOKUMENTE

Our contribution: We introduce the new stochastic guaranteed service model with recourse (SGSM) and apply two versions of it to the inventory control problem in a

摘要:随着消费者对在线回收模式认可度的提升,越来越多的 WEEE 处理企业开始通过在线回收渠道回收废旧 电子产品。然而,

摘要:随着消费者对在线回收模式认可度的提升,越来越多的 WEEE 处理企业开始通过在线回收渠道回收废旧 电子产品。然而,

From the stability theory of general optimization problems it is well-known that uniform convergence of perturbed objective functions can be used as a key ingredient to

Gcnerally speaking, it is easier to bound the objective function and its optimal value than to gct bounds on optimal solutions and it is not, easy to cxtend

From the stability theory of general optimization problems it is well-known that uniform convergence of perturbed objective functions can be used as a key ingredient

Nedeva, Stochastic programming prob- lems with incomplete information on objective functions, SIM J. McGraw-Hill

Read a matrix from a specified file Read a list of names from a specified file Read a vector from a specified file.. Read lines from a specified file until a