• Keine Ergebnisse gefunden

Energy in germany

N/A
N/A
Protected

Academic year: 2022

Aktie "Energy in germany"

Copied!
32
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Welcome Bienvenue

Willkommen

The role of ventilation in the energy turnaround

Prof. Dr.-Ing. Christoph Kaup

(2)

fuel

heat

electricity

Energyconsumption in germany

Energy in germany

(3)

Energyconsumption in germany

energyconsumption energyefficiency

production of electricity

Energy in germany

(4)

Energy in germany

Energyintension in germany

energyconsumption per habitans

consumption of electricity GDP

consumption of oil per GDP energyconsumption based on GDP

(5)

room

Heating of buildings

Transmission losses

(isulation of the envelope)

ventilation losses (35 to 38 %)

(sealing of the envelope)

(6)

ODA EXH

Ventilation

supply exhaust

room

(7)

ODA EXH

HRS

Ventilation

supply exhaust

room

(8)

Heat recovery

Heat recovery is the reusage of thermal energy by using the

procedures of heat transfer in a process of minimum two mass flows with different temperatures.

Goal of heat recovery is to minimize the demand of primary energy to heat up or to cool down the outside air to the target value of the required supply temperature.

Heat recovery is using the enthalpie of the exhaust or outside air flow (heating or cooling), by using the recovered energy in the

original process (temperating the air) or in another process (multifunctional use).

(9)

Heat recovery

Therefore heat recovery is a energy efficiency measure. And heat recovery is a renewable energy source. The use of waste heat is

„renewed“ to a useable energy by using of heat transfer procedures.

HRS is a renewable process.

The waste of heat exists parallel to the demand of heat. Therefore the use of waste heat is a sustainable soure of thermal energy.

There is no lag of time between the demand of thermal energy and the offer of waste heat.

(10)

Development of the efficiency of HRS

UCB-Study 2014 for

HRS in NRB in germany

Year

efficiency

(11)

Development of the usage of HRS (possible units)

UCB-Study 2014 for

HRS in NRB in germany

Year

UseofHRS

(12)

Marked values for germany (D) AHU´s

year AHU´s

HRS-

usage Φ HRS ΔP HRS V SUP rate RLT V D SUP

units % % Pa m³/h % Markt Mio. m³/h/a

base 13,4 years 25.000 27,5 57,0 165 14.000 70,5 467,7

1993 bis 2005 (estimated average)

2006 31.857 31,5 60,0 161 13.426 70,5 571,5

2007 30.952 34,0 61,3 160 14.834 70,5 613,5

2008 31.424 45,8 63,3 176 15.667 70,5 657,8

2009 25.295 55,4 64,8 175 15.127 70,5 511,3

2010 26.846 67,4 67,2 182 13.332 70,5 478,2

2011 29.567 70,4 68,4 197 14.028 75,0 520,9

2012 27.885 83,2 69,5 191 13.073 70,0 490,6

2013 22.793 78,6 69,1 181 14.422 75,0 412,9

2014 22.686 73.9 70.2 176 14.796 70.0 448,5

UCB-Study 2014 for

HRS in NRB in germany

(13)

under consideration of 80,8 % combined supply and exhaust units and 13,3, % pure supply units

the heat demand during 24-h-operation (8.760 h/a) of average

unit lay´s at 31,33 kWh/(m³/h)/a. With a average operation time of 2.350 h/a exists a demand of heat energy of 8,4 kWh/(m³/h)/a

Multiplication factor of 13,4 (20 years live time with 2 % interest rate und 2 % change rate)

renovation rate of 6,4 % (standard deviation 2,5 %) by

survey of experts (n = 10) in 2014 (answers between 3 bis 10 %)

primary energy factoren 2,6 for electricity and 1,1 for oil or gas

UCB-Study 2014 for

HRS in NRB in germany

(14)

Demand of heat energy and HRS (NRB) in germany

demand benefit effort benefit effort Net

year heating HRS HRSel HRS sum. HRSel sum. HRS

GWh/a GWh/a GWh/a GWh/a GWh/a GWh/a

1993 bis 2005 3.653 573 34,6 7.674 463 7.237

2006 4.801 907 48,4 8.523 508 8.053

2007 5.153 1.074 51,4 9.528 556 9.034

2008 5.526 1.602 79,5 11.028 631 10.490

2009 4.295 1.542 69,3 12.471 696 11.909

2010 4.017 1.820 93,3 14.174 783 13.555

2011 4.376 2.107 124,2 16.146 899 15.422

2012 4.121 2.383 130,7 18.376 1.022 17.558

2013 3.468 1.884 102,9 20.140 1.118 19.247

2014 3.767 1.956 94,4 21.970 1.206 21.030

UCB-Study 2014 for

HRS in NRB in germany

(15)

HRS in NRB in germany

Benefit and effort of heat recovery (energies)

UCB-Study 2014 for

Year benefit of HRS

effort of HRS

(16)

Renewable heating in germany

Renewable heat energy provision 2013

heat pumps 8,5 TWh/a source 2013

solarthermic 6,8 TWh/a source ZSW AGEE-Stat. 2014

geothermic 9,5 TWh/a source ZSW AGEE-Stat. 2014

sum 24,8 TWh/a

heat recovery NRB 20,1 TWh/a

projection 2020 33,2 TWh/a

(17)

Residential 17,3 Mio units Non-residential 1,5 Mio units

2007 (D)

75 % built before 1975

Buildings in germany

Non-residential (NRB)

Residential (RB)

(18)

Residential (RB)

others

agriculture single dwellings

multi dwellings industry

warehouses

institutions

offices towers

row houses

Buildings in germany

(19)

estimation UCB-Study 2010

Buildings in germay

towers offices institutions

warehouses industry

adgriculture other NRB

multi dwellngs

single dwellngs row houses

(20)

Potential in AHU´s

Saving in residential buildings (2012) in D 165 GWh/a ( 7 %) Saving in non-residential buildings (2012) in D 2.302 GWh/a (93 %)

Saving residential buildings (2025) EU 448 PJ (15 %) Einsparung non-residential buildings (2025) EU 2.630 PJ (85 %)

Potential of ventilation

UCB-Study 2013 for

(21)

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

8,0%

9,0%

10,0%

130.000 110.000 90.000 70.000 50.000 40.000 30.000 25.000 20.000 18.000 16.000 14.000 12.000 10.000 8.000 6.000 4.000 2.000 1.000 500

Luftmengen in %

Luftmengen in m³/h

UCB-Study 2010 for

AHU airflows in NRB

cumulation

Airflow

Air flow rates in NRB

(22)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

150.000 130.000 110.000 90.000 70.000 50.000 40.000 30.000 25.000 20.000 18.000 16.000 14.000 12.000 10.000 8.000 6.000 4.000 2.000 1.000

Verteilung in %

Luftmengen in m³/h

EnEV

= 7.400 m³/h

Cumulative frequency of air flow rates in NRB

UCB-Study 2010 for

Airflow

cumulation

AHU airflows in NRB

(23)

y = 4E-09x6- 5E-07x5+ 2E-05x4- 0,0004x3+ 0,0031x2 - 0,002x + 0,0045

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

135.000 115.000 95.000 75.000 55.000 42.500 32.500 26.750 21.250 18.500 16.500 14.500 12.500 10.500 8.500 6.500 4.500 2.500 875

Wärmearbeiten in m³/h

Luftmengen in m³/h

UCB-Study 2010 for

Heat energy in NRB

AHU airflows in NRB

cumulationin %

Airflow

(24)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

105.000 85.000 65.000 47.500 37.500 28.750 23.750 19.500 17.500 15.500 13.500 11.500 9.500 7.500 5.500 3.500 1.500

Verteilung in %

Luftmengen in m³/h

EnEV

= 28.800 m³/h

Median V

UCB-Study 2010 for

Cumulative frequency of heat energy in NRB

Airflow

cumulation

AHU airflows in NRB

(25)

Airflows and energy potential in AHU´s in NRB

Median of airflows ca. 7.400 m³/h

average airflow of a AHU ca. 14.400 m³/h Median based on energies ca. 28.800 m³/h

The „factor two x two“ to the relevance of energy

AHU airflows in NRB

(26)

Development of the specific supply-fan power SFP

UCB-Study 2014 for

P

el

in NRB in germany

Year

SFP supply

(27)

UCB-Study 2014 for

P

el

in NRB in germany

Development of the specific exhaust-fan power SFP

Year

SFP exhaust

(28)

Installed electric power for AHU´s in NRB

SFP SUP SFP EXH V EXH V SUP AHU´s Vent VD EXH PelEXH VD SUP PelSUP total W/(m³/s) W/(m³/s) m³/h m³/h pice % Mio. m³/h MW/a

Mio.

m³/h MW/a MW/a 2006 1.900 1.567 14.106 13.426 31.857 70,5 552,6 240,6 571,5 301,6 542,2 2007 1.905 1.545 13.212 14.834 30.952 70,5 502,9 215,9 613,5 324,7 540,6 2008 1.887 1.569 13.196 15.667 31.424 70,5 510,0 222,2 657,8 344,9 567,1 2009 1.867 1.630 10.847 15.127 25.295 70,5 337,4 152,7 511,3 265,2 417,9 2010 1.826 1.547 12.704 13.332 26.846 70,5 419,4 180,2 478,2 242,5 422,7 2011 1.791 1.507 13.820 14.028 29.567 75,0 472,4 197,7 520,9 259.2 456,9 2012 1.697 1.513 14.037 13.073 27.885 70,0 484,8 203,8 490,6 231,2 435,0 2013 1.636 1.382 14.732 14.422 22.793 75,0 388,2 149,0 412,9 187.6 336,6 2014 1.618 1.332 14.606 14.796 22.686 70.5 407.5 150.8 448.5 201.6 352.3

UCB-Study 2014 for

P

el

in NRB in germany

(29)

P

el

in NRB in germany

Development of new installed electric power Pel in NRB

UCB-Study 2014 for

Year

Installed electric power

(30)

without ventilation without HRS

with ventilation with HRS

Unused waste heat

100 % 6 %

exhaust gas lossses production of

heating 106 %

Useable Heat 100 %

exhaust

+ wastheat

ventilation

+ heating

+ inner heat-

sources

Up to 30 % not useable

waste heat

10 % aux.

energy for HRS

1,2 % exhaust gas losses

21,2 % production of heating Usable heat

100%

20%

Partly useable heat

(multifunctiona use)

e. g. by heatpunp 70% direct useable

waste heat

e. g. free cooling

HRS

Ventilation with heat recovery

UCB-survey 2012 for

(31)

Ventilation in NRB

(32)

for your Attention

Thank you

The role of ventilation in the energy turnaround

Prof. Dr.-Ing. Christoph Kaup

Referenzen

ÄHNLICHE DOKUMENTE

These include the classic water steam-cycle (in which heat is transformed to electric power with a turbine), the organic Rankine cycles (which uses an or- ganic liquid instead

Presently, the energy balance is based on aggregated annual values and energy carriers are weighted with primary energy factors or the Swiss national weighting factors.. The

Peer-review under responsibility of the scientific committee of the CISBAT 2017 International Conference – Future Buildings & Districts – Energy Efficiency from Nano to

Uptake rates and rates of synthesis were calculated by linear regression of a semi-log plot of chlorophyll a concentrations and nutrient consumption during exponential growth

In this case t he flux of potential vorticity due to transient eddies remains to balance the frictional stress divergence and the pressure force.. We see again - as

In equilibrium spin, electron and lattice temperature are equal and the temperature can be expressed as a unique function of the energy, T (E) (not of the magnetisation, which is

Since the heating rates depend inversely on the loop length, it could be the result of stronger heating along the short field lines in the lower regions, even if the heating rate

Keywords: Grid balancing, Flexibility options, District heating network (DHN), Combined heat and power (CHP) plant, Power generation dispatch, Frequency Control, Renewable