• Keine Ergebnisse gefunden

Waste-to-Energy Plant as Part of Combined Heat and Power Strategy

N/A
N/A
Protected

Academic year: 2021

Aktie "Waste-to-Energy Plant as Part of Combined Heat and Power Strategy"

Copied!
6
0
0

Wird geladen.... (Jetzt Volltext ansehen)

Volltext

(1)

Waste-to-Energy Plant as Part of Combined Heat and Power Strategy

– Using the Example of the Klaipeda Case –

Kalle-Erkki Penttilä

1. Trends having impact on waste to energy ...260

1.1. Importance of circular economy is growing ...260

1.2. Multi fuel approach ...261

2. Klaipeda waste to energy plant ...262

3. Brista waste to energy plant ...263

Fortum is a mid-sized European power generation player and a major producer in global heat (Figure 1).

Figure 1: Largest power producers in Europe an Russia, largest global heat producers and electricity customers in EU

Source: Company information, Fortum analyses, 2012 figures pro forma, heat production of Beijing DH not available.

Power generation

DEI EuroSibEnergoIberdrola Fortum EnBW Vattenfall

CEZ RWE

***)IES

DTEKPGE Rosenergoatom

NNEGC Energoat.

E.ONEnel EDF

GDF SUEZ

Statkraft Gazprom

*)

RusHydro Inter RAO UES

**)

Largest producers in Europe and Russia, 2012 TWh

0 100 200 300 400 500 600

Heat production

KDHC, Korea Quadra

Tatenergo Minskenergo DTEK, Ukraine EuroSibEnergo

TGC-2 Fortum

Dong Energy

TGC-14 Lukoil Sibgenco

****)

***)IES

Vattenfall

PGNiG Inter RAO UES

**)

ELCEN.

*****) RusHydro

Dalkia Gazprom

*)

Largest global producers, 2012 TWh

0 20 40 60 80 100 120 140

Electricity customers in EU, 2012 Millions Customers

GDF SUEZ DEI CEZ Enel

Centrica EDP Iberdrola

EnBW SSE

Fortum EDF E.ON RWE

Gas Natural Fenosa Tauron PGE

Hafslund Dong Energy Vattenfall

0 10 20 30 40

* incl. MOEK

** incl. Bashkirenergo

*** incl. TGC-5, TGC-6, TGC-7, TGC-9

**** incl. TGC-12, TGC-13

***** figure 2011

Fortum incl. Fortum Värme; power generation (1.2 TWh) and heat production (8 TWh).

(2)

Figure 2: Fortum’s geographical presence

Fortum’s heat investment focus on combined heat and power (CHP) generation.

Figure 3 shows current projects.

* incl. Fortum Värme, power generation 1.3 TWh and heat since 5.2 TWh.

OAO Fortum

Power generation 20.0 TWh Heat sales 24.2 TWh Russia

Poland

Power generation 0.6 TWh Heat sales 4.0 TWh

Baltic countries

Power generation 0.5 TWh Heat sales 1.1 TWh Nordic countries

Power generation* 46.5 TWh Heat sales* 13.9 TWh Distribution customers

in Sweden 0.9 million

Electricity customers 1.2 million

Key figures 2013*

Sales EUR 6.1 bn Operating profit EUR 1.7 bn Balance sheet EUR 23 bn Personnel 9,900

Great Britain

Power generation 1.0 TWh Heat sales 1.8 TWh

India

Power generation ~9 GWh In addition, ~25 % share in TGC-1

Coal

Biomass

Natural gas Other

Oil

Waste

Peat

Heat pumps, electricity Projects finalized in 2009 - 2013:

Estonia, Tarto bio, peat Finland, Suomenoja gas CCGT Estonia, Pärnu bio, peat Poland, Czestochowa coal, bio Lithuania, Klaipeda waste Finland, Järvenpää bio Latvia, Jelgava bio Sweden, Brista 2 waste Projects under construction:

Sweden, Värtan bio Projects under development:

Poland, Zabrze bio, coal, waste Poland, Wroclaw gas CCGT Poland, Plock bio, waste Sweden, Högdalen waste Sweden, Lövsta waste Lithuania, Kaunas waste, bio

Fuels used in heat production

Figure 3: Fortum’s CHP investment portfolio

1. Trends having impact on waste to energy 1.1. Importance of circular economy is growing

According to current plans EU will in future strongly promote the circular economy.

Aim is to use resources more efficiently with ambitious target to increase resource productivity by thirty percent by 2030. This means less waste sent to landfills and new requirements for more sustainable waste treatment.

Its operations focus on the Nordic and Baltic countries, Russia and Poland (Figure 2).

(3)

• Reuse and recycling of material will increase.

• Energy recovery of non-recyclable waste will have its place in circular economy.

• Low public acceptance of direct municipal solid waste incineration.

recycling (e.g. bottles) mining

collection users parts manufacturer

product manufacturer

energy recovery

landfill

reuse/prepair for reuse

metal (ferrous + non ferrous) + bottom ash electricity + heat

material recovery energy

recovery

1.2. Multi fuel approach

Waste has an important role in fuel portfolio by replacing other more expensive fuels in heat and electricity production. Due to growing interest in the circular economy demand on more sustainable waste management including efficient reuse and recycling of waste will increase. This will have impact on the portfolio of waste derived fuels in energy production.

• Less recyclable waste for energy production,

• MSW, RDF, pre-RDF from MBTs,

• sorted industrial and commercial waste,

• biomass, local fuels.

More multi fuel CHP plants and less direct MSW WtE installations:

• Flexibility important,

• versatile technical requirements.

Figure 4:

Circular economy illustration

(4)

2. Klaipeda waste to energy plant

Investor was UAB Fortum Klaipeda, which is a joint company owned by Fortum Cor- poration (95 percent) and Klaipedos Energija (five percent). Klaipeda city (75 percent) and Fortum (twenty percent) are main owners of Klaipedos Energija, which provides district heat to the city of Klaipeda.

Existing production capacity consists of two CHP plants and several hot water boilers.

Fuels are natural gas and heavy fuel oil.

New UAB Fortum Klaipeda combined heat and power plant (CHP Plant) improves the existing district heat production capacity to cover the base district heat load of the Klaipeda city.

The size of the CHP Plant is 20 MWe/50 MWth + 15 MWth from flue gas condenser.

seventy percent heat load can be achieved also by using reduction heat exchanger DHE3. Plant has auxiliary coolers of thirty megawatt to enable waste firing and power generation also during the lowest heat load period in summer season.

Main fuel of the CHP Plant is municipal solid waste. Optional solid fuels are industrial waste (max. fifty percent), biofuel (max. forty percent), car fluff (max. ten percent) and WWTP sludge (max. seven percent). Natural gas is a start-up fuel.

• 250,000 t per year municipal solid waste and industrial waste,

• up to 80,000 t per year biomass.

Klaipeda CHP Plant consists of the following main equipment:

• Grate firing boiler was delivered by Fisia Babcock Environment GmbH. Boiler is equipped with two natural gas start-up/support burners, each thirty megawatt.

• Semi-dry flue gas treatment plant with flue gas condenser was delivered by Alstom Power Sweden AB.

• Extraction back-pressure turbine SST - 300 was delivered by Siemens Industrial Turbomachinery s.r.o.

Key milestones of the project

• Investment decision 8.12.2009,

• main equipment contracts 11.01.2010,

• start of construction at site 01.03.2011,

• first firing with waste 15.05.2013.

Figure 5: Klaipeda WtE plant

(5)

Figure 6: Brista WtE plant

3. Brista waste to energy plant

Investor is a joint company owned by Fortum Värme (85 percent) and City of Sollentuna (15 percent). Fortum Värme is co-owned by Fortum and City of Stock- holm. Fortum Värme provides district heating and cooling to Stockholm area.

Existing production capacity of North Stockholm district consists of several combined heat and power plants, several hot water boilers and heat pumps. Fuels used in energy production are biomass, bio oil and conventional oil.

New WtE CHP plant improves the exis- ting district heat production capacity to cover the base district heat load with waste based production. (Figure 7)

The size of the new plant is 20 MWe/

48 MWth and 12 MWth from flue gas condenser.

Main fuels are municipal solid waste (70,000t per year) and RDF/industrial waste (170,000 t per year).

Figure 7: Production portfolio of North Stockholm district

0 100 200 300 400 500 600 700 800

0 1 2 3 4 5 6 7 8

1000 h/year MW

HVC, Fuel oil HVC, Tall oil-pitch

HVC, Bio oil

HVC, Wood Pellets Hässelby HVC,Wood Pellets VP, Heat pump Gamla Hässelby,Wood Pellets VP (FK), Heat pump Brista 1, Wood chips Brista 2, MSW

Brista WtE main equipment:

• Grate firing boiler delivered by Martin GmbH,

• flue gas treatment plant with flue gas condenser delivered by Alstom,

• extraction back-pressure turbine delivered by Siemens.

Key milestones of the project

• Investment decision September 2010,

• start of construction at site October 2011,

• commercial operation 28.02.2014.

(6)

Dorfstraße 51

D-16816 Nietwerder-Neuruppin

Tel. +49.3391-45.45-0 • Fax +49.3391-45.45-10 E-Mail: tkverlag@vivis.de

Bestellungen unter www. .de

oder

TK Verlag Karl Thomé-Kozmiensky

Paketpreis

Energie aus Abfall

Energie aus Abfall, Band 11 (2014) ISBN: 978-3-944310-06-0 Hardcover: 977 Seiten mit

farbigen Abbildungen Energie aus Abfall, Band 10 (2013)

ISBN: 978-3-935317-92-4 Hardcover: 1096 Seiten mit

farbigen Abbildungen Energie aus Abfall, Band 1 (2006)

ISBN: 978-3-935317-24-5 Hardcover: 594 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 2 (2007) ISBN: 978-3-935317-26-9 Hardcover: 713 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 3 (2007) ISBN: 978-3-935317-30-6 Hardcover: 613 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 4 (2008) ISBN: 978-3-935317-32-0 Hardcover: 649 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 5 (2008) ISBN: 978-3-935317-34-4 Hardcover: 821 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 6 (2009) ISBN: 978-3-935317-39-9 Hardcover: 846 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 7 (2010) ISBN: 978-3-935317-46-7 Hardcover: 765 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 8 (2011) ISBN: 978-3-935317-60-3 Hardcover: 806 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 9 (2012) ISBN: 978-3-935317-78-8 Hardcover: 809 Seiten mit

farbigen Abbildungen

Energie aus Abfall, Band 1 bis 11

Einzelpreis: 50,00 EUR

300,00 EUR

statt 550,00 EUR

Herausgeber: Karl J. Thomé-Kozmiensky und Michael Beckmann • Verlag: TK Verlag Karl Thomé-Kozmiensky

Thomé-Kozmiensky und Beckmann Energie aus Abfall 11Thomé-Kozmiensky und Beckmann Energie aus Abfall 11 Thomé-Kozmiensky und Beckmann Energie aus Abfall 10 Thomé-Kozmiensky und Beckmann Energie aus Abfall 10 Thomé-Kozmiensky und Beckmann Energie aus Abfall 9 Thomé-Kozmiensky und Beckmann Energie aus Abfall 9

Thomé-Kozmiensky und Beckmann Energie aus Abfall 8

Thomé-Kozmiensky und Beckmann Energie aus Abfall 8

Thomé-Kozmiensky und Beckmann Energie aus Abfall 7 Thomé-Kozmiensky und Beckmann Energie aus Abfall 7

Thomé-Kozmiensky und Beckmann Energie aus Abfall 6 Thomé-Kozmiensky und Beckmann Energie aus Abfall 6

Thomé-Kozmiensky und Beckmann Energie aus Abfall 5 Thomé-Kozmiensky und Beckmann Energie aus Abfall 5

Thomé-Kozmiensky und Beckmann Energie aus Abfall 4 Thomé-Kozmiensky und Beckmann Energie aus Abfall 4

Thomé-Kozmiensky und Beckmann Energie aus Abfall 3 Thomé-Kozmiensky und Beckmann Energie aus Abfall 3

Thomé-Kozmiensky Beckmann Energie aus Abfall 2 Thomé-Kozmiensky Beckmann

Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann Thomé-Kozmiensky Beckmann

Thomé-Kozmiensky Beckmann Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2 Energie aus Abfall 2

Thomé-KozmienskyBeckmann Energie aus Abfall 1Thomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskThomé-KozmienskyBeckmannBeckmannBeckmannBeckmannBeckmannBeckmannBeckmann Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1 Energie aus Abfall 1

Abbildung

Figure 2:  Fortum’s geographical presence
Figure 5:  Klaipeda WtE plant
Figure 6:  Brista WtE plant

Referenzen

ÄHNLICHE DOKUMENTE

The heat capacities of the solid and liquid K 3 LnCl 6 compounds (Ln = La, Ce, Pr, Nd) have been determined by differential scanning calorimetry (DSC) in the temperature range 300

There are multiple reasons, but the basic one is that the electric utility industry in most countries is a regulated ‘natural’ monopoly created to sell electricity, and not

In this case t he flux of potential vorticity due to transient eddies remains to balance the frictional stress divergence and the pressure force.. We see again - as

 The total generated heat for space heating and domestic hot water preparation in kilowatt- hours (kWh), divided into the different heat sources for the heat pump:

Presently, the energy balance is based on aggregated annual values and energy carriers are weighted with primary energy factors or the Swiss national weighting factors.. The

Many of those who are at risk of harm from heat are also at greater risk of severe illness due to coronavirus (COVID-19) and may need to spend more time at home than they

In case of typical geothermal conditions of the Upper Rhine Rift Valley with a geothermal water temperature of 160 °C and a mass flow rate of 65 kg/s, second law efficiency for

Table 5: Utilisable potentials for reduction of CO 2 emissions from combustibles with heat pumps and power supply from combination of substituted electric heating systems,